
Comparison of Genetic and Random Techniques for Test Pattern Generation*

E. Ivask1, J. Raik1, R. Ubar2

1Department of Computer Engineering, TTU, Raja 15, EE0026 Tallinn, Estonia, E-mail: ieero@va.ttu.ee
2Currently on the leave at the Institut National Polytechnique de Grenoble/CSI, France

* This work has been supported by the Estonian Science Foundation grant G-1850

ABSTRACT: Current paper presents a test pattern
generation approach based on genetic algorithms. The
algorithm is designed so that it allows direct
comparison with random methods. Experimental
results on ISCAS'85 benchmarks [6] show that the
proposed algorithm performs significantly better than
similar approach published in [1]. In addition, the test
sets generated by the algorithm are more compact.

1 Introduction
In current paper we introduce a test generation approach
based on genetic optimization. In Section 2, the algorithm
for test pattern generation is explained. Section 3 provides
experimental results, which show that the genetic
approach outperforms random test generation. According
to the experiments, our approach achieves better fault
coverages and more compact test sizes than the CRIS
genetic test pattern generator reported in [1].

2 A Genetic Algorithm for Test Generation
John Holland, the founder of the field of genetic

algorithms, pointed out the ability of simple
representations (bit strings) to encode complicated
structures and the power of simple transformations to
improve such structures [3]. He showed that with a proper
control structure, rapid improvements of bit strings could
occur (under certain transformations), so that a population
of bit strings 'evolves' as populations of animals do. An
important formal result stressed by Holland was that even
in large and complicated search spaces, given certain
conditions on the problem domain, genetic algorithms
would tend to converge on solutions that were globally
optimal or nearly so.
 In order to solve the problem, the following
components are must in genetic algorithm:

1) a chromosomal representation of solution to the
problem,

2) a way to create an initial population of solutions,
3) an evaluation function that plays the role of the

environment, quality rating for solutions in terms
of their "fitness"

4) genetic operators that alter the structure of
"children" during reproduction

5) values for the parameters that genetic algorithm
uses (population size, probabilities of applying
genetic operators)

2.1 Representation
In a genetic framework, one possible solution to the
problem is called an individual. Like we have different
persons in society, we also have different solutions to the
problem (one is more optimal than the other). All
individuals together form a population (society).
 In context of test generation, test vector (test pattern)
will be the individual and the set of test vectors will
correspond to population.

2.2 Initialization
Initially, a random set of test vectors is generated. This set
is subsequently given to a simulator tool for evaluation.
For research purpose random initializing a population is
good. Moving from a randomly created population to a
well adapted population is a good test of algorithm, since
the critical features of final solution will have been
produced by the search and recombination mechanisms of
the algorithm rather than the initialization procedures.
Following steps of algorithm are carried out repeatedly.

2.3 Evaluation of test vectors
Evaluation is used to measure the fitness of the
individuals, i.e. the quality of solutions, in a population.
Better solutions will get higher score. Evaluation function
directs population towards progress because good
solutions (with high score) will be selected during
selection process and poor solutions will be rejected.
 We use fault simulation with fault dropping in order
to evaluate the test vectors. The best vector in the
population is determined and added to the selected test
vector depository. The depository consists of test vectors
that form the final set of test vectors. By adding only one
best vector to the depository, we assure that the final test
set will be close to minimal.

2.4 Fitness scaling
As a population converges on a definitive solution, the
difference between fitness values may become very small.
Best solutions can not have significant advantage in
reproductive selection. We use square values for test
vector’s fitness values in order to differentiate good and
bad test vectors.

2.5 Selection of candidate vectors
Selection is needed for finding two (or more) candidates
for crossover. Based on quality measures (weights), better
test vectors in a test set are selected. Roulette wheel
selection mechanism is used here. Number of slots on the
roulette wheel will be equal to population size. Size of the
roulette wheel slots is proportional to the fitness value of
the test vectors. That means that better test vectors have a
greater possibility to be selected. Assuming that our
population size is N, and N is an even number, we have
N/2 pairs for reproduction. Candidates in pair will be
determined by running roulette wheel twice. One run will
determine one candidate. With such a selection scheme it
can happen that same candidate is selected two times.
Reproduction with itself does not interfere. This means
the selected vector is a good test vector and it carries its
good genetic potential into new generation.

2.6 Crossover
Exchanges corresponding genetic material from two
parent chromosomes allow useful genes on different
parents to be combined in their offspring. Crossover is the
key to genetic algorithm's power. Most successful parents
reproduce more often. Beneficial properties of two
parents combine.

From pair of candidate vectors selected by roulette
wheel mechanism, two new test vectors are produced by
one-point crossover as following:

1) we determine a random position m in a test
vector by generating a random number between 1
and L, assuming that L is the length of the test
vector

2) first m bits from the first candidate vector are
copied to the first new vector

3) first m bits from second candidate vector are
copied to the second new vector

4) bits m + 1 … L from first candidate vector are
copied to second new vector (into bits m + 1…L)

5) bits m + 1 … L from the second candidate vector
are copied to the first new vector (into bits m +
1…L)

2.7 Mutation
Random mutation provides background variation and
occasionally introduces beneficial material into a species'
chromosomes. Without the mutation all the individuals in
population will sooner or later be the same (because of
the exchange of genetic material) and there will be no
progress anymore. We will be stuck in a local maximum.

 In order to encourage genetic algorithm to explore
new regions in space of all possible test vectors, we apply
mutation operator to the test vectors produced by
crossover. In all the test vectors, every bit is inverted with
a certain probability p. It is also possible to use a strategy
where only predefined number of mutations are made
with probability p=1 in random bit positions. This should
reduce the computational expense. However, experiments
showed decrease in fault coverage. Therefore, this
method is not used here.
Steps 2.2 – 2.5 are repeated until all the faults from the
fault list are detected or a predefined limit of evolutionary
generations is exceeded. Test generation terminates also
when the number of noncontributing populations exceeds
a certain value. The value depends on the circuit size and
is equal to Number of inputs / const, where const is a
constant that can be set by the user. The smaller the value
of const, the more thoroughly we will search.

In current implementation, the test generation works
in two stages, with different mutation rates.
1) In the first stage, when there are lots of undetected

faults and fitness of vectors is mostly greater than
zero (in each evolutionary generation many faults are
detected), a smaller mutation rate is used (p = 0.1).

2) In the second stage, when there are only few
undetected faults and none of the vectors in
population detects these faults, the weights of the
vectors will all be zeros. We can not say which
vector is actually better than others. Now the
mutation rate is increased (p = 0.5) to bring more
diversity into population, in order to explore new
areas of the search space.

3 Experimental Results
The experiments were partly aimed at showing how much
is the genetical approach better than random. In order to
achieve that, same simulation procedures were used for
random and genetic test generation. Population size for
the genetic test generator was set to 32. It is a tradeoff
between speed and fault coverage. In each (evolutionary)
generation, or step, one vector from 32 is selected and put
into final test set (vector depository). The random test
generator performs in a similar way. It generates patterns
in packages of 32 vectors. The best vector from the
package (based on simulation results) will be selected, if
it detects some previously not detected faults. Therefore,
we can compare the two methods adequately. Both of the
test generation tools belong to the diagnostics software
package Turbo Tester [8]. All of the experiments were
run on a Sun SparcStation 20 computer.
 The experiments were carried out on ISCAS'85
benchmarks[6]. In first experiment, minimum number of
test vectors was determined to detect all detectable faults.
It comes out that genetic method requires always less test
vectors (patterns) to yield the same fault coverage than
random method. For the 'hard-to-test' circuits c2670 and
c7552, equal number of test vector simulations for both

methods was taken and then the fault coverage reached
was estimated. Genetic method discovers 118 faults more
than random in the case of c2670 and 33 faults more in
the case of c7552. Execution times for the random
method were slightly shorter for smaller circuits like c432
and c499.
 Subsequently, we investigated fault detection in time
for random and genetic generators. Result graphs are
presented in Figure 1 and Figure 2. Random generator
achieves good fault coverage sooner but genetic generator
detects additional faults in the end. Except for the
smallest circuits c432 and c499 as we see in Tables 1 and
2. Effectiveness of genetic generator comes evident in
case of circuits that have a large number of inputs. We
compared our results to the ones achieved in [2]. The key
feature there was keeping certain inputs together (in
order to better propagate fault effects) during
reproduction process. The method detected all faults for
c7552 and c2670. However, the approach given here uses
(up to 2 times) less of test vectors for all circuits. We
could not compare execution times, because they were
not revealed.

In addition, our results were compared to the genetic
approach in [1]. The key feature of the latter method is
monitoring circuit activity. Namely, information about the
activity of internal nodes during fault simulation is
collected, and points in the circuit where fault
propagation was blocked are identified. Based on that
information fitness values for test vectors are given. The
comparison between our approach and [1] is presented in
Table 3. It is evident that such a monitoring used in [1] is
not effective.
Simple approach given here detects all detectable faults
with a smaller time for all circuits and generates 1,6 – 6,5
times less test vectors than [1]. Comparison was not
adequate for circuits c2670 and c7552 because in [1] the
test generation was terminated too early.

References

[1] D. G. Saab, Y. G. Saab, J. A. Abraham, “CRIS: A test

Cultivation Program for Sequential VLSI Circuits”,
Intl. Conf. Computer-Aided Design, Nov. 1992, pp.
216-219.

[2] I. Pomeranz, S. M. Reddy, “On improving Genetic
Optimization based Test Generation”, Proc. of
European Design and Test Conference 1997, pp. 506-
511

[3] J.H. Holland, “Adaptation in Natural and Artificial
Systems”, University of Michigan Press, 1975

[4] E. M. Rudnick, J. H. Patel, G. S. Greenstein, T. M.
Niermann “Sequential Circuit Generation in a Genetic
Framework”, 31st ACM/IEEE Design Automation
Conference

[5] Goldberg “Genetic algorithms”, Addison-Wesley
USA,1991

[6] F. Berglez, H. Fujiwara, “A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target
Translator in Fortran”, Proc. of the Int. Test Conf., pp.
785-794, 1985.

[7] S. R. Ladd, “Genetic Algorithms in C++”, M&T
Books, 1996

[8] R.Ubar, J.Raik, P.Paomets, E.Ivask, G.Jervan,
A.Markus. “Low-Cost CAD System for Teaching
Digital Test”, .Microelectronics Education. World
Scientific Publishing Co. Pte. Ltd. pp. 185-188,
Grenoble, France, Feb. 1996

