
1

On Calculating Efficient LFSR Seeds
for Built-In Self Test

C. FAGOT O. GASCUEL P. GIRARD C. LANDRAULT

Abstract
Linear Feedback Shift Registers (LFSRs) are commonly used as
pseudo-random test pattern generators (TPGs) in BIST schemes.
This paper presents a fast simulation-based method to compute
an efficient seed (initial state) of a given primitive polynomial
LFSR TPG. The size of the LFSR, the primitive feedback
polynomial and the length of the generated test sequence are a
priori known. The method uses a deterministic test cube
compression technique and produces a one-seed LFSR test
sequence of a predefined test length that achieves high fault
coverage. This technique can be applied either in pseudo-random
testing for BISTed circuits containing few random resistant
faults, or in pseudo-deterministic BIST where it allows the
hardware generator overhead area to be reduced. Compared with
existing methods, the proposed technique is able to deal with
combinational circuits of great size and with a lot of primary
inputs. Experimental results demonstrate the effectiveness of our
method.

Keywords : BIST, LFSR, Seed, Pseudo-random Testing

1. Introduction

Modern design and package technologies make external testing
increasingly difficult and the built-in self test (BIST) has emerged
as a promising solution to the VLSI testing problem. BIST is a
design for testability methodology aimed at detecting faulty
components in a system by incorporating test logic on-chip. The
main components of a BIST scheme are the test pattern generator
(TPG), the response compactor, and the signature analyzer. The
test generator applies a sequence of patterns to the circuit under
test (CUT), the responses are compacted into a signature by the
response compactor, and the signature is compared to a fault-free
reference value.

BIST is well known for its numerous advantages such as at-clock-
speed test of modules, no need for automatic test equipment and
support during system maintenance [1], while preserving
reasonable fault coverage. It also simplifies fault diagnosis and
may provide some on-line features [2]. While the cost of high-
speed VLSI testers increases with each process generation, BIST
is becoming increasingly attractive because its cost (additional
silicon area) decreases with each process generation. Moreover,
owing to the emergence of core-based “system-on-a-chip”
designs, BIST represents one of the most suitable methods for
system testing. The testability of embedded cores may be
hampered by limited accessibility, and necessary test information
is often hidden in order to protect intellectual property. This kind
of problem is solved if the system is equipped with BIST features.

Linear Feedback Shift Registers (LFSRs) are commonly used as
pseudo-random test pattern generators in BIST schemes. They
have a simple structure requiring very small area overhead, and
they can also be used as output response analyzers, thereby
serving a dual purpose [3]. However, the quality of the LFSR

pseudo-random test set varies depending on the CUT. High fault
coverage in an acceptable test length usually cannot be easily
achieved without addressing the problem of random pattern
resistant faults. Several methods have been proposed to solve this
problem they and can be classified as those that modify the circuit
under test and those that modify the pseudo-random input
patterns. The first category involves test point insertion
techniques that increase the fault detection probabilities in the
CUT [4, 5]. The second category consists of techniques (called
mixed-mode or pseudo-deterministic BIST techniques) such as
weighting the pseudo-random patterns [6, 7], using counter-based
schemes [8, 9], or performing bit-fixing (also called pattern
mapping) [10, 11, 12]. The main drawback of test point insertion
techniques is that modifying the CUT may not be acceptable for
designers due to possible performance degradation and its impact
on design flow. The disadvantages of the second category of
techniques are that they require additional area and sometimes
delay overhead compared to an LFSR-TPG, although they reduce
the size of the test set, in some cases considerably.

A possible solution for alleviating these drawbacks is to act first
on the LFSR itself by primarily selecting good seed and/or
feedback polynomial. By this way, the set of random resistant
faults missed by the LFSR-TPG during test pattern generation is
as small as possible, and the cost of the above mixed-mode
techniques to improve the fault coverage or reduce the test length
is decreased. The problem of finding a good LFSR seed for a
given feedback polynomial was first addressed in [13].
Techniques for the generation of test patterns through reseeding
of multiple polynomial LFSRs were proposed in [14, 15]. These
techniques involve storing LFSR seeds in a ROM instead of
storing the deterministic patterns (that detect random resistant
faults) themselves. The same LFSR used to generate pseudo-
random patterns is loaded with seeds from which vectors fitting
test cubes detecting hard-to-test faults are produced. [16]
proposed an analytical method providing a one-seed test sequence
for random resistant circuits from an LFSR with a given feedback
polynomial. This method uses the theory of discrete logarithms to
embed a subset of deterministic test patterns in an LFSR
sequence.

Computing seeds in reseeding techniques is done by solving
systems of linear equations whose complexity grows with the
number of inputs of the CUT and the number of cares or specified
bits of test cubes. Computing an LFSR seed with the technique
proposed in [16] is performed by a test embedding procedure
whose complexity quickly increases with the number of inputs. In
reseeding approaches, finding test sequences with acceptable test
length and fault coverage is achieved to the detriment of the area
overhead required to store seeds (for example, several thousand
seeds have to be stored for the biggest ISCAS89 scan circuits
[15]). In [16], finding one seed for circuits with a lot of inputs or
circuits with a high number of random resistant faults is
impractical. For example, only results for circuits whose number

2

of inputs ranged from 20 to 40 are reported in [16], and the
authors mention that test embedding with discrete logarithms is
not a viable test option for greater circuits.

In this paper, we propose a fast simulation-based method to
compute an efficient seed of a given primitive polynomial LFSR-
TPG. We consider that the size of the LFSR (number of stages),
its primitive feedback polynomial, and the length of the generated
test sequence are a priori known. Our method is intended to
produce a one-seed test sequence of a given test length that
achieves a high stuck-at fault coverage. Moreover, it concentrates
on the hardest to detect faults of the CUT. The main feature of the
proposed method is that it applies in a lot of BIST situations. It
can be used in pseudo-random testing for BISTed circuits that
contain few random resistant faults. In this case, it allows the
fault coverage achieved with a predetermined pseudo-random test
length to be significantly improved. It can also be used in pseudo-
deterministic BIST where it allows the hardware generator
overhead area to be reduced, because the number of hard faults
focused by the deterministic part of the generator is initially
reduced. Another important feature is that one-seed test
sequences for circuits with a large number of inputs can now be
obtained in a reasonable computation time. This feature alleviates
problems raised by methods proposed so far.

The rest of the paper is organized as follows. In the next section,
we give preliminary details about fault difficulty and test cube
quality. In section 3, we present the proposed method for
generating efficient one-seed LFSR test sequences. We first
present a simple algorithm to compress test cubes generated by an
ATPG program, then we describe the method itself. Experiments
performed on ISCAS benchmark circuits are presented and
discussed in section 4. Concluding remarks are given in section 5.

 2. Preliminary details and basic definitions

Let F be the set of modeled faults, e.g. stuck-at faults, in the
CUT. Let v be an input test pattern generated from a n-stage
LFSR, where n is the number of primary inputs of the CUT; v
belongs to {0,1}n and is denoted as v = (v[0], v[1], .., v[n-1]). Let
c be a test cube of size n; c is represented by a vector (c[0], c[1],
.., c[n-1]) ∈ {0,1,*} n. Let S(c) = {i | c[i] ≠ *} represent the set of
specified bits in c, and |S(c)| be the number of specified bits in
this test cube. The number of fully specified test patterns that can
be generated from a test cube is 2q, where q is the number of
unspecified bits in the test cube, i.e., q = n - |S(c)|.

Let v ∈ {0,1} n be an input test pattern and c ∈ {0,1,*} n be a test
cube. If c[i]=v[i] holds for every i ∈ S(c), then v is said to be
consistent with c. Let c1 ∈ {0,1,*} n and c2 ∈ {0,1,*} n be two test
cubes, c1 and c2 are said to be compatible if and only if (c1[i]=* or
c2[i]=* or c1[i]=c2[i]) holds for every i. Compatibility between c1

and c2 is denoted c1  c2.

When performing pseudo-random testing using an LFSR-TPG,
the fault coverage that can be obtained is limited by the presence
of random resistant faults in the CUT. To evaluate the detection
hardness of these faults, we need to use a measure that represents
the difficulty for a random pattern to detect a given fault.
Computing this difficulty measure (i.e. the fault detection
probability) is an NP-hard problem [7]. Therefore, we have to be
satisfied with approximations. Moreover, it is not really awkward
to have an easy-to-test fault estimated as hard-to-test. Conversely,
a measure that declares a fault as easy when it is a really hard-to-
test fault is problematic, and it is much more preferable to
overestimate than to underestimate the fault difficulty.

The higher the number of patterns detecting a given fault, the
easier this fault is detected. Let C be a set of test cubes generated
by an ATPG program so that each fault in the CUT is detected by
at least one test cube of C. Now, let Cf be the set of test cubes of
C that detect the fault f. Let c be a cube that belongs to Cf ; the
more unspecified bits (represented by *) in c, the more test
patterns are consistent with c, and the easier f is regarding c. A
simple estimation of the difficulty δf of a fault f is:

δ f c Cf
S c= ∈min

� �� �

which is equal to n minus the maximum number of unspecified
bits in a cube belonging to Cf. Note that this measure fulfills the
above requirement. A cube with few specified bits cannot detect a
hard fault and, therefore, δf is inevitably high. On the other hand,
δf is high, even if f is easy to detect, when Cf (as generated by the
ATPG program) only contains cubes with few *.

In our method, a “quality measure” for the test cubes is required.
The quality of a test cube is evaluated with respect to the number
of hard faults it detects. The quality of a test cube c is represented
by a vector Qc = (qc[1],qc[2],…,qc[n]), where qc[i] is equal to the
number of faults of difficulty i detected by c. More formally:

qc i f c f i= = detected by δ
� �

For example, consider n = 5 and the test cube c with Qc =
(26,12,14,0,1) ; this means that c detects 26 faults of difficulty 1,
12 faults of difficulty 2, …, and 1 fault of difficulty 5. In order to
compare the quality of two test cubes c and c’ , we use a
lexicographical order on their quality vectors. We have:

Qc Qc i n

qc i qc i i j n qc j qc j

> ⇔ ∃ ≤ ≤

> ∀ < ≤ =

'

' , '

1 such as :

 and
� � � �

For example, if we consider two test cubes c and c’ for which
Qc= (26,12,14,0,1) and Qc’= (30,1,10,0,1), we have Qc > Qc’ (c is
of better quality than c’) since qc[5]= qc’ [5], qc[4]= qc’ [4], but
qc[3]> qc’ [3].

3. Finding an efficient one-seed LFSR test sequence

An n-stage LFSR with a primitive feedback polynomial generates
a cyclic sequence containing all the non-zero binary n-tuples.
Changing the polynomial changes the position of each n-tuple in
the sequence, while the LFSR seed specifies the starting position
for scanning the sequence. Consequently, the generated test
sequence depends on the LFSR feedback polynomial and on the
LFSR seed. In this section, we describe a fast simulation-based
algorithm to compute an efficient seed of an a p riori given
primitive polynomial LFSR-TPG. We consider that the length l of
the generated test sequence is set. The proposed method is thus
intended to produce a one-seed test sequence of a given length
that achieves the highest possible fault coverage. This method is
divided into two parts. First (Section 3.1), a compressed set of
test cubes Ccomp is produced from a set of deterministic test cubes
C generated by an ATPG program. This compression is specially
useful when there are many deterministic test cubes with a lot of
unspecified bits. Second (Section 3.2), we select the best one-
seed test sequence (in terms of fault coverage) among those
containing the best test cubes of Ccomp .

3.1 Compressing the initial set of test cubes

Let c1 and c2 be two compatible test cubes ∈ {0,1,*} n . The
merged cube of c1 and c2 is c = c1 ∩ c2. To obtain this merged
cube c, we check the compatibility of c1 and c2 and report in c
every bit specified in c1 or in c2.

3

Algorithm-1 given below, iteratively merges compatible cubes. It
first selects the best cube c from C, according to the quality
measure Q. Then, it searches the cube x, compatible with c,
which provides the best improvement of c when merged with this
one. The process is repeated until c cannot be merged with any
cube from C, and c is then stored in Ccomp. Then we start again
with the best cube that remains in C, and continue until C is
empty. To measure the improvement provided by x to c, we
consider the set of faults detected by x or c, and we compute Qx∩c.
The cube x is preferred to x’ when Qx∩c > Qx’∩c.

Algorithm-1: Constructing a compressed set of test cubes

Input: C = a set of test cubes.
Output: Ccomp = set of compressed test cubes.
Begin

Ccomp ← ∅;
While C ≠ ∅ do

c ← best cube from C;
C ← C - {c};
D ← { x ∈ C / x  c };
While D ≠ ∅ do

x ← cube of D providing the best increasing of Qc;
c ← merged cube of c and x (i.e., c ∩ x);
C ← C - { x };
D ← { x ∈ C / x  c };

Ccomp ← Ccomp ∪ { c };
Return Ccomp;

End

3.2 Computing an efficient LFSR seed

In the Ccomp set constructed as described above, the test cubes
have a wide quality range. Remember that test cubes having the
highest quality are those that detect the highest number of hard
faults. Therefore, it is important to find a one-seed LFSR test
sequence that is able to produce test patterns consistent with
these test cubes (called best test cubes hereafter). We propose a
fast simulation-based approach in which the aim is to study the
highest possible number of test sequences containing the best test
cubes of Ccomp, and to select the one that achieves the highest
fault coverage (its first vector thus giving the best LFSR seed).
This approach is based on two complementary algorithms.
Algorithm-2 swiftly simulates all test sequences containing a
pattern consistent with a selected test cube of Ccomp, and selects
the seed of the test sequence that achieves the highest fault
coverage. This algorithm is described in section 3.2.1. To obtain
the best one-seed LFSR test sequence, Algorithm-3 uses
Algorithm-2 with the best test cubes of Ccomp. Algorithm-3 is
detailed in section 3.2.2.

3.2.1 Algorithm-2: a fast simulation-based procedure

In order to address all the test sequences containing a selected
test cube c ∈ Ccomp, we should study the set of test sequences in
which the first vector is consistent with c, plus those in which the
second vector is consistent with c, and so on until all test
sequences in which the last vector is consistent with c have been
studied. However, an exhaustive simulation of all these test
sequences would take a prohibitive amount of CPU time. For this
reason, we propose the following alternative. As shown on the
Figure 1, we first simulate all vectors of an LFSR test sequence Ω
in which v is the first vector (the seed) and is determined so that
it i s consistent with c. This first step requires l simulations where
l is the test sequence length. We then consider a new LFSR test

sequence Ω’ in which v is the second pattern. As the feedback
polynomial of the LFSR is known, we use the reciprocal feedback
polynomial of the LFSR to calculate the first vector of Ω’ . As Ω’
is also of length l, the last vector of Ω is removed in Ω’ . There
are therefore l-2 common vectors between Ω and Ω’ , so that only
one additional simulation is needed to calculate the fault coverage
achieved with Ω’ . Of course, faults detected by the last vector of
Ω (and not detected by any vector of Ω’) are deleted from the list
of faults detected by the new sequence Ω’ .

v …………

v …………

v …………

v…………

.

..

Ω =
Ω’ =

Ω’’ =

Figure 1: Fast simulation of l test sequences of length l

Next, the same process is used to compute Ω’’ , and is repeated
until the test sequence in which v is the last vector has been
evaluated. Algorithm-2 given below details the whole process,
and additional comments are then reported. In this algorithm,
PREVIOUS(x) is a function that returns the previous vector of x
in the test sequence generated by the given LFSR. PREVIOUS
uses the reciprocal characteristic polynomial of the LFSR and is
used l-1 times to reach the test sequence in which v is the last
vector.

Algorithm-2: Fast simulation of l test sequences embedding a
vector v

Input: v = a vector; l = the test sequence length.
Output: bestSeed = seed of best sequence embedding v.

 bestCover = fault coverage provided by bestSeed.
Begin

s ← v;
Simulation of the test sequence Ω whom seed is s;
ListSimul stores the simulation results;
cover ← number of faults detected by Ω;
bestCover ← cover;
For i ← 1 to l-1 do

s ← PREVIOUS(s);
Simul ← list of faults detected by s;
NewFaults = faults in Simul not in ListSimul;
Update ListSimul using Simul;
Keep and remove LostFaults from ListSimul;
cover ← cover - | LostFaults | + | NewFaults |;
If cover > bestCover then

bestCover ← cover;
bestSeed ← s;

End

For the sake of efficiency, we need the data structure ListSimul
that stores, for every pattern p, the faults it detects and which are
not detected by any pattern p’ that appears before p in the
sequence. Moreover, this data structure has to be updated at each
iteration. Let l=4 and let si denote the i-th vector in the sequence.
Moreover, assume that s1 detects the fault set {a,b,c,d},
s2 :{b,c,e,f}, s3 :{a,e} and s4 :{a,f,g}. ListSimul can be represented
as follows:

4

LostFaults corresponds to the last heap and is equal to {g}.
Assume now that s0=PREVIOUS(s1) detects the fault set {b,d,f}.
When updated, ListSimul becomes :

Using this storing approach, only 2l-1 simulations are needed to
evaluate l sequences with length l. Indeed, l simulations are
needed to evaluate the first sequence, and l-1 simulations are
needed to evaluate the next sequences. Note that performing a
complete simulation of each sequence containing a given vector
(full simulation approach) would need l2 simulations to obtain the
same result. For some circuits (e.g. c2670), each simulation
requires about 1 second CPU; with l=10000 the full simulation
approach yields over 3 years of computations, whereas no more
than 6 hours are required for the solution we propose.

3.2.2 Algorithm-3: the main procedure

The main procedure in which Algorithm-1 and Algorithm-2
discussed above are used is presented in this subsection and
summarized in Algorithm-3. This algorithm is simply a
generalization of Algorithm-2 to all the best test cubes of Ccomp.
Nevertheless, two points have to be clarified in this algorithm.

The first one relates to the way we determine a vector v that is
consistent with c (a selected test cube among the best test cubes
of Ccomp) and which is further used in Algorithm-2. This vector is
fi rst determined so that the specified bits in c are reported in the
same bit position in v (consistency). Next, the remaining bits in v
are arbitrarily set at the logic “1” value. This solution
experimentally provides better results than randomly setting the
remaining bits at either “0” or “1”, or at the logic “0” value. Only
one vector is thus produced from a selected test cube c of Ccomp.
The quality of the fully specified patterns obtained from Ccomp is
determined by simulation, and these patterns are sorted according
to the criterion. The first motivation for this limitation is of
course simulation time, which otherwise would be too high, due
to the exponential number of vectors consistent with a given test
cube. The second motivation is that it is easier to find previous
patterns of a fully specified vector by using the reciprocal
characteristic polynomial of the LFSR, than to find the previous
patterns of a test cube by solving linear equations as in [14].

The second point relates to the number of best test cubes of Ccomp

needed for testing in order to obtain good results. This number is
not so important for the following reason: as patterns selected
during this process have decreasing qualities and hence detect a
decreasing number of hard faults, the probability of getting a test
sequence that provides better fault coverage than a previously
studied sequence decreases. Experimental results reported in the
next section demonstrate that test sequences of high quality can
be obtained with a reasonable computation time.

Algorithm-3: Finding an efficient LFSR seed

Input: C = a set of test cubes provided by an ATPG tool.
 l = the test sequence length.

Output: bestSeed = the most efficient LFSR seed
Begin

bestCover ← 0 %;
Ccomp ← merged cubes of C (Algorithm-1);
V← cubes of C with unspecified bits set to value 1;
Simulate patterns of V;
While high fault coverage is not reached do

v ← best pattern of V according to quality vectors;
V ← V – v ;
seed ← seed of the best test sequence Ω embedding v

(Algorithm-2);
If fault coverage of Ω > bestCover then

bestCover ← fault coverage achieved with Ω;
bestSeed ← seed;

If fault coverage = 100% then return bestSeed;
Return bestSeed;

 End

4. Experimental results

Experimental evaluation of the proposed method was conducted
using the standard sets of ISCAS’85 and ISCAS’89 benchmark
circuits. It was assumed that the flip-flops in the ISCAS’89
circuits were configured as part of the LFSR during testing so that
the circuits are tested like combinational circuits. Note that only
detectable stuck-at faults were considered in the fault coverage
calculations.

Circuit #inps #faults Length FC in CPU Time
C880 60 1760 1K 99.5 1328.41
C1355 41 2702 3K 100 1893.71
C1908 33 3805 4K 100 2025.41
C2670 233 4995 5K 91.4 25582.15
C3540 50 6824 4.5K 100 27479.24
C5315 178 10568 5K 100 3800.18
C7552 206 14865 8K 97.8 165930.26
S208 18 436 750 99.3 191.67

S208_89 19 416 750 98.8 182.64
S298 17 596 200 100 11.2
S344 24 670 200 100 5.25
S382 24 764 250 100 6.38
S386 13 772 2K 100 22.91
S420 34 916 1K 85.4 570.30

S420_89 35 840 1K 94.0 536.07
S444 24 866 300 100 38.37
S510 25 1020 500 100 12.58
S526 24 1051 4K 99.7 2405.71
S641 54 1274 10K 99.5 10191.26
S713 54 1353 10K 99.5 11086.12
S820 23 1640 5K 98.9 3367.31
S832 23 1647 5K 98.8 3400.50
S838 66 1876 10K 75.5 12460.77

S838_89 67 1676 10K 86.2 11926.16
S953 22 1860 5K 98.6 7395.07
S1196 31 2390 10K 99.9 15279.51
S1423 91 2820 3K 99.6 7285.97
S1488 14 2976 3K 100 146.19
S1494 14 2972 1K 99.1 1570.39
S9234 247 17350 1K 84.9 26817.68

Table 1: Intrinsic results on Benchmark circuits

b

a
f

e g

d

c

s1 s2 s3 s4

f

d

b
c

a

s0 s1 s2 s3

e

5

Experiments were conducted using algorithms described in
section 3. The size of each LFSR is equal to the number of
primary inputs in each circuit. The characteristic polynomial of
each LFSR is a primitive feedback polynomial. Fault simulations
in each circuit were performed using a home fault simulation tool
based on the critical path tracing algorithm proposed in [17].
Deterministic test cubes were generated using the ATPG tool of
the SUNRISE Test System.

A first sample of intrinsic results is given in Table 1. The first
column contains the circuit names. The second and third columns
give the number of primary inputs (#inps) and the number of
detectable faults (#faults) in each circuit. The fourth column
reports the chosen length of the generated test sequence (Length),
and column five (FC in %) gives the fault coverage obtained with
the proposed method on each circuit. The fifth column gives the
CPU time (in seconds, on a Pentium 350) needed for the complete
process of generating a one-seed LFSR test sequence
(construction of a compressed set of test cubes and computation of
an efficient LFSR seed). For each circuit, 20 test cubes from Ccomp

are evaluated in Algorithm-3. However, we observed that it is
usually enough to use the 5 or 6 best test cubes of Ccomp to obtain
the same result (seed), which illustrates the efficiency of our
quality measure.

The results in Table 1 show the performances obtained with the
proposed method to compute an LFSR seed. For test sequence
lengths no greater than 10K, the average fault coverage is 96.8%,
while the better and the worst are respectively 100% (in many
cases) and 75.5%. They also demonstrate that circuits with a lot
of inputs and circuits of great size can be dealt with efficiently.
Thus, the fault coverage achieved for the s9234 (247 inputs and a
size of 4505 gates equivalent) is 84.9% with a test sequence
length of 1K, for a computational time of no more than 7.5 hours.
This circuit has too much input to be dealt by [16]. Note that for
the biggest circuits, the applicability of the method depends on
two user specified constraints. The first one is the computational
effort one is willing to spend and the second is the length of the
test sequence one is willing to allow. The results presented in
Table 1 can be further improved by focusing on these parameters.

Test Length = 1K Test Length = 10KCircuit
AvRand OurSeed AvRand OurSeed

C2670 86.0 91.2 87.0 91.6
C5315 99.7 99.9 100 100
C7552 93.9 97.2 95.7 98.0
S420 69.1 85.4 84.7 92.7

S420_89 85.8 94.0 92.3 96.4
S641 96.8 98.4 98.5 99.5
S838 50.1 72.2 58.5 75.5

S838_89 77.6 85.4 80.7 86.2
S1494 97.5 99.1 100 100
S9234 78.4 84.9 89.8 92.8

Table 2: Comparison with average randomly selected seed
coverage

In order to compare our method with random selection of seeds,
we conducted two sets of experiments (Tables 2 and 3). In the
first set (Table 2), we measured the average stuck-at fault
coverage (over 10000 trials) of pseudo-random test sequences
with 1000 and 10000 test sequence lengths, and ran our method
with the same sequence lengths. Circuits hard to test or having
numerous inputs were chosen for this comparison. Note that the
average fault coverage was evaluated by performing Algorithm-2
with a randomly chosen vector, for computation time
convenience. Indeed, for some circuits (e.g. c7552 or s9234) the
time needed to fully simulate over 10000 pseudo-random test

sequences is excessively high. For each tested length (“Test
Length = 1K” and “Test Length = 10K”), we report the average
(AvRand) stuck-at fault coverage (in %) achieved with random
seeds. The fault coverage achieved with the proposed method (20
test cubes from Ccomp evaluated in Algorithm-3) is given in
Columns 2 and 4 (OurSeed). These results show that in all cases,
the fault coverage achieved with the one-seed LFSR test sequence
generated by the proposed method is much higher than the
average fault coverage obtained randomly. For test sequence
length 1000, the average fault coverage of the proposed method is
90.8%, while the average random seed selection fault coverage is
83.5%. For test sequence length 10000, the average fault
coverage of the proposed method is 93.3%, while the average
random seed selection fault coverage is 88.7%. For very hard-to-
test circuits, the difference between our results and random seed
selection is even more significant.

Circuit Time #Rand MaxRand OurSeed

C2670 4533 42 86.3 91.2
C5315 11474 43 99.8 99.9
C7552 19184 45 94.6 95.3
S420 625 51 75.8 81.4

S420_89 583 50 88.9 94.0
S641 813 37 98.0 98.4
S838 2067 76 54.6 69.7

S838_89 1654 61 79.6 85.4
S1494 1100 33 98.5 98.8
S9234 12393 21 79.6 84.4

Table 3: Comparison with best randomly selected seed coverage
for a computation time

In Table 3, we compare the fault coverage provided by our
method (column “OurSeed”, with 10 test cubes from Ccomp

evaluated in Algorithm-3) and the best fault coverage of a
randomly selected seed test sequence (column “MaxRand”). For
these experiments, the test length is 1000, and the computational
time (in seconds and in second column) required to find the best
randomly selected seed is equal to that used by our method. The
third column of Table 3 indicates the number of random test
sequences fully simulated during the accorded time. Through this
experiment, it appears that the results provided by our method are
always better than those of a random seed selection. In average,
the fault coverage provided by the proposed method is 89.8%,
while the fault coverage of the best random seed selection is
85.5%. For some circuit, the difference between the results is still
much more important. For example, this difference is about 15%
for the s838. It also appears that for the same computational time,
it is not possible to fully simulate a high number of test sequences
with a random selected seed (only 46, on average).

In the introduction of this paper, we pointed out that the main
feature of the proposed method is that it can be applied in a lot of
BIST situations. It can be used in pseudo-random testing for
BISTed circuits that contain few random resistant faults. In this
case, it allows to significantly improve the fault coverage
achieved with a predetermined pseudo-random test length. The
results listed in Tables 1, 2 and 3 confirm this assertion. It can
also be used in pseudo-deterministic BIST, where it allows the
hardware generator overhead area to be reduced, since the
number of hard faults to target with the deterministic part of the
generator is initially reduced. In order to demonstrate the
effectiveness of our method in pseudo-deterministic BIST, we
implemented two existing BIST scheme, [12] and [11], in which
LFSR plus mapping logic are combined to produce test
sequences providing 100% stuck-at fault coverage with test

6

sequence length a p riori known (1000 here).Our results are
reported in Table 4. We first considered a one-seed LFSR test
sequence produced by our method, and computed the number of
deterministic test cubes (Column OurSeed) needed to be
implemented in order to achieve 100% fault coverage with [12]
or [11]. Next, we considered a test sequence with the best
randomly chosen seed found in the previous experiment (see
Table 3); for this second test sequence, we also computed the
number of deterministic cubes (Column MaxRand) that have to
be implemented. Finally, we estimated the overhead area (Gates
Equivalent) of the additional mapping logics for both test
sequence using [12] and [11]. For each of these mixed-mode
techniques we computed the ratio between the area overhead
needed using our proposed seed and the random seed (columns
[11]Ratio and [12]Ratio).

Circuit Mixed-mode BIST
MaxRand OurSeed [11]Ratio [12]Ratio

C2670 116 90 0.96 0.78
C5315 17 13 0.45 0.69
C7552 157 143 0.95 0.84
S420 71 52 0.92 0.85

S420_89 40 19 0.32 0.14
S641 16 15 0.90 1.33
S838 218 172 0.92 0.75

S838_89 109 95 0.79 0.73
S1494 24 14 0.92 0.76
S9234 708 598 0.72 0.83

Average 147.6 121.1 0.78 0.77

Table 4: Comparative results for a pseudo-deterministic BIST
scheme

These results (Table 4) highlight the advantages of our method in
the context of mixed-mode BIST techniques, where it reduces the
hardware generator overhead area by a quarter (on average). For
some circuits (e.g. s420_89), the area of the mapping logic may
be more than 70% smaller with our solution.

5. Conclusion

In this paper, we propose an efficient method to compute the seed
of an LFSR-TPG with a given characteristic polynomial and a
given test length. The results demonstrate that our technique can
be successfully applied either in pseudo-random testing for
BISTed circuits that contain few random resistant faults, or in
pseudo-deterministic BIST where it allows the hardware
generator overhead area to be reduced. Moreover, our technique
is able to deal with combinational circuits of great size and with a
lot of primary inputs. Further studies will be conducted to adapt it
to the test-per-scan scheme, to develop it for delay faults testing,
and to avoid the arbitrarily completion of compressed cubes with
logic value 1.

References

[1] H.J. Wunderlich and Y. Zorian, Built-In Self Test (BIST):
Synthesis of Self-Testable Systems, Kluwer Academic
Publishers, 1997.

[2] S.K. Gupta and D.K. Pradhan, Utilization of On-Line
(concurrent) Checkers during Built-In Self Test and Vice-
versa, IEEE Trans. on Computers, vol. 45, n° 1, January
1996.

[3] A. Krasniewski and S. Pilarski, Circular Self-Test Path: a
Low Cost BIST Technique for VLSI Circuits, IEEE Trans. on
Computer-Aided Design, vol. 8, n°1, pp. 46-55, January 1989.

[4] K.T. Cheng and C.J. Lin, Timing Driven Test Point Insertion
for Full-Scan and Partial-Scan BIST, IEEE Int. Test Conf.,
pp. 506-514, 1995.

[5] N. Tamarapalli and J. Rajski, Constructive Multi-Phase Test
Point Insertion for Scan-Based BIST, IEEE Int. Test Conf.,
pp. 649-658, 1996.

[6] F. Muradali, V.K. Agarwal and B. Nadeau-Dostie, A New
Procedure for Weighted Random Built-In Self-Test, IEEE Int.
Test Conf., pp. 660-669, 1990.

[7] H.J. Wunderlich, Multiple Distributions for Biased Random
Test Patterns, IEEE Trans. on Computer-Aided Design , vol.
9, n°6, pp. 584-593, June 1990.

[8] S.B. Akers and W. Jansz, Test Set Embedding in a Built-In
Self-Test Environment, IEEE Int. Test Conf., pp. 257-263,
1989.

[9] D. Kangaris and S. Tragoudas, Generating Deterministic
Unordered Test Patterns with Counter, IEEE VLSI Test
Symp., pp. 374-379, 1996.

[10] M. Chatterjee and D.K. Pradhan, A Novel Pattern Generator
for Near-Perfect Fault Coverage, IEEE VLSI Test Symp., pp.
417-425, 1995.

[11] C. Fagot, O. Gascuel, P. Girard and C. Landrault, A Ring
Architecture Strategy for BIST Test Pattern Generation, IEEE
Asian Test Symposium, pp. 418-423, 1998.

[12] N.A. Touba and E.J. McCluskey, Synthesis of Mapping
Logic for Generating Transformed Pseudo-Random Patterns
for BIST, IEEE Int. Test Conf., pp. 674-682, 1995.

[13] B. Koenemann, LFSR-Coded Test Patterns for Scan Designs,
IEEE Euro. Test Conf., pp. 237-242, 1991.

[14] S. Hellebrand, S. Tarnick, J. Rajski and B. Courtois,
Generation of Vector Patterns Through Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers, IEEE
Int. Test Conf., pp. 120-129, 1992.

[15] S. Venkataraman, J. Rajski, S. Hellebrand and S. Tarnick,
An Efficient BIST Scheme Based on Reseeding of Multiple
Polynomial Linear Feedback Shift Registers, IEEE Int. Conf.
on Computer-Aided Design, pp. 572-577, 1993.

[16] M. Lempel, S.K. Gupta and M.A. Breuer, Test Embedding
with Discrete Logarithms, IEEE VLSI Test Symp., pp. 74-78,
1994.

[17] M. Abramovici, P.R. Menon and D.T. Miller, Critical Path
Tracing : An Alternative to Fault Simulation, IEEE Design &
Test of Computers, vol. 1, n° 1, February 1984.

