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ABSTRACT:  Current paper presents a test pattern 
generation approach based on genetic algorithms. The 
algorithm is designed so that it allows direct 
comparison with random methods. Experimental 
results on ISCAS'85 benchmarks [6] show that the 
proposed algorithm performs significantly better than 
similar approach published in [1]. In addition, the test 
sets generated by the algorithm are more compact. 

1 Introduction 
In current paper we introduce a test generation approach 
based on genetic optimization. In Section 2, the algorithm 
for test pattern generation is explained. Section 3 provides 
experimental results, which show that the genetic 
approach outperforms random test generation. According 
to the experiments, our approach achieves better fault 
coverages and more compact test sizes than the CRIS 
genetic test pattern generator reported in [1]. 

2 A Genetic Algorithm for Test Generation 
John Holland, the founder of the field of genetic 

algorithms, pointed out the ability of simple 
representations (bit strings) to encode complicated 
structures and the power of simple transformations to 
improve such structures [3]. He showed that with a proper 
control structure, rapid improvements of bit strings could 
occur (under certain transformations), so that a population 
of bit strings 'evolves' as populations of animals do. An 
important formal result stressed by Holland was that even 
in large and complicated search spaces, given certain 
conditions on the problem domain, genetic algorithms 
would tend to converge on solutions that were globally 
optimal or nearly so. 
 In order to solve the problem, the following 
components are must in genetic algorithm: 

1) a chromosomal representation of solution to the 
problem, 

2) a way to create an initial population of solutions, 
3) an evaluation function that plays the role of the 

environment, quality rating for solutions in terms 
of their "fitness" 

4) genetic operators that alter the structure of 
"children" during reproduction 

5) values for the parameters that genetic algorithm 
uses (population size, probabilities of  applying 
genetic operators) 

 
2.1 Representation 
In a genetic framework, one possible solution to the 
problem is called an individual. Like we have different 
persons in society, we also have different solutions to the 
problem (one is more optimal than the other). All 
individuals together form a population (society). 
 In context of test generation, test vector (test pattern) 
will be the individual and the set of test vectors will 
correspond to population.  
 
2.2 Initialization 
Initially, a random set of test vectors is generated. This set 
is subsequently given to a simulator tool for evaluation. 
For research purpose random initializing a population is 
good. Moving from a randomly created population to a 
well adapted population is a good test of algorithm, since 
the critical features of final solution will have been 
produced by the search and recombination mechanisms of  
the algorithm rather than the initialization procedures. 
Following steps of algorithm are carried out repeatedly. 
 
2.3 Evaluation of test vectors 
Evaluation is used to measure the fitness of the 
individuals, i.e. the quality of solutions, in a population. 
Better solutions will get higher score. Evaluation function 
directs population towards progress because good 
solutions (with high score) will be selected during 
selection process and poor solutions will be rejected. 
 We use fault simulation with fault dropping in order 
to evaluate the test vectors. The best vector in the 
population is determined and added to the selected test 
vector depository. The depository consists of test vectors 
that form the final set of test vectors. By adding only one 
best vector to the depository, we assure that the final test 
set will be close to minimal. 
 
 
 



2.4 Fitness scaling 
As a population converges on a definitive solution, the 
difference between fitness values may become very small. 
Best solutions can not have significant advantage in 
reproductive selection. We use square values for test 
vector’s fitness values in order to differentiate good and 
bad test vectors.  
 
2.5 Selection of candidate vectors 
Selection is needed for finding two (or more) candidates 
for crossover. Based on quality measures (weights), better 
test vectors in a test set are selected. Roulette wheel 
selection mechanism is used here. Number of slots on the 
roulette wheel will be equal to population size. Size of the 
roulette wheel slots is proportional to the fitness value of 
the test vectors. That means that better test vectors have a 
greater possibility to be selected. Assuming that our 
population size is N, and N is an even number, we have 
N/2 pairs for reproduction. Candidates in pair will be 
determined by running roulette wheel twice. One run will 
determine one candidate. With such a selection scheme it 
can happen that same candidate is selected two times. 
Reproduction with itself does not interfere. This means 
the selected vector is a good test vector  and it carries its 
good genetic potential into new generation.  
 
2.6 Crossover 
Exchanges corresponding genetic material from two 
parent chromosomes allow useful genes on different 
parents to be combined in their offspring. Crossover is the 
key to genetic algorithm's power. Most successful parents 
reproduce more often. Beneficial properties of two 
parents combine. 

From pair of candidate vectors selected by roulette 
wheel mechanism, two new test vectors are produced by 
one-point crossover as following:  

1) we determine a random  position  m in a test 
vector by generating a random number between 1 
and L, assuming that L is the length of  the test 
vector 

2) first m bits from the first candidate vector are 
copied to the first new vector 

3) first m bits from second candidate vector are 
copied to the second new vector 

4) bits m + 1 … L from first candidate vector are 
copied to second new vector (into bits m + 1…L) 

5) bits m + 1 … L from the second candidate vector 
are copied to the first new vector (into bits m + 
1…L) 

 
2.7 Mutation 
Random mutation provides background variation and 
occasionally introduces beneficial material into a species' 
chromosomes. Without the mutation all the individuals in 
population will sooner or later be the same (because of 
the exchange of genetic material) and there will be no 
progress anymore. We will be stuck in a local maximum. 

 In order to encourage genetic algorithm to explore 
new regions in space of all possible test vectors, we apply 
mutation operator to the test vectors produced by 
crossover. In all the test vectors, every bit is inverted with 
a certain probability p. It is also possible to use a strategy 
where only predefined number of mutations are made 
with probability p=1 in random bit positions. This should 
reduce the computational expense. However, experiments 
showed decrease in fault coverage. Therefore, this 
method is not used here.  
Steps 2.2 – 2.5 are repeated until all the faults from the 
fault list are detected or a predefined limit of evolutionary 
generations is exceeded. Test generation terminates also 
when the number of noncontributing populations exceeds 
a certain value. The value depends on the circuit size and 
is equal to Number of inputs / const, where const is a 
constant that can be set by the user. The smaller the value 
of const, the more thoroughly we will search.  

In current implementation, the test generation works 
in two stages, with different mutation rates.  
1) In the first stage, when there are lots of undetected 

faults and  fitness of vectors is mostly greater than 
zero (in each evolutionary generation many faults are 
detected), a smaller mutation rate is used (p = 0.1). 

2) In the second stage, when there are only few 
undetected faults and none of the vectors in 
population detects these faults,  the weights of the 
vectors will all be zeros. We can not say which 
vector is actually better than others. Now the 
mutation rate is increased (p = 0.5) to bring more 
diversity into population, in order to explore new 
areas of the search space.  

3 Experimental Results 
The experiments were partly aimed at showing how much 
is the genetical approach better than random. In order to 
achieve that, same simulation procedures were used for 
random and genetic test generation. Population size for 
the genetic test generator was set to 32. It is a tradeoff 
between speed and fault coverage. In each (evolutionary) 
generation, or step, one vector from 32 is selected and put 
into final test set (vector depository). The random test 
generator performs in a similar way. It generates patterns 
in packages of 32 vectors. The best vector from the 
package (based on simulation results) will be selected, if 
it detects some previously not detected faults. Therefore, 
we can compare the two methods adequately. Both of the 
test generation tools belong to the diagnostics software 
package Turbo Tester [8]. All of the experiments were 
run on a Sun SparcStation 20 computer. 
 The experiments were carried out on ISCAS'85 
benchmarks[6]. In first experiment, minimum number of 
test vectors was determined to detect all detectable faults.  
It comes out that genetic method requires always less test 
vectors (patterns) to yield the same fault coverage than 
random method. For the 'hard-to-test' circuits c2670 and 
c7552, equal number of test vector simulations for both 



methods was  taken  and then the fault coverage reached 
was estimated. Genetic method discovers 118 faults more 
than random in the case of c2670 and 33 faults more in 
the case of c7552. Execution times for the random 
method were slightly shorter for smaller circuits like c432 
and c499.  
 Subsequently, we investigated fault detection in time 
for random and genetic generators. Result graphs are 
presented in Figure 1 and Figure 2. Random generator 
achieves good fault coverage sooner but genetic generator  
detects additional faults in the end. Except for the 
smallest circuits c432 and c499 as we see in Tables 1 and 
2. Effectiveness of genetic generator comes evident in 
case of circuits that have a large number of inputs. We 
compared our results to the ones achieved in [2]. The key 
feature there was keeping certain inputs together  (in 
order to better propagate fault effects) during 
reproduction process. The method detected all faults for 
c7552 and c2670. However, the approach given here uses 
(up to 2 times) less of test vectors for all circuits. We 
could not compare execution times, because they were 
not revealed. 

In addition, our results were compared to the genetic 
approach in [1]. The key feature of the latter method is 
monitoring circuit activity. Namely, information about the 
activity of internal nodes during fault simulation is 
collected, and points in the circuit where fault 
propagation was blocked are identified. Based on that 
information fitness values for test vectors are given. The 
comparison between our approach and [1] is presented in 
Table 3. It is evident that such a monitoring used in [1] is 
not effective.  
Simple approach given here detects all detectable faults 
with a smaller time for all circuits and generates 1,6 – 6,5 
times less test vectors than [1]. Comparison was not 
adequate for circuits c2670 and c7552 because in [1] the 
test generation was terminated too early. 
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