

ACM - SIGCSE Bulletin, December, 2002 1

SIMULATION OF LOAD BALANCING ALGORITHMS:

A Comparative Study

Milan E. Soklic

Abstract

This article introduces a new load balancing algorithm, called diffusive load balancing, and compares its
performance with three other load balancing algorithms: static, round robin, and shortest queue load
balancing. The comparison of load balancing algorithms is made in three simulated client-server
environments: a small-scale, intranet, and Internet environment. Experimental results of performance
modeling show that diffusive load balancing is better than round robin and static load balancing in a
dynamic environment, which manifest in frequent clients' object creation requests and in short objects'
lifetimes. In this research, the diffusive load balancing algorithm is discussed in juxtaposition with the
distributed client-server architectures.

Keywords: simulation, performance modeling, adaptive load balancing, distributed systems, client-server.

Introduction

In a client-server environment it is common to have more than one server processing clients’ requests. In
such cases there must be a mechanism to distribute the clients’ requests to the servers. Depending on how
this mechanism works servers may have different workloads. Workload of a server is determined by the
amount of processing time needed to execute all clients’ requests assigned to that server. To achieve best
performance results a method applied needs to minimize workload differences between the servers. Load
balancing is the term given to any mechanism that tries to achieve this.

Performance in a client-server environment can be measured by the response time defined as the duration of
time starting when the client submits a request to the servers and ending when the servers notify the client,
that the request has finished execution. It was shown by Winston [1] that the best mechanism for achieving
optimal response time is to distribute the workload equally among the servers.

There is no known way to determine how much processing time a request will take prior to actually
executing it. As a consequence, it is unlikely to accurately determine how much workload a server actually
has, so approximate estimations are to be made for the workload, determined by the CPU utilization or the
CPU wait-queue length.

An object created on a server, on behalf of the client, has its pertinent information about its state stored in
the server’s memory. During the object's lifetime, i.e. from the creation of the object to its destruction, the

ACM - SIGCSE Bulletin, December, 2002 2

object may remain idle for periods of time, waiting for clients’ requests, or it may be executing. A decision
to assign an object to a server based on the current conditions could turn out to be incorrect, if it has not
been considered how the object would be used by its clients in the future, i.e. when the object will be
executing and when it will be idle. To achieve a full potential of all servers, a load balancing mechanism is
needed to distribute equal workloads to the servers.

Architecture for Diffusive Load Balancing

The hardware architecture consists of a set of clients and a network of servers. The network of servers is
described in terms of a graph G=(V, E), where vertices V represent servers - nodes, and edges E represent
communication links. Direction of edges indicates possible propagation of load requests to or from a
given server. A client selects a server, via a network router, from the list of all available servers.

The software architecture for diffusive load balancing consists of two DCOM software components, known
as the object factory and the request acceptor. When a client needs to create an object, it contacts the object
factory component on one of the servers, by examining a list of all servers and choosing the one which has
not been called for the longest time from that client. After the selected server is contacted, the object factory
component on that server initiates a search for a granting server, which will accept the client’s object
creation request. The search for a granting server starts with the invocation of the request acceptor
component on the selected server, which invokes request acceptors on its directly connected neighboring
servers.

The request acceptor forwards the request to the server with the smallest amount of workload only, if the
workload differential between that server and the server where the component is executing is greater than a
specified threshold. Workload of the server is determined by counting the number of DCOM object tasks in
the server’s ready queue. This number might be less than the overall number of objects bound to a server,
since some of the objects may be idle, e.g. waiting for client requests. The search for a granting server
causes a traversal of the network along the directed edges in a diffusive fashion, i.e. along edges leading to
less loaded servers, until the granting server is found.

Once a request acceptor component on a granting server accepts the client’s request, the object factory
component on the selected server creates the object on the granting server, and returns a pointer of the
created object to the client. Having a pointer to an object, a client can call its methods directly. DCOM
handles the internal communication, transport of arguments, and return values between the client and the
server.

The Simulation Model

The simulation model described below provides a virtual environment for clients and a network of servers.
Specifically, it mimics clients’ behavior, it simulates different client/server hardware architectures, and
responds to clients’ behavior in the view of four load balancing techniques: static, round robin, diffusive,
and shortest queue. It keeps track of all events in the simulation environment, using log files, in order to be
able to analyze and plot various results for comparison of the four load balancing techniques.

Clients are single-user single-task processes operating independently of each other. During the simulation
run a client creates, calls, and destroys a number of objects sequentially. A client issues an object creation
request to the network of servers and then waits for the network to return a pointer to the created object.

ACM - SIGCSE Bulletin, December, 2002 3

Once the client obtains a pointer to the object, the client can start calling methods of this object. By calling
a method, the client remains idle until the server notifies that the call has been completed. A list of possible
client's calls is described below:

−−−=== Wait(d) causes a client to wait for d time units;
−−−=== Create(O) represents a client’s request to create an object O on a server;
−−−=== Method(t) is a client’s call for a method of the object created on the server;
−−−=== Destroy(O) represents a client’s request to destroy object O currently held on that server.

Each client’s event starts with a Wait() call and terminates after a Destroy() call is complete. Figure 2 shows
an example of m events created by a client. Each client’s call has a different number to signify that the
parameters to each call are different and unrelated. The first event starts with Wait(d1) and terminates after
Destroy(O1) call is complete.

Wait(d1) Wait before creating an object
Create(O1) Create object number one
Method(t1.1) 1-st method call to object number one
Wait(d1.1) Wait between previous and the next call to object number one
…
Method(t1.n) n-th method call to object number one
Wait(d1.n) Wait before destroying object number one
Destroy(O1) Destroy object number one (after n calls to it)
…
Wait(dm) Wait between destruction of object m-1 and creation of object m
Create(Om) Create object number m
…
Wait(dm.k) Wait before destroying object number m
Destroy(Om) Destroy object number m (after k calls to it)

Figure 2: The sequence of a client’s events as an ordered sequence of calls.

Sequences of calls represent a client's general behavior. However, client’s specific behavior is governed by
a set of simulation parameters which in effect fine-tune client's events. Most of these parameters are
averages, and the actual values used are based on random numbers with specified probability distributions
[2].

Simulation parameters governing the generation of clients’ events are summarized below:

−−−=== Clients is the number of clients;
−−−=== Objects/client is an average number of objects created by a client;
−−−=== Delay between objects is the average time between an object destruction and creation of another one;
−−−=== Calls/object is the average number of method calls made to each object;
−−−=== Delay between calls is the average time delay between calls made to each object;
−−−=== Method time is the average server processing time for completion of a single method call;
−−−=== Method probability is the probability that the method associated with this parameter will be called.

A network of servers is described by two parameters:

−−−=== Servers is the number of servers in a network that can process requests from clients;
−−−=== Node-node delay is the time for a message to pass from one server to another one.

ACM - SIGCSE Bulletin, December, 2002 4

Load Balancing Techniques

In order to compare and contrast the proposed diffusive load balancing technique with other techniques, the
following four load balancing techniques were simulated: static load balancing, round robin balancing,
diffusive load balancing, and shortest queue load balancing. In each simulation run, the same behavior of
clients is used in order to compare responses of the load balancing techniques.

Static Load Balancing requires no extra hardware or software components to implement. Clients are
statically bound to the servers, and do not access any other server. The servers act independently of one
another. The only parameter specific to this simulation is maximum clients and represents the maximum
number of clients.

Using Round Robin Load Balancing a client creates an object by sending a message to the router. After a
specified delay, the router forwards the message to one of the servers, in a round robin fashion. The delay
associated with the router is router delay.

Using Diffusive Load Balancing technique, a client requests object creation by sending a message to a
round robin router, which forwards the message to one of the servers. After a method on the object is
evoked for the first time, a search for the granting server takes place in the G(V, E) representing the
network topology. Request is moved from one server to its neighboring server, if the difference in
workload between the server and its neighbors is higher than the propagation differential, a threshold
value, which determines whether to forward a server's request to another server, or not. The workload of
a server is approximated using the number of client tasks in the ready queue.

In Shortest Queue Load Balancing new client requests are forwarded to the server that has the least
workload. This is achieved by having a single entry-point to the network of servers which keeps track of
how much processing time is needed by the clients' requests already running on each server. Objects are
not bound to a specific server during their lifetimes, and can move from one server to another, which in
effect achieves a very fine-grained load balancing. Since it is impossible to determine in advance how
much processing time a client request will take, this technique has only theoretical significance. It is
added to the simulation as a benchmark to make comparisons to the other simulated load balancing
techniques.

Simulation Results and Discussion

The software simulator was designed and implemented to model the four different load-balancing
techniques in the three different client-server environments. The comparative study of load balancing
techniques was made using values of the simulation parameters shown in Table 1.

The clients’ behavior is specified by parameters in columns number one through nine. The standard
deviation in row number three is used for determining averages of the first two parameters, whereas the
standard deviation in row seven is used to determine averages of the parameters four through six. Network
of servers is represented by parameters 10 and 11. To simulate static, and diffusive load balancing
techniques, parameters 12 and 13, are used, respectively. In the small-scale environment, a single method
time was used with certainty of 100%, whereas, in the intranet and in the Internet environments, two
different method times were used each with 50% of their corresponding method calls.

ACM - SIGCSE Bulletin, December, 2002 5

Simulation parameters Small-scale Intranet Internet
1 Clients 20 50 100
2 Objects/client 1 5 5
3 Standard deviation 0 2 5
4 Delay between objects 100 10000 20000
5 Calls/objects 15 5 1
6 Delay between calls 5000 1000 100
7 Standard deviation 3 2 10
8 Method time 1000 1000 750 500 750
9 Method probability 100 50 50 50 50
10 Servers 5 5 5
11 Node-node delay 100 100 100
12 Maximum clients 20 55 120
13 Router delay 5 5 5
14 Propagation differential 20 20 20

15 Network topology G1 G1 G1

Table 1: Simulation parameters and their values used in three different operating environments.

The diffusive load balancing uses parameters 14 and 15. The topology of the network is given in the graph
G1(5, 8) depicted in Figure 4. There are five servers V={0, 1, 2, 3, 4} with 8 point-to-point connections
between them. Connections between two pairs of servers (1, 3), and (1, 4) are bi-directional, whereas the
other six connections are unidirectional.

 0 1 1 0 0
 0 0 0 1 1
G1 = 0 0 0 1 1
 1 1 0 0 0
 1 1 0 0 0

Figure 4: Network topology used in the simulation model.

Behavior of clients is generated randomly for each different operating environment. The same behavior is
used in all environmental conditions in order to compare the different load balancing algorithms. The start
time, end time, and delay of each client's request submitted to the server are recorded, as well as the
workload of each server. Workload of a server is measured in time units, and is defined as the total
processing time needed to finish all the clients’ requests running on that server. Pertinent data of the
simulation run are summarized in Table 2.

For each load balancing algorithm in each environment the data Te and Td were compiled. Te is elapsed
time, from the start of the first client call until all the clients’ calls in a specified environment have been
completed, measured in time units. Td is delay time, representing the sum of all the delays associated with
the clients’ requests, also measured in time units.

In Table 2, static load balancing performs well in the small-scale environment because in this environment a
good estimate can be made for maximum number of clients. Round robin load balancing achieves moderate
results in all three environments. Diffusive load balancing achieves excellent results in the Internet
environment, with an elapsed time almost 25% shorter than round robin, and only 3% longer than shortest
queue load balancing, the ideal algorithm. Because of the dynamic nature of this environment, and due to

ACM - SIGCSE Bulletin, December, 2002 6

the fact that objects’ lifetimes are shorter, diffusive load balancing is able to quickly adapt and balance the
load better than the other techniques. As expected, the shortest queue load balancing technique has the
shortest elapsed time in all the environments.

Load Small-scale Intranet Internet
balancing Te Td Te Td Te Td

Static 60406 646479 224925 5409739 204454 4812739
Round robin 66038 668117 210496 5280500 193591 4044099
Diffusive 77415 697549 198188 5256605 155941 3574813
Shortest queue 58305 649692 193338 5143903 150313 3508364

Table 2: Performance summary of simulation results.

Simulation results show that diffusive load balancing is better than round robin and static load balancing in a
dynamic environment. However, in a static environment where the number of clients can be known in
advance, static load balancing does very well due to its low overhead. Static load balancing is a good choice
in such an environment since it is relatively simple to implement. In intranet environment, the round robin
load balancing is cheaper and simpler to implement, so the benefits obtained from diffusive load balancing
may not justify its usage in this environment.

The difference in performance between diffusive load and round robin load balancing becomes more
apparent and in favor of diffusive load in the environments with short objects lifetimes. In such cases,
diffusive load balancing is able to dynamically adapt more quickly than in other environments. This
adaptability makes it distribute the load more equitably than round robin. On the basis of the performance
modeling, it can be concluded that dynamic and adaptable algorithms do significantly better than static load
balancing algorithms, which is in agreement with theoretical results obtained by Nelson [3].

Concluding Remarks

This paper examines a new method for improving the performance of a distributed system through load
balancing a workload in the distributed client-server architecture. In order to determine the suitability of the
new algorithm in different environmental scenarios other known algorithms were used for comparison and
contrast.

The evaluation of the diffusive load balancing method is done using simulation runs in which the
performance of four different load balancing approaches (diffusive load, static, round robin, and shortest
queue) were compared in three different client environments (small-scale LAN, company intranet, and
Internet). The shortest queue balancing, being a theoretical technique, is appropriate for benchmarking.
Experimental results of simulation run show that the diffusive load balancing is more efficient than static
and round robin load balancing in a dynamic environment which manifest in frequent clients' object creation
requests and in short objects' lifetimes.

ACM - SIGCSE Bulletin, December, 2002 7

References

[1] W. Winston. Optimality of the Shortest Line Discipline. Journal of Applied Probability, 14 (1),
1977.

[2] William Mendenhall, Dennis D. Wackerly, and Richard L. Schaeffer. Mathematical Statistics with
Applications, 4th edition. Duxbury Press, 1990.

[3] Randolph D. Nelson and Thomas K. Philips. An Approximation to the Response Time for Shortest
Queue Routing. Performance Evaluation Review, 17(1):181-189, May 1989.

About the Author

Milan E. Soklic is with Software & Electrical Engineering Department at the Monmouth University. His
academic and research interests are real-time systems, operating systems, software engineering, and
computer systems architecture.

	Architecture for Diffusive Load Balancing
	Static Load Balancing requires no extra hardware or software components to implement. Clients are statically bound to the servers, and do not access any other server. The servers act independently of one another. The only parameter specific to this si
	Load
	
	
	
	
	
	
	Small-scale

	Intranet
	
	
	Concluding Remarks
	About the Author

