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1. Problem Statement 
 
Weighted Pseudo-random Test Pattern Generation: Write a program that 

will read a circuit in ISCAS-85 format, and calculate the weights of the signal 
lines, starting with 0.5 at the primary outputs. It will then carry out fault 
simulation using a LFSR based weighted pseudo-random pattern generator, and 
will produce an output data file showing the variation of percentage fault coverage 
with the number of patterns. 

 

2. Introduction 
 
a. Motivation and need for weighted pseudo random patterns  

 A digital system is tested and diagnosed during its lifetime on 
numerous occasions. Such a test and diagnosis should be quick and have very high 
fault coverage. One way to ensure this is to specify such a testing to as one of the 
system functions, so now it is called Built In Self Test (BIST). With properly 
designed BIST, the cost of added test hardware will be more than balanced by the 
benefits in terms of reliability and reduced maintenance cost.  

For BIST, we would require that the test patterns be generated on the 
system/chip itself. However, this should be done keeping in mind that the 
additional hardware is minimized. One extreme is to use exhaustive testing using a 
counter and storing the results for each fault simulation at a place on the chip (in 
the form of ROM). An n input circuit would then require 2n combinations which 
can be very tiresome on the system with respect to the space and the time. Also, 
more the number of transitions, the power consumed will be more. On the other 
extreme, we can use a completely deterministic set of test vectors. This would 
again require us to store the test patterns in a ROM and the chip. However, it is 
relatively easy to use a relatively better to use a middle approach wherein we use a 
pseudo random generator made using Linear Feedback Shift Register (LFSR). 
These patterns generated using LFSR have all the desirable properties of random 
numbers, but are algorithmically generated by the hardware pattern generator and 
are therefore repeatable, which is essential for BIST. We no longer cover all the 2n 
combinations, but a large number of test pattern sequences will still be necessary 
to attain sufficient fault coverage.  

In general, pseudo random pattern generation requires more patterns than 
completely deterministic Automatic Test Pattern Generation (ATPG), but 
obviously, fewer than the exhaustive testing. 

However, it was found that the stuck-fault coverage rises in a logarithmic 
fashion towards 100%, but at the cost of enormous numbers of random patterns. 
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On top of it, certain circuits are random pattern resistant circuits in that they do not 
approach full fault coverage with an unbiased random pattern. Such circuits 
require extensive insertion of testability hardware or a modification of random 
pattern generation to ‘weighted pseudo random pattern generation’ in order to 
obtain an acceptable fault percentage.  

This desire to achieve higher fault coverage with shorter test lengths and 
therefore shorter test times led to the invention of the weighted pseudo random 
pattern generator. 
b. Work described in this report  

In section 3 we discuss the ISCAS85 format and how we decipher relevant 
information about all the circuits from the format and what inferences can be 
drawn from the individual fields. In section 4 we show the data structure we have 
used while coding for the project and the platform that we have used. In section 5 
we discuss how we read the ISCAS85 circuits and then form the corresponding .v 
files that will be used later in the Tetra Max tool while doing fault simulation. In 
section 6 we show how we compute the probabilities of the input lines and thus 
the weights by starting with signal probabilities of 0.5 at each of the output lines. 
In section 7 we finally show the design of the weight generating combinational 
circuit. It is here that we discuss the basics of the Linear Feedback Shift Registers 
(LFSR) and then discuss how we compute the length of the LFSR needed for each 
of the circuits and then how we decide upon the feedback taps that are used for 
each LFSR for both the weighted as well as the unbiased pseudo random pattern 
generation case. In section 8 we discuss how the entire system is run to generate 
the patterns and how the final .stil files are written to be used in Tetra Max tool for 
fault simulation. In section 9, the steps taken to perform the fault simulation in 
Tetra Max are enumerated. In section 10, the parameters and the computed fault 
coverage for each circuit for weighted pseudo random pattern generation as well 
as pseudo random pattern generation are given. We also discuss the limitations 
and the additional things that can be done as an improvement. Finally, in section 
11, we give the references that were used during the course of the project. 

 

3. ISCAS 85 Format
 
 The ISCAS 85 benchmark circuits are a set of combinational circuits 
provided to authors at the 1985 International Symposium on Circuits and Systems. 
They subsequently have been used by many researchers as a basis for comparing 
results in the area of test generation. 
 For explaining the format we use a small six-NAND-gate circuit known as 
c17.isc, for which the netlist is as follows: 
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 *c17 iscas example (to test conversion program only) 
*--------------------------------------------------- 
* 
* 
*  total number of lines in the netlist ..............    17 
*  simplistically reduced equivalent fault set size =     22 
*        lines from primary input  gates .......     5 
*        lines from primary output gates .......     2 
*        lines from interior gate outputs ......     4 
*        lines from **     3 ** fanout stems ...     6 
* 
*        avg_fanin  =  2.00,     max_fanin  =  2 
*        avg_fanout =  2.00,     max_fanout =  2 
* 
* 
* 
* 
* 
    1     1gat inpt    1   0      >sa1 
    2     2gat inpt    1   0      >sa1 
    3     3gat inpt    2   0 >sa0 >sa1 
    8     8fan from     3gat      >sa1 
    9     9fan from     3gat      >sa1 
    6     6gat inpt    1   0      >sa1 
    7     7gat inpt    1   0      >sa1 
   10    10gat nand    1   2      >sa1 
     1     8 
   11    11gat nand    2   2 >sa0 >sa1 
     9     6 
   14    14fan from    11gat      >sa1 
   15    15fan from    11gat      >sa1 
   16    16gat nand    2   2 >sa0 >sa1 
     2    14 
   20    20fan from    16gat      >sa1 
   21    21fan from    16gat      >sa1 
   19    19gat nand    1   2      >sa1 
    15     7 
   22    22gat nand    0   2 >sa0 >sa1 
    10    20 
   23    23gat nand    0   2 >sa0 >sa1 
    21    19 
 

 
 The valid delimiters between the fields of data are: spaces, horizontal tabs 
and new-lines. The definitions for each field starting from the left to the right for 
each line are:  

 address: unique number that differentiates each node from the rest 
 name: string of characters used to provide more meaningful information 
 type: function performed by the gate driving this node. The legal node 
types are: inpt, and, nand, or, nor, xor, xnor, buff, not, from 
 fanout: number of gates driven by this node 
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 fanin: number of nodes driving the gate that drives this node 
 faults(s): the stuck at fault(s) on this node that are included in fault set  

This type of line is called a node line and provides the basic information for 
every node in the circuit. However there are two other types of line that may be 
associated with it. The fanin line provides a list of the addresses of the nodes that 
fan in to the gate driving this node. The fanout branch lines appear immediately 
after the node line and its fanin line with which it is associated.   

 

4. Data Structures Used 
 

The only data structure used for storing the iscas-85 net-list is a WIRE 
link-list. The nodes of the link-list are wires, inputs and outputs with details 
such as address, name, type, number of fan-in and fan-out, level, probability, 
a list of fan-outs (if they exist) etc. 
typedef struct wire  { 
 int addr;       /* address of the wire */ 
 char name[NAME_LEN]     /* name of the wire */ 
 char type[TYPE_LEN]; /* type of wire */ 
 int level;   /* wire level after levelization */ 
 float prob;  /* signal probability of the wire */ 
 short  fanin, fanout;/* number of fanout & fanin */ 
 struct fanlist  *flist;/* list of Inpts of this wire 
*/ 
 struct wire  *fanParent;    /* pointer to parent if 
this wire is a fanout */ 
 struct wire  *outGate;     
 struct wire  *next; /* pointer to the next node in 
linklist */ 

} WIRE; 
 

5. Writing Verilog Net-list 
 

While writing the Verilog Net-List the whole WIRE link-list is traversed 
several times starting from the head to the end. And subsequently inputs, outputs 
and wires are identified on the basis of their unique properties.  Since numerical 
names are not compatible with the Verilog compiler so we have added a prefix “n” 
in all the inputs, outputs and wire names. The wire types are: 
Primary Inputs: 
 condition: fanin = 0, type = “inpt”  
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Primary Outputs: 
 condition : fanout = 0 
 
Wire: 
 condition: !input && !output 
   fanout != 0 && wire->type != “input” 
 
buff: 
 wire->type == “buff” 
  assign wire to the input of the buffer. 
 
fanouts: 
 condition: wire->type == “from” 
 for each fanout it is assigned to its fan-parent 
 
Exceptional wires: 
   Primary Input is directly taken out as a Primary Output. 
 so in this case : 
  wire->type == “inpt” && wire->level == 1 
 so such wires appear both in inputs are well as outputs. Name for 
output is changed by adding a prefix “o” in the wire name and later this is 
assigned to the original wire. 
 
 ex:  for netlist c7552.isc 
  assign o339 = n339; 

 

6. Probability Computation 
 
a. Levelisation starting from output 

We recursively move from PO (Primary Output) towards the inputs and 
assign levels to the wires until all PI have been leveled. The algorithm can be 
written as:   

  for each PO do 
   PO->level = 1; 
   Traverse(PO); 
  end 
 
  Traverse(OutWire) { 
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  if OutWire == PI 
   return; 
    

 for each input wire for this OutWire 
  wire->level = OutWire->level + 1; 
  if( wire isFanout ){ 
  // assign a level to its Parent also 
   fanParent->level =  
   MAX(fanParent->level, wire->level); 
  // if level for parent is changed 
   Traverse(fanParent); 
  }else{ 
   Traverse(wire); 
  } 

  } 
 
b. Probability Computation 
 The ISCAS 85 benchmark circuits are a set of combinational circuits. We 
start with the assumption that the probability of observing a 1 at each of the 
outputs is 0.5. We then propagate this signal line probability back to the primary 
inputs. For this we use the following algorithm: 
 Step1: Assign to all the outputs a signal line probability (probability that 
that line is 1) equal to 0.5 
 Step2: Moving backwards from each of the output lines being assigned in 
the Step1 above, compute the signal probability assignment at the primary inputs 
by propagating the signal probability values from the outputs to the inputs of gates 
according to the following formulas: 

 For a k – input AND gate with output signal probability = p, each input 
has a signal probability given by: 

 
1/: ( ) k

iAND p p=  

 For a k – input NAND gate with output signal probability = p, each 
input has a signal probability given by: 
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1/: (1 ) k

iNAND p p= −  

 For a k – input OR gate with output signal probability = p, each input 
has a signal probability given by: 

 
1/: 1 (1 ) k

iOR p p= − −  

 For a k – input NOR gate with output signal probability = p, each input 
has a signal probability given by: 

 
1/: 1 ( ) k

iNOR p p= −  

 For a 2 – input EXOR gate with output signal probability = p, each 
input has a signal probability given by: 
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1/ 2 1/ 2 1/ 2 1/ 2 1/ 2(1 (1 (1 ) ) ) (1 (1 ) ):
2i

p pEXOR p − − − + − −
=

 
 For a NOT gate with output signal probability = p, the input has a signal 

probability given by: 

 

: 1iNOT p p= −  

 For a BUFFER with output signal probability =  p, the input has a signal 
probability given by: 

 

: iBUFF p p=  

 For a fan out with branch signal probabilities pi, i = 1, 2, 3, …, k, the 
stem signal probability ps is given by: 

 

1

1 k

s i
i

p p
k =

= ∑  

The signal probability assignment at any fan-out stem is completed only 
when all the branches have been computed. Only then can one go back from that 
fan-out stem. 
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Step3: Record the signal probability assignments computed for the primary 
inputs.  

 
7. Weight Generating Combinational Circuit 

 
a. Computing the Combination Circuit 

At this point we assume that the weights are available in the form of 
probabilities of each primary input. We then use the following scheme as 
illustrated in the diagram below for generating a weighted vector. This block 
inserted between the LFSR and the CUT represents the biasing circuitry needed to 
map the equi-probable patterns generated by the LFSR onto the weighted patterns 
that will best stimulate the CUT. 

 
The general network structure used in conjunction with an LFSR for bit-

wise weighted bit pattern generation is shown in the following diagram: 
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The modules Mi’s are simple 2-input NAND or AND gates arranged in a 
manner dependent on the bit bias values desired. The accuracy with which we are 
able to realize a weight is a function of n and is equal to 2-(n+1). The signal line 
probabilities associated with AND and NAND modules, used to construct the 
network structure are given by the following equations: 

1
1:
2i i iM AND gate X X −− → = ……. (1) 

1
1: 1
2i i iM NAND gate X X −− → = − ……..(2) 

where Xi = Prob(mi = 1) and Prob( li = 1) = 0.5 for I = 1, 2, 3, …, n. 
Following this, the algorithm used to get the NAND AND gate 

combinations is as follows: 
Step1: Determining the number of gates required by the Bias Network. 
If the desired accuracy is say a, then the maximum no. of gates is the 

smallest integer n satisfying the relationship, ( 1)2 na − +≤  or equivalently: 

2
log 1 log
log 2

an a
⎡ ⎤

= − − = − −1⎡ ⎤⎢ ⎥⎢ ⎥
⎢ ⎥

 

Step2: Select the proper function (NAND vs. AND) 
Insert the value of the desired weight in Xn and calculate Xn-1 using the 

equations (1) and (2). Only one of these results will be in between 0 and 1. The 
other is always outside the probability range of [0, 1] and is rejected. The gate 
associated with the same value yielding the valid result is assigned to the module 
Mn. 

Then, calculate the accuracy obtained so far using the following equation: 

[ , ]
1 .2
2

i
n i n ia X −

−= −  

Then, using the value just obtained for Xn-1, one determines, following the 
same procedure, Xn-2and the type of gate associated with Mn-1. The process is 
carried out recursively until either a[n-i] of any given iteration becomes less than a 
or all n modules of the system have been determined. When module M1 is reached, 
the required input to this module is taken directly from any stage of the LFSR 
Stage, and the accuracy sought, a, is constructively assured.  
 
b. Illustrative Example 
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In all our computation we have taken a = 0.04, giving us n = 5 which is the 
maximum no. of LFSR bits per generated weighted bit. Consider the simplest 
ISCAS85 circuit c17.isc. The probability computation shows that the last input bit 
has a probability of 0.541196. The Verilog code pertaining to the combinational 
bias generating circuit for this weighted bit is as follows: 

wire in_0_0; 
assign out[0] = in_0_0; 
wire in_0_1; 
assign in_0_0 = ~( (combin[0]) & (in_0_1) ); 
wire in_0_2; 
assign in_0_1 = ~( (combin[1]) & (in_0_2) ); 
wire in_0_3; 
assign in_0_2 = (combin[2]) & (in_0_3); 
assign in_0_3 = combin[3]; 
 
This bit uses 4 bits of an LFSR which corresponds to a circuit as follows: 

 
c. Linear Feedback Shift Registers 

The LFSR are the basic building blocks of the pseudo random test pattern 
generators. In unbiased pseudo random testing, the outputs from the LFSR is fed 
directly to the CUT and thus the no. of LFSR stages required is equal to the 
number of inputs to the CUT. For a weighted pseudo random testing we however 
require much more LFSR stages than the inputs to the CUT. This is so because 
each weighted bit usually requires more than one equi-probable bit (exact number 
determined by the accuracy that we assume) coming in from an LFSR stage for the 
generation of its weighted bit.  
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Now we assume that for both the unbiased and the weighted case we have the 
total number of LFSR shift registers required for each of the CUTs. In that case 
the LFSR can be made as follows: 

 
For pseudo random testing it is necessary that the period of the basic 

sequence is as high as possible. i.e. we always try to make a maximal length 
sequence. Now, in our case we observe that the required no. of stages (n) for the 
11 circuits under consideration varies from 5 to 801. To find the feedback 
terminals for each of the LFSRs, we refer to the appendix given in [3] for a table 
of the simplest primitive polynomials for degrees up to 300. For n greater than 
300, (in our case here we require primitive polynomials for LFSR with n = 635, 
678 qnd 801), we make use of a heuristic. We express these values of n as a 
multiple of two numbers within 300 and then combine the primitive polynomials 
of these two multiples. As an illustration, consider: n = 801 

We can write: n = 801 = 9 x 89. The taps corresponding to n = 9 are [5, 9] 
and the taps corresponding to n = 89 are [51, 89]. As such, the taps corresponding 
to n = 801 will be [407, 445, 763, 801]. 
d. Preventing Temporal Correlation 

In case of weighted pseudo random testing, in order to ensure randomness, 
we need to eliminate any direct correlation in time among the individual weighted 
bits Bi. In the case of LFSR, this is done by considering the generator every b 
clock cycles where b is the maximum number of LFSR bits used in the formation 
of a single weighted bit. This operation ensures that none of the LFSR bits used to 
generate the weighted bits Bi(t) are not used again for generating the bits Bi(t+1). 
Therefore no direct correlation in time will exist in Bi.   

 
 

8. Pattern Generation 
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In the last section we see how, depending upon the no. of inputs of the CUT 
and the associated probabilities we can make an LFSR configuration for both, the 
unbiased and the weighted pseudo random testing part. We do this by writing a 
Verilog file with the entire configuration written in it. After that we run the 
Verilog simulator and get the raw patterns in a .ptrn file. After this we need to 
parse this file to get a file in the .stil format which the Tetramax Tool can 
understand and take in as an input for the fault simulation.  

For this we make use of two parser files: read_weights.c which reads the 
patterns generated from an LFSR working for weighted pseudo random testing. In 
this case the parser file takes every b’th pattern and wrties it into the stil format so 
as to prevent the temporal correlation as shown above. The other parser file reads 
the patterns generated from an LFSR working for unbiased pseudorandom testing. 
In this case we take every pattern and put it into the ,stil file.  

 
9. Using Tetra Max 

 
For every circuit we will need to do fault simulation using the patterns 

generated in the last stage. For this we use the Tetra Max tool. We firstly read the 
net-list for that circuit in the Verilog format. We showed in section 5 how this is 
done. We then build the net-list and run a design rule check to see if there are any 
violations. After that we run ATPG to generate a .stil file which we later edit with 
our own generated patterns. We can control the number of patterns that get 
simulated and thus do fault simulation using the tool and find out the how the 
percentage fault coverage changes as the number of test patterns used are changed. 

  

10. Results 
 



coverage behavior of the test patterns. Next, overall we need to be sure of the 
following constraints or limitations with respect to our design: 

1. The probabilities computed are not realized perfectly. As in there’s only 
a certain accuracy up to which we can go (In our case, it is determined 
by the factor ‘a’ which we have taken as 0.04). The implication of this 
hasn’t been studied 

2. In certain cases where a large LFSR was to be used, we didn’t use 
primitive polynomials as they were not directly available. The methods 
to generate primitive polynomials for such LFSR where the number of 
bits is large should be studied. 

3. The probabilities computed were assuming that all the outputs have a 
signal probability of 0.5 simultaneously. Such a condition will lead to a 
lot of clashes at the fan-out stems. Because of this, if we use the 
heuristic used in our case here (that of taking the minimum signal 
probability among all the fan-out branches), we might end up with an 
input probability assignment which if again forward traced to the output 
won’t give us signal probabilities at the output as 0.5. As such, we need 
to explore other methods for signal line probabilities and clash 
resolution. Methods involving different heuristics, like taking an 
average or the maximum of the branches’ signal line probabilities, or 
taking a weighted average of the branches’ signal line probabilities that 
are weighed according to the distance of that branch from the outputs or 
the inputs; or iteratively assigning the input probabilities so as to 
minimize the mismatch between the forward trace and backward trace 
of the signal line probabilities; can be studied and implemented to 
improve the fault coverage. 
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c. Conclusion 

A comparative study was made between unbiased pseudo random test 
pattern generation and weighted pseudo random test pattern generation for all the 
combinational circuits under the ISCAS85 format. It was observed that for some 
the cases, the unbiased pseudo random testing is actually better than the weighted 
pseudo random testing. i.e. it takes a lesser number of test patterns generated using 
unbiased pseudo random testing to cover a larger number of faults as compared to 
the weighted pseudo random testing. A number of analyses could be used to 
understand this. Firstly, for the small circuit c17.isc, there’s not much difference 
between the weighted and unbiased test patterns. It might happen that in such 
small circuits, the initial seed might play an important role in determining the fault 



inefficiency can be reduced by either involving the use of deterministic 
test patterns that are known a-priori or by making use of correlated test 
vectors whose correlation is complemented by suitable means. 

6. As a future check on the system, one can simply generate the inputs 
using the weighted pseudo random technique described in the report and 
find the corresponding outputs. Then one can run a statistical check on 
the data obtained so as to confirm whether the probabilities match with 
those designed for. However the sample set needs to be large to make 
such computations.    
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5. The method used is good for demonstration purposes but is inefficient if 
we look with respect to hardware and time efficiency. Hardware-wise, 
we use a lot more number of LFSR bits compared to the number of 
inputs of the CUT leading to an increase in the hardware. Time-wise, 
we generate one test vector per clock cycle of the LFSR in an unbiased 
pseudo random testing scheme while in a weighted scheme we generate 
one test vector every ‘b’ clock cycles of the LFSR where ‘b’ is the 
maximum number of LFSR bits used by the weighted bits. Such 

4. We should keep in mind that in an unbiased pseudo random testing 
process, if the number of test vectors generated is less than the period of 
the LFSR, no two test vectors will be repeated in that set. However, in 
our scheme wherein m LFSR bits map into n weighted bits (where m is 
about 3-4 times n), there will be repetition. Because of this, the effective 
number of test vectors in the weighted pseudo random case is lesser 
than the number of test vectors generated. 




