On Calculating Efficient LFSR Seeds
for Built-In Self Test

C.FAGOT O. GASCUEL P. GIRARD C. LANDRAULT

Abstract pseudo-random test set varies depending on the CUT. High fault
Linear Feedback Shift Registers (LFSRs) are commonly used@®rage in an acceptable test length usually cannot be easily
pseudo-random test pattern generators (TPGs) in BIST schenahieved without addressing the problem of random pattern
This paper presents a fast simulation-based method to compustant faults. Several methods have been proposed to solve this
an dficient seed (initial state) of a given primitive polynomiaproblem they and can be classified as those that modify the circuit
LFSR TPG. The size of the LFSR, the primitive feedbattde test and those that modify the pseudo-random input
polynomial and the length of the generated test sequence argagerns. The first category involves test point insertion
priori known. The method uses a deterministic test cutsshniques that increase the fault detection probabilities in the
compression technique and produces a one-seed LFSR €&df [4, 5]. The second category consists of techniques (called
saguence of a predefined test length that achieves high fdilixed-mode or pseudo-deterministic BIST techniques) such as
coverage. This technique can be applied either in pseudo-randéigighting the pseudo-random patterns [6, 7], using counter-based
testing for BISTed circuits containing few random resistaghemes [8, 9], or performing bit-fixing (also callguhttern
fauts, or in pseudo-deterministic BIST where it allows th@appng) [10, 11, 12]. The main drawback of test point insertion
hardware generator overhead area to be reduced. Compared wighniques is that modifying the CUT may not be acceptable for
exsting methods, the proposed technique is able to deal wigsigners due to possible performance degradation and its impact
combinational circuits of great size and with a lot of primarpn ®sign flow. The disadvantages of the second category of

inputs. Experimental results demonstrate the effectiveness of (gPniques are that they require additional area and sometimes
mehod. delay overhead compared to an LFSR-TPG, although they reduce

) the size of the test set, in some cases considerably.
Keywords : BIST, LFSR, Seed, Pseudo-random Testing

A possible solution for alleviating these drawbacks is to act first
1. Introduction on the LFSR itself by primarily selecting good seed and/or
]] feedback polynomial. By this way, the set of random resistant
Modern design and package technologies make external tesfiyis missed by the LFSR-TPG during test pattern generation is
increasingly difficult and the built-in self test (BIST) has emergegd nall as possible, and the cost of the above mixed-mode
asa promising solution to the VLSI testing problem. BIST is gchniques to improve the fault coverage or reduce the test length
design for testability methodology aimed at detecting faull¢ decreased. The problem of finding a good LFSR seed for a
components in a system by incorporating test logic on-chip. Thgen feedback polynomial was first addressed in [13].
main components of a BIST scheme are the test pattern genergfohniques for the generation of test patterns through reseeding
(TPG), the response compactor, and the signature analyzer. dh@itiple polynomial LFSRs were proposed in [14, 15]. These
test generator applies a sequence of patterns to the circuit URgginiques involve storing LFSR seeds in a ROM instead of
test (CUT), the responses are compacted into a signature by¢fiing the deterministic patterns (that detect random resistant
response compactor, and the signature is compared to a faultfggfts) themselves. The same LFSR used to generate pseudo-

reference value. random patterns is loaded with seeds from which vectors fitting

BIST is well known for its numerous advantages such as at-cldige! cubes detecting hard-to-test faults are produced. [16]
speed test of modules, no need for automatic test equipment BFRPOSed an analytical method providing a one-seed test sequence
supprt during system maintenance [1], while preservianr randpm resistant circuits from an LFSR w!th a given fgedback
reasonable fault coverage. It also simplifies fault diagnosis aR@lynomial. This method uses the theory of discrete logarithms to
may provide some on-line features [2]. While the cost of higﬁﬁbed a subset of deterministic test patterns in an LFSR
speed VLSI testerincreaseswith each process generation, BIST&IUENCce.

is becoming increasingly attractive because its cost (additioqgimputing seeds in reseeding techniques is done by solving
silicon area)decreaseswith each process generation. Moreovekystems of linear equations whose complexity grows with the
owing to the emergence of core-based “system-on-a-Chiinmber of inputs of the CUT and the number of cares or specified
designs, BIST represents one of the most suitable methods Jgg of test cubes. Computing an LFSR seed with the technique
system testing. The testability of embedded cores may }%posed in [16] is performed by tast embedding procedure
hampered by limited accessibility, and necessary test informatigose complexity quickly increases with the number of inputs. In

is often hidden in order to protect intellectual property. This kingdseeding approaches, finding test sequences with acceptable test
of problem is solved if the system is equipped with BIST featurggngth and fault coverage is achieved to the detriment of the area

Linear Feedback Shift Registers (LFSRs) are commonly used®&head required to store seeds (for example, several thousand
pseudo-random test pattern generators in BIST schemes. TRE§!S have to be stored for the biggest ISCAS89 scan circuits

have a simple structure requiring very small area overhead, ahd)- N [16], finding one seed for circuits with a lot of inputs or

they can also be used as output response analyzers, the?gﬁyits with a high number of random resistant faults is

saving a dual purpose [3]. However, the quality of the LEsHpractical. For example, only results for circuits whose number

of inputs ranged from 20 to 40 are reported in [16], and tAd&e higher the number of patterns detecting a given fault, the
authors mention that test embedding with discrete logarithmseisier this fault is detected. L& be a set of test cubes generated
not a viable test option for greater circuits. by an ATPG program so that each fault in the CUT is detected by

at least one test cube 6f Now, let C; be the set of test cubes of

In this paper, we propose a fast simulation-based method t9r1at detect the fault Let ¢ be a cube that belongs @ : the
compute an efficient seed of a given primitive polynomial LFSFS’: '

TPG. We consider that the size of the LFSR (number of stagt@%{e unspecn‘led. bits (rgpresented by .*) an the more test
its primitive feedback polynomial, and the length of the genera erns are cgnS|stent Wlth and the eaS|efr.|s' regardingc. A
test sequence ar@ priori known. Our method is intended toSlrnple estimation of the difficultg: of a faultf is:
produce a one-seed test sequence of a given test length that 8¢ =minc o (|S(c)|)
achieves a high stuck-at fault coverage. Moreover, it concentrates f

on the hardest to detect faults of the CUT. The main feature of wigich is equal tax minus the maximum number of unspecified
proposed method is that it applies in a lot of BIST situations.hits in a cube belonging t6:. Note that this measure fulfills the
can be used in pseudo-random testing for BISTed circuits thhbve requirement. A cube with few specified bits cannot detect a
contain few random resistant faults. In this case, it allows thard fault and, thereforey is inevitably high. On the other hand,
fault coverage achieved with a predetermined pseudo-random &ist high, even iff is easy to detect, whe® (as generated by the
length to be significantly improved. It can also be used in pseudoFPG program) only contains cubes with few *.

deterministic BIST where it allows the hardware generator

overhead area to be reduced, because the number of hard fAyRur method, a “quality measure” for the test cubes is required.

focused by the deterministic part of the generator is initialhine quality of a test cube is evaluated with respect to the number

reduced. Another important feature is that one-seed tdshard faults it detects. The quality of a test calie represented
sequences for circuits with a large number of inputs can now e vectorQe = (G[11,ad2].....ac[n]), whereq[i] is equal to the
obtained in a reasonable computation time. This feature allevidiggoer of faults of difficultyi detected by. More formally:

problems raised by methods proposed so far. qc[i] = ‘{ f detectechy C/5f = i}

The rest of the paper is organized as follows. In the next sectigg, example, considen = 5 and the test cube with Q; =

we give preliminary details about fault difficulty and test cub 6,12,14,0,1) ; this means thatletects 26 faults of difficulty 1,

quality. In section 3, we present the proposed method D5 ¢, s of difficulty 2, ..., and 1 fault of difficulty 5. In order to
generating efficient one-seed LFSR test sequences. We fg&]n are the quality of two test cubesand ¢, we use a
present a simple algorithm to compress test cubes generated Q\éﬁ'&graphical order on their quality vectors. We’ have:
ATPG program, then we describe the method itself. Experiments Q.>Q. « [l<is<nsuchas:

performed on ISCAS benchmark circuits are presented and c c T '

discussed in section 4. Concluding remarks are given in section 5. (qc[i] > [,]) and(Di <js<n, qc[j] = Qg [J])

L . . o For example, if we consider two test cubeandc for which
2. Preliminary details and basic definitions Q= (26,12,14,0,1) an@c= (30,1,10,0,1), we hav@e> Qe (C is
Let F be the set of modeled faults,g. stuck-at faults, in the Of better quality tharc’) since qc[5]= q¢[5], qc[4]= qc[4], but
CUT. Let v be an input test pattern generated fronm-stage e3> e [3]
LFSR, wheren is the number of primary inputs of the CUT; 3 Finding an efficient one-seed L FSR test sequence
belongs to {0,1} and is denoted as= (v[0], V[1], .., V[n-1]). Let
¢ be a test cube of size c is represented by a vecta[@, c[1], An n-§tage LFSR with a pri.mitive feedback polynomial generates
., c[n-1]) 0{0,1,4}". Let SE) = {i | c[i] # *} represent the set of & CyClIF: sequence Cor]talnlng all the non-zero blnanjaple.s.
specified bits inc, and |S¢)| be the number of specified bits ifchanging the polynomial changes the position of eatliple in
this test cube. The number of fully specified test patterns that &3¢ Sequence, while the LFSR seed specifies the starting position

be generated from a test cube fs @hereq is the number of for scanning the sequence. Consequently, the generated test
unspecified bits in the test cukiee.,q =n - |SE)- sequence depends on the LFSR feedback polynomial and on the

LFSR seed. In this section, we describe a fast simulation-based
Letv [{0,1}" be an input test pattern and 0 {0,1,*}" be a test agorithm to compute an efficient seed of arpriori given
cube. If c[i]=V[i] holds for everyi O S(c), thenv is said to be primitive polynomial LFSR-TPG. We consider that the lerigofi
consistenwith c. Let c; 0 {0,1,*}"andc, 0 {0,1,*} " be two test the generated test sequence is set. The proposed method is thus
cubes,c: andc; are said to beompatibleif and only if €i[i]=* or intended to produce a one-seed test sequence of a given length
cfil=* or cifi]=c[i]) holds for every i. Compatibility betweery that achieves the highest possible fault coverage. This method is
and c; is denoted:; O co. divided into two parts. First (Section 3.1), a compressed set of

test cubeLwompis produced from a set of deterministic test cubes

When performing pseudo-random testing using an LFSR-TRGyenarateq by an ATPG program. This compression is specially

t?e faglt coverage thfat fan. behOb?J]?dT'S I'm'tled by rt]hedprese.l%: ul when there are many deterministic test cubes with a lot of
of random resistant faults in the - To evaluate the detect ecified bits. Second (Section 3.2), we select the best one-

hardness of these faults, we need to use a measure that repregerlis tast sequence (in terms of fault coverage) among those
the difficulty for a random pattern to detect a given fau'Eontaining the best test cubesGak,

Computing this difficulty measure (i.e. the fault detection P
probability) is an NP-hard problem [7]. Therefore, we have to he . R
satisfied with approximations. Moreover, it is not really awkwar 1 Compressing the initial st of test cubes

to have an easy-to-test fault estimated as hard-to-test. Conversedy, c¢; and ¢, be two compatible test cubés {0,1,}" . The
ameasure that declares a fault as easy when it is a really hargrigrged cubeof ¢, andcz isc = ¢1 n cz. To obtain this merged

test fault is problematic, and it is much more preferable ¢gpec, we check the compatibility af, and c and report inc
overestimate than to underestimate the fault difficulty. every bit specified irc; or in cz.

Algorithm-1 given below, iteratively merges compatible cubes.gtquenceQ’ in which v is the second pattern. As the feedback
first selects the best culiefrom C, according to the quality polynomial of the LFSR is known, we use the reciprocal feedback
measureQ. Then, it searches the cube compatible withc, polynomial of the LFSR to calculate the first vectorBt As Q’
which provides the best improvementcovhen merged with this is also of length, the last vector of2 is removed inQ’. There

one. The process is repeated untitannot be merged with anyare thereford-2 common vectors betweéhandQ’, so that only
cube fromC, andc is then stored irComp Then we start again one additional simulation is needed to calculate the fault coverage
with the best cube that remains @ and continue untilC is achieved withQ'. Of course, faults detected by the last vector of
empty. To measure the improvement provided Xoyo ¢, we Q (and not detected by any vector®¥ are deleted from the list
consider the set of faults detectedxyr ¢, and we comput@xnc. of faults detected by the new sequefiie

The cubex is preferred to¢ whenQxac > Qv ne.

Q= vl | e
Algorithm-1: Constructing a compressed set of test cubes Q= |—|| v || : : I [|| l
Input: C = a set of test cubes. o= B v [e L
Output: Ceomp= set of compressed test cubes.
Begin :
Ceomp < U; ,—| | | | """""" |V|
VhileC# 0O do Figure 1: Fast simulation of test sequences of lendth
g: bg?t{gﬁbe fron€; Next, the same process is used to comglite andis repeated
D {xOC/xOc} urtil the test sequence ?n which is the Ifast vector has been
WhileD # 0 do e\/aluateq: Algorithm-2 given below details the Whple process,
X — cube ofD providing the best increasing € and addltlonall commen.ts are then reported. In this algorithm,
¢ — merged cube af andx (i.e.,¢ n X); ’ PREVIOUS() is a function that returns the previous vectow of
} T ’ in the test sequence generated by the given LFSR. PREVIOUS
C—C-{x} uses the reciprocal characteristic polynomial of the LFSR and is
D~ {xOC/xOc}k usedl-1 times to reach the test sequence in whidk the last
Ceomp <~ Ceompd { C}; vector.
Return Ceomp,
End

Algorithm-2: Fast simulation of test sequences embedding a
3.2 Computing an efficient LFSR seed vectorv

In the Ceomp Set constructed as described above, the test cub@@ut:v=a vector] = the test sequence length.

have a wide quality range. Remember that test cubes having @éput: bestSeed seed of best sequence embedding
highest quality are those that detect the highest number of hard bestCover= fault coverage provided thestSeed
faults. Therefore, it is important to find a one-seed LFSR tdsgin

sequence that is able to produce test patterns consistent with— V;

these test cubes (callé@st test cubekereafter). We propose a Simulation of the test sequenfewhom seed is;

fast simulation-based approach in which the aim is to study theistSimulstores the simulation results;

highest possible number of test sequences containing the best teswer — number of faults detected

cubes ofCeomp, @and to select the one that achieves the highesbestCover— cover,

fault coverage (its first vector thus giving the best LFSR seed)or i — 1tol-1do

This approach is based on two complementary algorithms s « PREVIOUSE);

Algorithm-2 swiftly simulates all test sequences containing a Smul < list of faults detected by,

pattern consistent with a selected test cub€sgf, and selects NewFaults= faults inSmul not in ListSimu|

the seed of the test sequence that achieves the highest fajilt UpdateListSimulusingSmul;

coverage. This algorithm is described in section 3.2.1. To obtair Keep and removeostFaultsfrom ListSimu]

the best one-seed LFSR test sequence, Algorithm-3 uses cover . cover - | LostFault$ + | NewFaults|;

Algorithm-2 with the best test cubes Gfomp Algorithm-3 is If cover> bestCovetthen
detailed in section 3.2.2. bestCover— cover:
3.2.1 Algorithm-2: a fast simulation-based procedure End bestSeed- s,

n

In order to address all the test sequences containing a selected — —

test cubec O Coomp We should study the set of test sequences i the sake of efficiency, we need the data structiseSimul
which the first vector is consistent withplus those in which the that stores, for every pattepthe faults it detects and VYh'Ch are
second vector is consistent with and so on until all test Not detected by any patterpi that appears before in the
sequences in which the last vector is consistent withve been Sequence. Moreover, this data structure has to be updated at each
studied. However, an exhaustive simulation of all these tdt§ration. Let=4 and lets denote the i-th vector in the sequence.
sequences would take a prohibitive amount of CPU time. For thoreover, assume thas, detects the fault set {ab.c,d},
reason, we propose the following alternative. As shown on #he{b.c.e.f}, ss:{a,e} ands, {a,f,g}. ListSimulcan be represented
Figure 1, we first simulate all vectors of an LFSR test sequance?s follows:

in whichv is the first vector (the seed) and is determined so that

it i s consistent wittc. This first step requiressimulations where

| is the test sequence length. We then consider a new LFSR test

Algorithm-3: Finding an efficient LFSR seed

Input: C = a set of test cubes provided by an ATPG tool.

n | =the test sequence length.
a e m Output: bestSeed- the most efficient LFSR seed
s | 2| s|s| Begin
bestCover— 0 %
LostFaults corresponds to the last heap and is equal to {g}.Ccomp — merged cubes dE (Algorithm-1);
Assume now that;=PREVIOUS(s) detects the fault s€b,d,f}. V « cubes ofC with unspecified bits set to value 1;
When updatedL.istSimulbecomes: Simulate patterns of,
Nhile high fault coverage is not reachéa
vV — best pattern oV acording to quality vectors;

[d | VeV-v;
b a F‘ se@ ~ seed of the best test sequerfReembeddingv
EIEERE

| (Algorithm-2);
If fault coverage o2 > bestCoverthen

Using this storing approach, only-2 simulations are needed to bestCover . fault coverage achieved with;
evaluate| sequences with length. Indeed,| smulations are bestSeed— sedl:
nealed to evaluate the first sequence, &sidsimulations are If fault coverage = 100%hen return bestSee

nealed to evaluate the next sequences. Note that performing @etyrn bestSeed
complete simulation of each sequence containing a given vecigq

(full simulation approach) would neé¢tdsimulations to obtain the
same result. For some circuitee§. c2670), each simulation 4- Experimental results

requires about 1 second CPU; with10000the full simulation gyperimental evaluation of the proposed method was conducted
appoach yields over 3 years of computations, whereas no mgigg the standard sets of ISCAS'85 and ISCAS'89 benchmark
than 6 hours are required for the solution we propose. circuits. It was assumed that the flip-flops in the ISCAS'89
3.2.2 Algorithm-3: the main procedure circuits were configured as part of the LFSR during testing so that
the circuits are tested like combinational circuits. Note that only

The main procedure in which Algorithm-1 and Algorithm-Zjetectable stuck-at faults were considered in the fault coverage
discussed above are used is presented in this subsection cgRéliations.

sunmarized in Algorithm-3. This algorithm is simply a _ : : :
generalization of Algorithm-2 to all the best test cube<Cafup Circuit | #nps | #faults | Length | FCin | CPU Time
Nevertheless, two points have to be clarified in this algorithm. C880 60 1760 1K 995 132841

C1355 41 2702 3K 100 189371
The first one relates to the way we determine a vectibrat is C1908 33 3805 4K 100 202541
consistent withc (a selected test cube among the best test cubps €2670 | 233 | 4995 5K 914 | 2558215
of Ceomp) and which is further used in Algorithm-2. This vector is C3540 50 6824 4.5K 100 2747924
first determined so that the specified bit< iare reported in the C5315 178 10568 5K 100 380018
. L . . o C7552 206 14865 8K 978 16593026
same bH.Z po§|t|on inv (conmstency). Next, the remaining bItSV!n 5208 18 236 750 99.3 19167
are qbltrarlly set . at the logic “1” value. This solgtlon S208.89 | 19 216 750 %88 18264
experimentally provides better results than randomly setting the— 5595 17 596 200 100 112
remaining bits at either “0” or “1”, or at the logic “0” value. Only [~ 5344 24 670 200 100 505
one vector is thus produced from a selected test cutfeCecomp. 5382 24 764 250 100 6.38
The quality of the fully specified patterns obtained frGganp is S386 13 772 2K 100 2291
determined by simulation, and these patterns are sorted accordjng S420 34 916 1K 854 570.30
to the criterion. The first motivation for this limitation is of | S420 89 | 35 840 1K 940 536.07
course simulation time, which otherwise would be too high, dug _S444 24 866 300 100 38.37
to the exponential number of vectors consistent with a given test S510 25 1020 500 100 1258
cube. The second motivation is that it is easier to find previoys__S526 24 1051 4K 997 | 240571
paterns of a fully specified vector by using the reciprocal Se4l o4 1274 10K 995 10191.26
characteristic polynomial of the LFSR, than to find the previous S713 o4 1353 10K 995 1108612
paterns of a test cube by solving linear equations as in [14]. S820 23 1640 oK 989 3367.31
S832 23 1647 5K 988 340050
The second point relates to the number of best test cut@gpf S838 66 1876 10K 755 | 1246Q77

needed for testing in order to obtain good results. This number |5 S838_89 | 67 1676 10K 862 | 1192616

nat so important for the following reason: as patterns selected 5953 22 1860 oK 986 739507

during this process have decreasing qualities and hence detegt aS1196 31 2390 10K 999 1527951

decreasing number of hard faults, the probability of getting a tegt S1423 91 2820 3K 996 728597
sequence that provides better fault coverage than a previougty S1488 14 2976 3K 100 14619
& 1Y s1a04 | 14 | 2072 1K | 991 | 157039

studied sequence decreases. Experimental results_reporteq in fthesgsaa 247 17350 K 849 2681768
next section demonstrate that test sequences of high quality carm
be obtained with a reasonable computation time.

Table 1: Intrinsic results on Benchmark circuits

Experiments were conducted using algorithms described sequences is excessively high. For each tested length (“Test
section3. The size of each LFSR is equal to the number béngth = 1K” and “Test Length = 10K"), we report the average
primary inputs in each circuit. The characteristic polynomial ¢AvRand) stuck-at fault coverage (in %) achieved with random
each LFSR is a primitive feedback polynomial. Fault simulatiorseeds. The fault coverage achieved with the proposed method (20
in each circuit were performed using a home fault simulation teest cubes fromCemp evaluated in Algorithn8) is given in
based on the critical path tracing algorithm proposed in [1Qolumns 2 and 4 (OurSeed). These results show that in all cases,
Deterministic test cubes were generated using the ATPG toothd fault coverage achieved with the one-seed LFSR test sequence
the SUNRISE Test System. generated by the proposed method is much higher than the

) S . . . gverage fault coverage obtained randomly. For test sequence
A first samplg of |ntr|p3|g results is given in Table 1'. The flr?agngth 1000, the average fault coverage of the proposed method is
column contains the circuit names. The second and third colurg

0 : i .
give the number of primary inputs (#inps) and the number .SSA), while the average random seed selection fault coverage is

0,
detectable faults (#faults) in each circuit. The fourth column'SA)' For test sequence Iength. 10000, the. average fault
(%‘%Kgrage of the proposed method is 93.3%, while the average
n

reports the chosen length of the generated test sequence (Len om seed selection fault coverage is 88.7%. For very hard-to-

and column five (FC in %) gives the fault coverage obtained wi L .
S .) est circuits, the difference between our results and random seed
the proposed method on each circuit. The fifth column gives t L -
ction is even more significant.

CPU time (in seconds, on a Pentium 350) needed for the comp?gtg

process of generating a one-seed LFSR test sequenge Circuit Time #Rand M axRand Our Seed
(construction of a compressed set of test cubes and computation|of c2670 4533 42 86.3 91.2
an efficient LFSR seed). For each circuit, 20 test cubes Ggmp C5315 11474 43 99.8 99.9
are evaluated in Algorithm-3. However, we observed that it i§ C7552 19184 45 94.6 953
usually enough to use the 5 or 6 best test cub&sopf to obtain $420 625 51 75.8 814
the same result (seed), which illustrates the efficiency of our $420_89 583 50 889 94.0
quality measure. 641 813 37 98.0 98.4

. . .) S838 2067 76 54.6 69.7
The results in Table 1 show the performances obtained with the 838 89 | 1654 o1 796 854
proposed method to compute an LFSR seed. For test sequertegsga 1100 33 985 988
Ien.gths no greater than 10K, the average faglt coverage is 96.806, 59534 12393 21 796 84.4
while the better and the worst are respectively 100% (in mar.

Ozilble 3: Comparison with best randomly selected seed coverage

cases) and 75.5%. They also demonstrate that circuits with a | Lo
for a computation time

of inputs and circuits of great size can be dealt with efficiently.
Thus, the fault coverage achieved for the s9234 (247 inputs and alable 3, we compare the fault coverage provided by our
size of 4505 gates equivalent) is 84.9% with a test sequemgethod (column “OurSeed”, with 10 test cubes fr&@gmp
length of 1K, for a computational time of no more than 7.5 hougsaluated in Algorithn8) and the best fault coverage of a
This circuit has too much input to be dealt by [16]. Note that frindomly selected seed test sequence (column “MaxRand”). For
the biggest circuits, the applicability of the method depends these experiments, the test length is 1000, and the computational
two user specified constraints. The first one is the computatiotisde (in seconds and in second column) required to find the best
effort one is willing to spend and the second is the length of ttendomly selected seed is equal to that used by our method. The
test sequence one is willing to allow. The results presenteditiitd column of Table 3 indicates the number of random test
Table 1 can be further improved by focusing on these parametexsguences fully simulated during the accorded time. Through this
experiment, it appears that the results provided by our method are

Cireuit Tedt Length = 1K Tedt Length = 10K always better than those of a random seed selection. In average
AvRand Our Seed AvRand Our Seed ; s !
C2670 86.0 912 870 916 thg fault coverage provided by the proposed method is 89.8%,
C5315 99.7 99.9 100 100 while the fault coverage of the best random seed selection is
C7552 93.9 97.2 95.7 98.0 85.5%. For some circuit, the difference between the results is still
420 69.1 85.4 84.7 927 much more important. For example, this difference is about 15%
$420_89 85.8 94.0 92.3 96.4 for the s838. It also appears that for the same computational time,
641 96.8 98.4 985 995 it is not possible to fully simulate a high number of test sequences
838 50.1 722 585 755 with a random selected seed (only 46, on average).
S838_89 77.6 854 80.7 86.2
S1494 975 99.1 100 100 In the introduction of this paper, we pointed out that the main
$9234 784 84.9 89.8 928 feature of the proposed method is that it can be applied in a lot of
Table2: Comparison with average randomly selected seed BIST situations. It can be used in pseudo-random testing for
coverage BISTed circuits that contain few random resistant faults. In this

)) cese, it allows to significantly improve the fault coverage
In order to compare our method with random selection of seedsyeved with a predetermined pseudo-random test length. The
we conducted two sets of experiments (Tables 2 and 3). In {8€ 115 jisted in Tables 1, 2 and 3 confirm this assertion. It can

first set (Table 2), we .measured the average stuck-at f%l’éb be used in pseudo-deterministic BIST, where it allows the
coverage (over 10000 trials) of pseudo-random test seque ware generator overhead area to be reduced, since the

W'EE ;LP?OO and 10000 testlseq;:]encg len.?thﬁ’ ‘Zn? rfm tour T:e ber of hard faults to target with the deterministic part of the
Wi € same sequence iengins. LIrCUlts nard o 1est or NawAe aior s initially reduced. In order to demonstrate the
numerous inputs were chosen for this comparison. Note that

. . ectiveness of our method in pseudo-deterministic BIST, we
average fault coverage was evaluated by performing Algorithm- . - .
. . . Implemented two existing BIST scheme, [12] and [11], in which
with a randomly chosen vector, for computation tim

convenience. Indeed, for some circuiesg(c7552 or s9234) the E;Sulzncp;lsls rrg\";‘izﬁllng l(l)%%}c S?Lik_(;?r?gmf dcot/(ér;rzduwcifh tteesstt
time needed to fully simulate over 10000 pseudo-random Ty P 9 ? 9

sequence lengtha priori known (1000 here).Our results are[4] K.T. Cheng andC.J. Lin, Timing Driven Test Point Insertion
reported in Table 4. We first considered a one-seed LFSR testfor Full-Scan and Partial-Scan BISTEEE Int. TestConf.,
sequence produced by our method, and computed the number opp. 506-514, 1995.

deterministic test cubes (Column OurSeed) needed to [b§N. Tamarapalli and JRajski, Constructive Multi-Phase Test
implemented in order to achieve 100% fault coverage with [12] Point Insertion for Scan-Based BISIEEE Int. TestConf.,
or [11]. Next, we considered a test sequence with the bestpp. 649-658, 1996.

randomly chosen seed found in the previous experiment (§&F. Muradali, V.K. Agarwal and B.Nadeau-DostieA New
Table 3); for this second tesequencewe also computed the Procedure for Weighted Random Built-In Self-T#EE Int.
number of deterministic cubes (ColundaxRand) that have to TestConf., pp. 660-669, 1990.

be implemented. Finally, we estimated the overhead area (G4&t@dsH.J. Wunderlich, Multiple Distributions for Biased Random
Equivalent) of the additional mappintpgics for both test Test PatternslEEE Trans. on Computer-Aided Design , vol.
sequence using [12] and [11]. Feah of these mixed-mode 9, n°6, pp. 584-593, June 1990.

techniques we computed the ratio between atem overhead [8] S.B. Akers and W.Jansz, Test Set Embedding in a Built-In
neededusing our proposed seed and the randeeed tolumns Self-Test EnvironmentlEEE Int. TestConf., pp. 257-263,
[11]Ratio and [12]Ratio). 1989

[9] D. Kangaris and STragoudas,Generating Deterministic

Cireuit R Omgm(’d?ﬁ;% o T T2Ratio Unordered Test Patterns with CountdEEE VLS| Test
Symp., pp- 374-379, 1996.

2670 116 90 0.96 0.78 [10] M. Chatterjee and D.KPradhanA Novel Pattern Generator

g?gég 11577 11433 g'gg g'gi for Near-Perfect Fault CoveragéEEE VLS| TestSymp., pp.

420 71 52 092 085 417425, 1995. .

420 89 0 19 0'32 0'14 [11] C. Fagot, O. Gascuel, Birard and C.Landrault,A Rng
a1 16 15 0:90 1:3 3 Arghltecture Strategy for BIST Test Pattern GeneratiB&E
838 218 172 092 075 Asian Test Symposium, pg18423, 1998. _ _

838 89 109 95 079 073 [12] N.A. Touba and E.JMcCluskey, Synthesis of Mapping
51494 24 14 0.92 076 Logic for Generating Transformed Pseudo-Random Patterns
9234 708 598 072 083 for BIST, IEEE Int. TestConf., pp. 674-682, 1995.

Average 1476 1211 078 077 [13] B. Koenemannl| .FSR-Coded Test Patterns for Scan Designs

Table4: Comparative reSLSJ(I:tsefrcT)]rea pseudo-deterministic BIST [4]| ESE.EHiL:IZ)BL?]ZC,:Og_."rzEﬁi(2:|f,7 §4I§ajls?<?lan d B. Courtois,

Generation of Vector Patterns Through Reseeding of
These results (Table 4) highlight the advantages of our method inMultiple-Polynomial Linear Feedback Shift Regis{eiSEE
the context of mixed-mode BIST techniques, where it reduces the Int. TestConf., pp. 120-129, 1992.
hardware generator overhead area by a quarter (on average)[¥arS. Venkataraman, Rajski, S.Hellebrand and STarnick,
some circuits €.9. s420_89), the area of the mapping logic may An Efficient BIST Scheme Based on Reseeding of Multiple
be more than 70% smaller with our solution. Polynomial Linear Feedback Shift RegistdiSEE Int. Conf.
on Computer-Aided Design, pp. 572-577, 1993.
[16] M. Lempel,S.K. Gupta andM.A. Breuer, Test Embedding
In this paper, we propose an efficient method to compute the seedith Discrete LogarithmslEEE VLS| TestSymp., pp. 74-78,
of an LFSR-TPG with a given characteristic polynomial and a 1994
given test length. The results demonstrate that our technique [daf] M. Abramovici,P.R. Menon andD.T. Miller, Critical Path
be successfully applied either in pseudo-random testing for Tracing: An Alternative to Fault SimulationEEE Design &
BISTed circuits that contain few random resistant faults, or in Test of Computers, vol. 1, n° 1, February 1984.
pseudo-deterministic BIST where it allows the hardware
generator overhead area to be redudédreover, our technique
is able to deal with combinational circuits of great size and with a
lot of primary inputs. Further studies will be conducted to adapt it
to the test-per-scan scheme, to develop it for delay faults testing,
and to avoid the arbitrarily completion of compressed cubes with
logic value 1.

5. Conclusion

References

[1] H.J. Wunderlich and Y.Zorian, Built-In Self Test (BIST):
Synthesis of Self-Testable Systemisluwer Academic
Publishers, 1997.

[2] SK. Gupta and D.K.Pradhan, Utilization of On-Line
(concurrent) Checkers during Built-In Self Test and Vice-
versg IEEE Trans. on Computers, vol. 45, n° 1, January
1996

[3] A. Krasniewski and SPilarski, Circular Self-Test Path: a
Low Cost BIST Technique for VLSI CircyilSEE Trans. on
Computer-Aided Design, vol. 8, n°1, pp. 46-55, January 1989.

