
An Algorithm for Diagnostic Fault Simulation

Yu Zhang and Vishwani D. Agrawal

Auburn University, Department of Electrical and Computer Engineering, Auburn, AL 36849, USA

yzz0009@auburn.edu, vagrawal@eng.auburn.edu

 Abstract--In diagnostic testing faults detectable by
test vectors are partitioned into groups. This
partitioning is such that a fault is distinguishable from
faults in all other groups, but is indistinguishable from
those in its own group. Diagnostic fault coverage (DC)
is defined as the number of fault groups divided by the
total number of faults. We present a new diagnostic fault
simulation algorithm that determines the DC of given
test vectors and produces a fault dictionary. For each
vector, we begin with detected fault list at each primary
output obtained from a convetional fault simulator. For
the vector being simulated each fault is assigned a
detection index that uniquely specifies its detection
status at all primary outputs. Fault list is then
partitioned. Faults with different detection index are
distinguished by the simulated vector and are kept in
separate groups. Any fault in a group by itself is
dropped from further simulation with subsequent vectors
for which its detection index remains unknown (X). After
simulation of each vector, the cumulative DC is obtained
by counting the fault groups. Fault dictionary syndrome
for a fault is the array of its detection indexes.

1 Introduction

A common objective of testing is to detect all or most
modeled faults. Although fault coverage (percentage or
fraction) has a somewhat nonlinear relationship with the
tested product quality or defect level (parts per million)
for practical reasons fault coverage continues to be a
measure of the test quality [3]. Tests can be random,
functional or algorithmically generated vecctors.
However, a fault simulator is an essential tool for
obtaining meaningful tests. A simulator determines how
many faults have been detected by given vectors thus
providing the fault coverage. Years of research has
produced highly efficient fault simulation algorithms
and programs [3].

Some modern test scenarios go beyond fault detection.
Here we diagnose or identify the fault causing failure.

A 100% fault coverage (FC) in the traditional sense
means that the tests detect all modeled faults. This does
not mean that those tests will identify the fault. A recent
paper defines a diagnostic coverage (DC) metric [16].
A 100% DC means that each modeled fault is

distinguished from all others. A diagnostic fault
simulation algorithm is the contribution of this paper.
Key features of the new algorithm are (1) it accepts fault
detection data from any conventional fault simulator
thus benefitting from the efficiency of a matured
program, (2) fault dropping is used to delete diagnosed
faults from the list of faults as fault simulation
progresses, and (3) for a given set of input vectors it
provides fault coverage (FC), diagnostic coverage (DC),
and necessary data for fault dictionary.

 In [15], a diagnostic fault simulation method has been
presented. In that method, during simulation, faults are
grouped into classes. Faults with identical output
responses are put in the same class. Fault pairs
consisting of faults from the same class are sent to an
equivalence identification tool. If the fault pair is proved
equivalent, one fault is dropped from the fault list. By
concurrently performing diagnostic fault simulation and
equivalence identification, the simulation time is greatly
reduced. In our method a fault is dropped when it is
distinguished from all other faults; this is achieved
without fault equivalence checking, though we can also
benefit from it.

 In [14], a diagnostic fault simulator is constructed for
sequential circuits. Because of the possibility of the X
state at a primary output in a sequential circuit,
additional information has to be stored for diagnosis. For
example, consider a sequential circuit with three primary
outputs. For a certain input vector, suppose fault 1 has a
response 1X0 and fault 2, X1X. These two faults are
said to be potentially distinguished. However this is not
the case for combinational or full scan circuits for which
the simulation method described in this paper can be
more memory and time efficient.

 In [6], a diagnostic test pattern generator (DATPG)
for combinational circuits is presented. It aims at
generating distinguishing test vectors for given fault
pairs and no diagnostic fault simulation process is used.
Such DATPG can greatly benefit from a fast simulation
scheme.

2 Diagnostic Coverage Metric

 For a set of vectors we group faults such that all faults
within a group are not distinguishable from each other
by the given vectors, while each fault in a group is pair-

wise distinguishable from every fault in any other group.
This grouping is similar to equivalence collapsing except
here the grouping is conditional to the vectors. If we
generate a new vector that detects a subset of faults in a
group then that group is partitioned into two groups, one
containing the detected subset and the other containing
the rest. Suppose, we have sufficient vectors to
distinguish between every fault pair, then there will be
as many groups as faults and every group will have just
one fault. Prior to test generation all faults are in a single
group we will call ��. As tests are generated, detected
faults leave �� and start forming new groups, ��, ��, . . .
�� , where � is the number of distinguishable fault
groups. For perfect detection tests �� will be a null set
and for perfect diagnostic tests, � � 	, where 	 is the
total number of faults. Diagnostic coverage, DC, has
been defined as [16],

� �
	���� �� �������� ����� ������

����� ����� �� ������
�

�

	
 �1�

 Initially, without any tests,
� � 0 , and when all
faults are detected and pair-wise distinguished,
� � 1.
Also, the numerator in equation (1) is the number of
fault dictionary syndromes [3] and the reciprocal of
�
is the diagnostic resolution �
 � [1]. For completeness
of this discussion, detection fault coverage �!�� is,

!� �
	���� �� �������� ������

����� ����� �� ������
�

	 " |��|

	
 �2�

3 Diagnostic Fault Simulation Algorithm

We explain the simulation algorithm using a
hypothetical example given in Figure 1. Suppose a
circuit has eight faults �	 � 8�, identified as � through
& . Assume that the circuit has two outputs. The grey
shading, which identifies the undetected fault group ��,
indicates that all faults are undetected in the initial fault
list. Also, fault coverage �!�� and diagnostic coverage
�
�� are both initially 0. We assume that there are three
vectors generated by a detection ATPG and can detect
all faults, thus having 100% !�. Later in the simulation
process more vectors will be generated by diagnostic
ATPG [16] to improve diagnostic coverage �
��.

 The first vector is simulated for all eight faults using a
conventional fault simulator. We use a full-response
simulator that gives us the fault detection information
for each primary output (PO). Suppose we find that the
first vector detects �, � and �. Also, faults � and � are
detected only on the first output and � is detected on
both outputs. Thus, fault pairs ��, �� and ��, �� are
distinguishable, while the pair ��, �� is not
distinguishable. The result is shown in the second list in
Figure 1. The fault list is partitioned into three groups.
The first two groups, �� and ��, shown without shading
contain detected faults. Group �� now has 5 faults. Each

group contains faults that are not distinguished from
others within that group, but are distinguished from
those in other groups. Counting detected faults, the fault
coverage is 3/8 and counting detected fault groups, the
diagnostic coverage is 2/8.

Figure 1. Illustration of diagnostic fault simulation.

 Fault �, which is in a single fault group, is dropped
from further simulation. Because this fault has been
uniquely distinguished from all other faults, its
distinguishability status will not change by other vectors.
Note that pair-wise distinguishability provided by future
vectors can only subdivide the groups and subdivision of
a group with just one fault will be impossible. The fact
that faults can be dropped in diagnostic fault simulation
is not always recognized. However, fault dropping is
possible here only because our interest is in diagnostic
coverage and not in minimizing the vector set. Seven
faults are now simulated for the second vector, which
detects faults � and �. Suppose, � and � are detected at
the same set of outputs and hence are placed within
same partition �' . Thus, !� � 5/8 and
� � 3/8 .
No new fault can be dropped at this stage.

Vector 3 detects faults � , � , � and & increasing the
fault coverage to 100%. Suppose � and � are detected at
the same set of outputs and so are placed together in
group �+. Detection at different outputs distinguishes &
from these two and hence & is placed in a separate group
�,. Also, noting that this test distinguishes between �
and � , group �� is split into �� and �- . Now, !� �

8/8 � 1.0 and
� � 6/8. Faults in fault groups with
single fault are dropped.

Having exhausted the detection vectors, we find that
two pairs, ��, �� and ��, ��, are not distinguished. We
supply target fault pair ��, �� to a diagnostic ATPG
system described in [16]. Suppose we find that an
exclusive test, i.e., a test that detects any one fault but
not the other, is impossible thus indicating that two
faults are equivalent. We remove one of these faults, say
d, from �' and from the fault list as well. This does not
change fault coverage since FC = 7/7, but improves the

diagnostic coverage to DC = 6/7. All faults except c and
f are now dropped from further simulation.

The only remaining fault pair ��, �� is targeted and an
exclusive test is found. Suppose fault � is detected by
this vector but � is not detected Thus, �+ is partitioned to
create group �0 with fault f. The new partitioning has
just one fault per group, FC = 7/7, and DC = 7/7.

4 Dictionary Construction

Fault dictionary is necessary in a cause-effect
diagnosis. It facilitates faster diagnosis by comparing the
observed behaviors with pre-computed signatures in the
dictionary [13]. One common form of dictionary is the
full-response (FR) dictionary, which stores all output
responses of each faults for each test. But the problem is
the size of a FR dictionary can grow prohibitively large,
i.e., �! 1 2 1 3� where F is the number of faults, V is
number of vectors, and O is number of primary outputs.

Much work has been done to reduce the size of the FR
dictionary [4, 10, 11]. Here we assign integers to
different output responses. Thus the largest integer
needed to index all different syndromes in the worst case
will be 4�4��2� " 1, ! 1 2� where � is number
of primary outputs, F is number of faults, and V is
number of vectors. However, it should be noted that
faults in a same logic cone tend to produce identical
output respones for a given vector set, so that the largest
index is usually much smaller than ! 1 2.

Faults

Output responses

t1 t2 t3 t4

a 10 00 10 X

b, d 00 01 00 X

c 00 00 01 00

e 10 00 00 X

f 00 00 01 11

g 11 X X X

h 00 00 10 X

Figure 2. FR Dictionary.

The dictionary shown in Figure 2 is generated based
on the example in Figure 1. Among the entries, X means
the fault is already dropped and not simulated, 0 stands
for pass (same as fault-free response), and 1 stands for
fail. To reduce the dictionary size we assign integers to
index different output responses. In this example, “10”,
“11”, and “01” are indexed with 1, 2, 3, as shown in
Figure 3. Although for small circuits the compression is
not obvious, for larger ISCAS85 benchmark circuits the
reduction can be as high as an order of magnitude.

 t1 t2 t3 t4

a 1 0 1 X

b, d 0 3 0 X

c 0 0 3 0

e 1 0 0 X

f 0 0 3 2

g 2 X X X

h 0 0 1 X

Figure 3. Compressed Dictionary.

Because of fault dropping in our simulator there will
be ‘X’ in the generated dictionary. This limits the use of
fault dictionary to single stuck-at fault. For a real defect
the faulty respones may have no match in the dictionary.
To solve this problem we introduce a heuristic.

5�4��
4������

3 1 �2 " 6�
 7 �&���&��� 8���� �3�

 Here hamming distance is calculated from observed
response to the stored syndromes, ignoring ‘X’s. O is the
number of primary outputs, V is number of vectors, and
X is number of ‘X’s for a fault in the dictionary. If the
calculated result is smaller than a given threshold, the
corresponding fault will be added to a candidate list.
Then fault simulation without fault dropping will be
performed on this list to obtain additional information to
further narrow down upon a fault candidate.

5 Results

 We used the fault simulation program Hope [9] for
obtaining the fault detection data. This program was
modified to obtain detection information separately at
each primary output. Fault grouping for diagnostic fault
simulation was implemented in the Python programming
language [12]. Both programs were run on a PC based
on Intel Core-2 duo 2.66GHz processor with 3GB
memory. Vectors were generated using a ATPG system
with diagnostic test generation capability [16]. As an
illustration, the results for c432 were as follows:

 Number of structurally collapsed faults: 524

 Number of vectors simulated: 69

 Undetected faults: 4

 Maximum fault coverage, !�: 99.24%

 (reached at vector 51)

� for 51 vectors: 91.985%

 Number of undistinguished groups: 13

 Largest size of undistinguished group: 2

 Diagnostic coverage
�: 97.506%

Figure 4. Diagnostic fault simulation of c432 for 69
algorithmic vectors. FC: fault coverage, DC:
diagnostic coverage.

 First 51 vectors detected all detectable faults; this
circuit has four redundant faults. However, a fault
simulator does not identify redundancies. Diagnostic
fault simulation computed the diagnostic coverage of 51
vectors as 91.985%. The diagnostic coverage of all 69
vectors was 97.506%. No group had more than 2 faults.

Fault coverage �!�� and diagnostic coverage �
�� as
functions of number of vectors are shown in Figure 4.
We also simulated a set of 69 random vectors and their
coverages are shown in Figure 5. As expected, both fault
coverage and diagnostic coverage are lower than those
for algorithmic vectors. Results for several ISCAS'85
circuits simulated for diagnostic coverages of
deterministic vectors [16] are given in Table 1.

We draw several inferences from these results. For
circuit c432, a closer examination of 13 undistinguished
fault pairs showed that all are functionally equivalent.
Updating the fault list by removing one fault from each
equivalent pair will increase
� to 100% and reduce the
size of the largest fault group to 1. Just as redundancy
identification can give a more realistic fault coverage,
sometimes referred to as fault efficiency [3], functional
equivalence identification [2] can give a higher and
more realistic diagnostic efficiency.

Table 1 indicates a dropping DC as circuit size
increases. Notice 59.38% DC for c1355. This circuit is
functionally equivalent to c499, which has a large
number of XOR gates. In c1355, each XOR gate is
expanded as four NAND gates. This implementation of
XOR function is known to have several functionally
equivalent faults. As reported [2] the structurally
collapsed set of 1,574 faults reduces to 950 faults when
functional collapsing is used. If we use the set of 950
faults, same 87 vectors of Table 1 will show higher DC.
The advantage of functional fault collapsing, though

Figure 5. Diagnostic fault simulation of c432 for 69
random vectors. FC: fault coverage, DC: diagnostic
coverage.

marginal in detection ATPG, can be significant in
diagnostic test generation. We further notice that the size
of the largest undiagnosed fault group tends to increase
for larger circuits. It is 11 for c2670. This is related to
the lower
� , whose reciprocal is the diagnostic
resolution �
 � [1].
 9 1 indicates poor diagnosis;
the ideal resolution
 � 1 requires that each
undistinguished fault group is no larger than 1.

In general, the time complexity of a conventional fault
simulation program is linearly dependent on each of the
three variables, namely, number of gates, number of
faults and number of vectors. The CPU times in Table 1
include the time of the coventional fault simulator Hope
[9] and that of our Python program that partitions the
fault list and computes
�. The overall increase in run
times with increasing circuit size for diagnostic
simulation shown in Table 1 is between 3�������� and
3������'�, which is no different from what has been
reported for conventional fault simulation [3, 5]. The last
column in Table 1 is the CPU time without fault
dropping, which indicates a reduction of about one half
to one third. With increasing circuit size the CPU tme
reduction tends to increase. For simulation without fault
dropping, each vector needs to be applied to all faults,
thus spending approximately same amount of time,
while with fault dropping a fault is immediately dropped
if it is detected in detection simulation or fully diagnosed
in diagnostic simulation, so that later vectors will require
less and less CPU time.

6 Conclusion

The diagnostic fault simulation presented here is a core
algorithm and should find effective use in the test
generation systems of the future. The algorithm has
similar complexity as conventional simulation with fault

Table 1 Diagnostic Fault Simulation of ISCAS’85 benchmark circuits.

Circuit
Number
of faults

Number
of vectors

Fault
coverage
FC (%)

Largest
undiagnosed
group size

Diagnostic
coverage
DC (%)

CPU
s

CPU s
(no fault
dropping)

c17 22 8 100.0 1 100.0 0.00 0.00
c432 524 69 99.24 2 97.51 0.14 0.30
c499 758 53 100.0 2 98.40 0.13 0.31
c880 942 60 100.0 2 94.16 0.19 0.45
c1355 1574 87 100.0 3 59.38 0.70 1.63
c1908 1879 134 99.89 8 86.46 1.28 2.89
c2670 2747 150 98.84 11 86.42 2.80 6.07
c3540 3428 174 100.0 8 89.69 2.00 5.74
c6288 7744 137 99.56 3 86.87 4.12 10.23
c7552 7550 296 98.25 7 86.85 5.34 14.67

dropping. Because this fault simulation is done with
fault dropping, the syndromes will contain 0, 1, and X
(don't care). However, these don't cares do not reduce
the diagnosability of a fault. Although, reordering or
compaction of vectors will be affected. We observe that
a low diagnostic coverage �
�� can result from two
reasons. First, low
� of random vectors can be
improved with the help of a diagnostic ATPG. Second,

� may still not be 100% due to functional equivalences
that are generally not recognized in the conventional
structural fault collapsing. A diagnostic fault simulator
can identify fault groups that are potential targets for
functional equivalence checking [15]. We can also
exploit the fact that the distance between equivalent
faults is generally small [7]. Thus an equivalence
checking algorithm can be developed based on
extracting a subcircuit that contains the fault pair.
Reference [8] shows that some detection test sets have
good diagnostic capability. This indicates that most of
the undistinguished fault pairs might be equivalent
making equivalence checking even more important.
Acknowledgment – This research is supported in part by
the National Science Foundation Grant CNS-0708962.

References

[1] V. D. Agrawal, D. H. Baik, Y. C. Kim, and K. K. Saluja,

“Exclusive Test and its Applications to Fault Diagnosis,”
in Proc. 16th International Conf. VLSI Design, Jan. 2003,
pp. 143–148.

[2] V. D. Agrawal, A. V. S. S. Prasad, and M. V. Atre, “Fault
Collapsing via Functional Dominance,” in Proc.
International Test Conf., 2003, pp. 274–280.

[3] M. L. Bushnell and V. D. Agrawal, Essentials of
Electronic Testing for Digital, Memory & Mixed-Signal
VLSI Circuits. Boston: Springer, 2000.

[4] B. Chess and T. Larrabee, “Creating Small Fault
Dictionaries,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp. 346-356,
Mar. 1980.

[5] P. Goel, “Test Generation Costs Analysis and Projections,”

in Proc. 17th Design Automation Conf., 1980, pp. 77–84.
[6] T. Grüning, U. Mahlstedt, and H. Koopmeiners,

“DIATEST: A Fast Diagnostic Test Pattern Generator for
Combinational Circuits,” in Proc. IEEE/ACM Intl. Conf.
on Computer-Aided Design, pp. 194-197, Nov. 1991.

[7] I. Hartanto, V. Boppana, and W. K. Fuchs, “Diagnostic
Fault Equivalence Identification Using Redundancy
Information & Structural Analysis,” in Proc.
International Test Conf., Oct. 1996, pp. 20-25.

[8] I. Hartanto, V. Boppana, J. H. Patel, and W. K. Fuchs,
“Diagnostic Test Pattern Generation for Sequential
Circuits,” in 15th IEEE VLSI Test Symp., May 1997, pp.
196-202.

[9] H. K. Lee and D. S. Ha, “HOPE: An Efficient Parallel
Fault Simulator for Synchronous Sequential Circuits,”
IEEE Trans. Computer-Aided Design, vol. 15, no. 9, pp.
1048–1058, Sept. 1996.

[10] D. Lavo and T. Larrabee, “Making Cause-Effect Cost
Effective: Low-resolution Fault Dictionaries,” in Proc.
International Test Conf., 2001, pp. 278-286.

[11] I. Pomeranz and S. M. Reddy, “On the Generation of
Small Dictionaries for Fault Location,” in Proc. Intl. Conf.
Computer-Aided Design, 1992, pp. 272-278.

[12] G. van Rossum and F. L. Drake, Jr., editors, Python
Tutorial Release 2.6.3. docs@python.org: Python
Software Foundation, Oct. 2009.

[13] M. A. Shukoor and V. D. Agrawal, “A Two Phase
Approach for Minimal Diagnostic Test Set Generation,”
in Proc. 14th IEEE European Test Symp., May 2009, pp.
115-120.

[14] S. Venkataraman, I. Hartanto, W. K. Fuchs, E. M.
Rudnick, S. Chakravarty, and J. H. Patel, “Rapid
Diagnostic Fault Simulation of Stuck-at Faults in
Sequential Circuits using Compact List,” in Proc. Design
Automation Conf., pp. 133-138, June 1995.

[15] X. Yu, M. E. Amyeen, S. Venkataraman, R. Guo, and I.
Pomeranz, “Concurrent Execution of Diagnostic Fault
Simulation and Equivalence Identification During
Diagnostic Test Generation,” in Proc. 21st IEEE VLSI
Test Symp., May 2003, pp. 351-356.

[16] Yu Zhang, V. D. Agrawal, “A Diagnostic Test Generation
System and a Coverage Metric,” in 15th IEEE European
Test Symp., May 2010, submitted.

