
Weighted Pseudo-Random
Test Pattern Generation

Under the guidance of
Prof. Indranil Sengupta

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur

Submitted by

Siddharth Seth (02EC1032)
Gaurav Sahni (02CS1033)

Indian Institute of Technology Kharagpur

 1

ACKNOWLEDGEMENTS

It is with great reverence that we wish to express our deep gratitude towards

our VLSI Testing and Verification instructor, Professor Indranil Sengupta,

Department of Computer Science and Engineering, Indian Institute of Technology

Kharagpur, under whose supervision we completed our work. His astute guidance

and invaluable suggestions, in spite of the fact that he was busy with other pressing

assignments has been a great motivating factor all throughout our work.

We would be accused of ingratitude if we failed to mention the consistent

guidance and help extended by Mr. Shibaji and Mr. Santosh Biswas, Graduate

Research Assistants, during our Term-Project work. The brainstorming sessions at

AVDL spent discussing various possible approaches for our system were very

educative for us.

Our experience in working together, given that our departmental

backgrounds were different, was wonderful. We hope that the knowledge, practical

and theoretical, that we have gained through this term project will help us in our

future endeavors.

Siddharth Seth
Gaurav Sahni

 2

1. Problem Statement

Weighted Pseudo-random Test Pattern Generation: Write a program that

will read a circuit in ISCAS-85 format, and calculate the weights of the signal
lines, starting with 0.5 at the primary outputs. It will then carry out fault
simulation using a LFSR based weighted pseudo-random pattern generator, and
will produce an output data file showing the variation of percentage fault coverage
with the number of patterns.

2. Introduction

a. Motivation and need for weighted pseudo random patterns

 A digital system is tested and diagnosed during its lifetime on
numerous occasions. Such a test and diagnosis should be quick and have very high
fault coverage. One way to ensure this is to specify such a testing to as one of the
system functions, so now it is called Built In Self Test (BIST). With properly
designed BIST, the cost of added test hardware will be more than balanced by the
benefits in terms of reliability and reduced maintenance cost.

For BIST, we would require that the test patterns be generated on the
system/chip itself. However, this should be done keeping in mind that the
additional hardware is minimized. One extreme is to use exhaustive testing using a
counter and storing the results for each fault simulation at a place on the chip (in
the form of ROM). An n input circuit would then require 2n combinations which
can be very tiresome on the system with respect to the space and the time. Also,
more the number of transitions, the power consumed will be more. On the other
extreme, we can use a completely deterministic set of test vectors. This would
again require us to store the test patterns in a ROM and the chip. However, it is
relatively easy to use a relatively better to use a middle approach wherein we use a
pseudo random generator made using Linear Feedback Shift Register (LFSR).
These patterns generated using LFSR have all the desirable properties of random
numbers, but are algorithmically generated by the hardware pattern generator and
are therefore repeatable, which is essential for BIST. We no longer cover all the 2n
combinations, but a large number of test pattern sequences will still be necessary
to attain sufficient fault coverage.

In general, pseudo random pattern generation requires more patterns than
completely deterministic Automatic Test Pattern Generation (ATPG), but
obviously, fewer than the exhaustive testing.

However, it was found that the stuck-fault coverage rises in a logarithmic
fashion towards 100%, but at the cost of enormous numbers of random patterns.

 4

On top of it, certain circuits are random pattern resistant circuits in that they do not
approach full fault coverage with an unbiased random pattern. Such circuits
require extensive insertion of testability hardware or a modification of random
pattern generation to ‘weighted pseudo random pattern generation’ in order to
obtain an acceptable fault percentage.

This desire to achieve higher fault coverage with shorter test lengths and
therefore shorter test times led to the invention of the weighted pseudo random
pattern generator.
b. Work described in this report

In section 3 we discuss the ISCAS85 format and how we decipher relevant
information about all the circuits from the format and what inferences can be
drawn from the individual fields. In section 4 we show the data structure we have
used while coding for the project and the platform that we have used. In section 5
we discuss how we read the ISCAS85 circuits and then form the corresponding .v
files that will be used later in the Tetra Max tool while doing fault simulation. In
section 6 we show how we compute the probabilities of the input lines and thus
the weights by starting with signal probabilities of 0.5 at each of the output lines.
In section 7 we finally show the design of the weight generating combinational
circuit. It is here that we discuss the basics of the Linear Feedback Shift Registers
(LFSR) and then discuss how we compute the length of the LFSR needed for each
of the circuits and then how we decide upon the feedback taps that are used for
each LFSR for both the weighted as well as the unbiased pseudo random pattern
generation case. In section 8 we discuss how the entire system is run to generate
the patterns and how the final .stil files are written to be used in Tetra Max tool for
fault simulation. In section 9, the steps taken to perform the fault simulation in
Tetra Max are enumerated. In section 10, the parameters and the computed fault
coverage for each circuit for weighted pseudo random pattern generation as well
as pseudo random pattern generation are given. We also discuss the limitations
and the additional things that can be done as an improvement. Finally, in section
11, we give the references that were used during the course of the project.

3. ISCAS 85 Format

 The ISCAS 85 benchmark circuits are a set of combinational circuits
provided to authors at the 1985 International Symposium on Circuits and Systems.
They subsequently have been used by many researchers as a basis for comparing
results in the area of test generation.
 For explaining the format we use a small six-NAND-gate circuit known as
c17.isc, for which the netlist is as follows:

 5

 *c17 iscas example (to test conversion program only)
*---
*
*
* total number of lines in the netlist 17
* simplistically reduced equivalent fault set size = 22
* lines from primary input gates 5
* lines from primary output gates 2
* lines from interior gate outputs 4
* lines from ** 3 ** fanout stems ... 6
*
* avg_fanin = 2.00, max_fanin = 2
* avg_fanout = 2.00, max_fanout = 2
*
*
*
*
*
 1 1gat inpt 1 0 >sa1
 2 2gat inpt 1 0 >sa1
 3 3gat inpt 2 0 >sa0 >sa1
 8 8fan from 3gat >sa1
 9 9fan from 3gat >sa1
 6 6gat inpt 1 0 >sa1
 7 7gat inpt 1 0 >sa1
 10 10gat nand 1 2 >sa1
 1 8
 11 11gat nand 2 2 >sa0 >sa1
 9 6
 14 14fan from 11gat >sa1
 15 15fan from 11gat >sa1
 16 16gat nand 2 2 >sa0 >sa1
 2 14
 20 20fan from 16gat >sa1
 21 21fan from 16gat >sa1
 19 19gat nand 1 2 >sa1
 15 7
 22 22gat nand 0 2 >sa0 >sa1
 10 20
 23 23gat nand 0 2 >sa0 >sa1
 21 19

 The valid delimiters between the fields of data are: spaces, horizontal tabs
and new-lines. The definitions for each field starting from the left to the right for
each line are:

 address: unique number that differentiates each node from the rest
 name: string of characters used to provide more meaningful information
 type: function performed by the gate driving this node. The legal node
types are: inpt, and, nand, or, nor, xor, xnor, buff, not, from
 fanout: number of gates driven by this node

 6

 fanin: number of nodes driving the gate that drives this node
 faults(s): the stuck at fault(s) on this node that are included in fault set

This type of line is called a node line and provides the basic information for
every node in the circuit. However there are two other types of line that may be
associated with it. The fanin line provides a list of the addresses of the nodes that
fan in to the gate driving this node. The fanout branch lines appear immediately
after the node line and its fanin line with which it is associated.

4. Data Structures Used

The only data structure used for storing the iscas-85 net-list is a WIRE
link-list. The nodes of the link-list are wires, inputs and outputs with details
such as address, name, type, number of fan-in and fan-out, level, probability,
a list of fan-outs (if they exist) etc.
typedef struct wire {
 int addr; /* address of the wire */
 char name[NAME_LEN] /* name of the wire */
 char type[TYPE_LEN]; /* type of wire */
 int level; /* wire level after levelization */
 float prob; /* signal probability of the wire */
 short fanin, fanout;/* number of fanout & fanin */
 struct fanlist *flist;/* list of Inpts of this wire
*/
 struct wire *fanParent; /* pointer to parent if
this wire is a fanout */
 struct wire *outGate;
 struct wire *next; /* pointer to the next node in
linklist */

} WIRE;

5. Writing Verilog Net-list

While writing the Verilog Net-List the whole WIRE link-list is traversed
several times starting from the head to the end. And subsequently inputs, outputs
and wires are identified on the basis of their unique properties. Since numerical
names are not compatible with the Verilog compiler so we have added a prefix “n”
in all the inputs, outputs and wire names. The wire types are:
Primary Inputs:
 condition: fanin = 0, type = “inpt”

 7

Primary Outputs:
 condition : fanout = 0

Wire:
 condition: !input && !output
 fanout != 0 && wire->type != “input”

buff:
 wire->type == “buff”
 assign wire to the input of the buffer.

fanouts:
 condition: wire->type == “from”
 for each fanout it is assigned to its fan-parent

Exceptional wires:
 Primary Input is directly taken out as a Primary Output.
 so in this case :
 wire->type == “inpt” && wire->level == 1
 so such wires appear both in inputs are well as outputs. Name for
output is changed by adding a prefix “o” in the wire name and later this is
assigned to the original wire.

 ex: for netlist c7552.isc
 assign o339 = n339;

6. Probability Computation

a. Levelisation starting from output

We recursively move from PO (Primary Output) towards the inputs and
assign levels to the wires until all PI have been leveled. The algorithm can be
written as:

 for each PO do
 PO->level = 1;
 Traverse(PO);
 end

 Traverse(OutWire) {

 8

 if OutWire == PI
 return;

 for each input wire for this OutWire
 wire->level = OutWire->level + 1;
 if(wire isFanout){
 // assign a level to its Parent also
 fanParent->level =
 MAX(fanParent->level, wire->level);
 // if level for parent is changed
 Traverse(fanParent);
 }else{
 Traverse(wire);
 }

 }

b. Probability Computation
 The ISCAS 85 benchmark circuits are a set of combinational circuits. We
start with the assumption that the probability of observing a 1 at each of the
outputs is 0.5. We then propagate this signal line probability back to the primary
inputs. For this we use the following algorithm:
 Step1: Assign to all the outputs a signal line probability (probability that
that line is 1) equal to 0.5
 Step2: Moving backwards from each of the output lines being assigned in
the Step1 above, compute the signal probability assignment at the primary inputs
by propagating the signal probability values from the outputs to the inputs of gates
according to the following formulas:

 For a k – input AND gate with output signal probability = p, each input
has a signal probability given by:

1/: () k

iAND p p=

 For a k – input NAND gate with output signal probability = p, each
input has a signal probability given by:

 9

1/: (1) k

iNAND p p= −

 For a k – input OR gate with output signal probability = p, each input
has a signal probability given by:

1/: 1 (1) k

iOR p p= − −

 For a k – input NOR gate with output signal probability = p, each input
has a signal probability given by:

1/: 1 () k

iNOR p p= −

 For a 2 – input EXOR gate with output signal probability = p, each
input has a signal probability given by:

 10

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2(1 (1 (1))) (1 (1)):
2i

p pEXOR p − − − + − −
=

 For a NOT gate with output signal probability = p, the input has a signal

probability given by:

: 1iNOT p p= −

 For a BUFFER with output signal probability = p, the input has a signal
probability given by:

: iBUFF p p=

 For a fan out with branch signal probabilities pi, i = 1, 2, 3, …, k, the
stem signal probability ps is given by:

1

1 k

s i
i

p p
k =

= ∑

The signal probability assignment at any fan-out stem is completed only
when all the branches have been computed. Only then can one go back from that
fan-out stem.

 11

Step3: Record the signal probability assignments computed for the primary
inputs.

7. Weight Generating Combinational Circuit

a. Computing the Combination Circuit

At this point we assume that the weights are available in the form of
probabilities of each primary input. We then use the following scheme as
illustrated in the diagram below for generating a weighted vector. This block
inserted between the LFSR and the CUT represents the biasing circuitry needed to
map the equi-probable patterns generated by the LFSR onto the weighted patterns
that will best stimulate the CUT.

The general network structure used in conjunction with an LFSR for bit-

wise weighted bit pattern generation is shown in the following diagram:

 12

The modules Mi’s are simple 2-input NAND or AND gates arranged in a
manner dependent on the bit bias values desired. The accuracy with which we are
able to realize a weight is a function of n and is equal to 2-(n+1). The signal line
probabilities associated with AND and NAND modules, used to construct the
network structure are given by the following equations:

1
1:
2i i iM AND gate X X −− → = ……. (1)

1
1: 1
2i i iM NAND gate X X −− → = − ……..(2)

where Xi = Prob(mi = 1) and Prob(li = 1) = 0.5 for I = 1, 2, 3, …, n.
Following this, the algorithm used to get the NAND AND gate

combinations is as follows:
Step1: Determining the number of gates required by the Bias Network.
If the desired accuracy is say a, then the maximum no. of gates is the

smallest integer n satisfying the relationship, (1)2 na − +≤ or equivalently:

2
log 1 log
log 2

an a
⎡ ⎤

= − − = − −1⎡ ⎤⎢ ⎥⎢ ⎥
⎢ ⎥

Step2: Select the proper function (NAND vs. AND)
Insert the value of the desired weight in Xn and calculate Xn-1 using the

equations (1) and (2). Only one of these results will be in between 0 and 1. The
other is always outside the probability range of [0, 1] and is rejected. The gate
associated with the same value yielding the valid result is assigned to the module
Mn.

Then, calculate the accuracy obtained so far using the following equation:

[,]
1 .2
2

i
n i n ia X −

−= −

Then, using the value just obtained for Xn-1, one determines, following the
same procedure, Xn-2and the type of gate associated with Mn-1. The process is
carried out recursively until either a[n-i] of any given iteration becomes less than a
or all n modules of the system have been determined. When module M1 is reached,
the required input to this module is taken directly from any stage of the LFSR
Stage, and the accuracy sought, a, is constructively assured.

b. Illustrative Example

 13

In all our computation we have taken a = 0.04, giving us n = 5 which is the
maximum no. of LFSR bits per generated weighted bit. Consider the simplest
ISCAS85 circuit c17.isc. The probability computation shows that the last input bit
has a probability of 0.541196. The Verilog code pertaining to the combinational
bias generating circuit for this weighted bit is as follows:

wire in_0_0;
assign out[0] = in_0_0;
wire in_0_1;
assign in_0_0 = ~((combin[0]) & (in_0_1));
wire in_0_2;
assign in_0_1 = ~((combin[1]) & (in_0_2));
wire in_0_3;
assign in_0_2 = (combin[2]) & (in_0_3);
assign in_0_3 = combin[3];

This bit uses 4 bits of an LFSR which corresponds to a circuit as follows:

c. Linear Feedback Shift Registers

The LFSR are the basic building blocks of the pseudo random test pattern
generators. In unbiased pseudo random testing, the outputs from the LFSR is fed
directly to the CUT and thus the no. of LFSR stages required is equal to the
number of inputs to the CUT. For a weighted pseudo random testing we however
require much more LFSR stages than the inputs to the CUT. This is so because
each weighted bit usually requires more than one equi-probable bit (exact number
determined by the accuracy that we assume) coming in from an LFSR stage for the
generation of its weighted bit.

 14

Now we assume that for both the unbiased and the weighted case we have the
total number of LFSR shift registers required for each of the CUTs. In that case
the LFSR can be made as follows:

For pseudo random testing it is necessary that the period of the basic

sequence is as high as possible. i.e. we always try to make a maximal length
sequence. Now, in our case we observe that the required no. of stages (n) for the
11 circuits under consideration varies from 5 to 801. To find the feedback
terminals for each of the LFSRs, we refer to the appendix given in [3] for a table
of the simplest primitive polynomials for degrees up to 300. For n greater than
300, (in our case here we require primitive polynomials for LFSR with n = 635,
678 qnd 801), we make use of a heuristic. We express these values of n as a
multiple of two numbers within 300 and then combine the primitive polynomials
of these two multiples. As an illustration, consider: n = 801

We can write: n = 801 = 9 x 89. The taps corresponding to n = 9 are [5, 9]
and the taps corresponding to n = 89 are [51, 89]. As such, the taps corresponding
to n = 801 will be [407, 445, 763, 801].
d. Preventing Temporal Correlation

In case of weighted pseudo random testing, in order to ensure randomness,
we need to eliminate any direct correlation in time among the individual weighted
bits Bi. In the case of LFSR, this is done by considering the generator every b
clock cycles where b is the maximum number of LFSR bits used in the formation
of a single weighted bit. This operation ensures that none of the LFSR bits used to
generate the weighted bits Bi(t) are not used again for generating the bits Bi(t+1).
Therefore no direct correlation in time will exist in Bi.

8. Pattern Generation

 15

In the last section we see how, depending upon the no. of inputs of the CUT
and the associated probabilities we can make an LFSR configuration for both, the
unbiased and the weighted pseudo random testing part. We do this by writing a
Verilog file with the entire configuration written in it. After that we run the
Verilog simulator and get the raw patterns in a .ptrn file. After this we need to
parse this file to get a file in the .stil format which the Tetramax Tool can
understand and take in as an input for the fault simulation.

For this we make use of two parser files: read_weights.c which reads the
patterns generated from an LFSR working for weighted pseudo random testing. In
this case the parser file takes every b’th pattern and wrties it into the stil format so
as to prevent the temporal correlation as shown above. The other parser file reads
the patterns generated from an LFSR working for unbiased pseudorandom testing.
In this case we take every pattern and put it into the ,stil file.

9. Using Tetra Max

For every circuit we will need to do fault simulation using the patterns

generated in the last stage. For this we use the Tetra Max tool. We firstly read the
net-list for that circuit in the Verilog format. We showed in section 5 how this is
done. We then build the net-list and run a design rule check to see if there are any
violations. After that we run ATPG to generate a .stil file which we later edit with
our own generated patterns. We can control the number of patterns that get
simulated and thus do fault simulation using the tool and find out the how the
percentage fault coverage changes as the number of test patterns used are changed.

10. Results

coverage behavior of the test patterns. Next, overall we need to be sure of the
following constraints or limitations with respect to our design:

1. The probabilities computed are not realized perfectly. As in there’s only
a certain accuracy up to which we can go (In our case, it is determined
by the factor ‘a’ which we have taken as 0.04). The implication of this
hasn’t been studied

2. In certain cases where a large LFSR was to be used, we didn’t use
primitive polynomials as they were not directly available. The methods
to generate primitive polynomials for such LFSR where the number of
bits is large should be studied.

3. The probabilities computed were assuming that all the outputs have a
signal probability of 0.5 simultaneously. Such a condition will lead to a
lot of clashes at the fan-out stems. Because of this, if we use the
heuristic used in our case here (that of taking the minimum signal
probability among all the fan-out branches), we might end up with an
input probability assignment which if again forward traced to the output
won’t give us signal probabilities at the output as 0.5. As such, we need
to explore other methods for signal line probabilities and clash
resolution. Methods involving different heuristics, like taking an
average or the maximum of the branches’ signal line probabilities, or
taking a weighted average of the branches’ signal line probabilities that
are weighed according to the distance of that branch from the outputs or
the inputs; or iteratively assigning the input probabilities so as to
minimize the mismatch between the forward trace and backward trace
of the signal line probabilities; can be studied and implemented to
improve the fault coverage.

 31

c. Conclusion

A comparative study was made between unbiased pseudo random test
pattern generation and weighted pseudo random test pattern generation for all the
combinational circuits under the ISCAS85 format. It was observed that for some
the cases, the unbiased pseudo random testing is actually better than the weighted
pseudo random testing. i.e. it takes a lesser number of test patterns generated using
unbiased pseudo random testing to cover a larger number of faults as compared to
the weighted pseudo random testing. A number of analyses could be used to
understand this. Firstly, for the small circuit c17.isc, there’s not much difference
between the weighted and unbiased test patterns. It might happen that in such
small circuits, the initial seed might play an important role in determining the fault

inefficiency can be reduced by either involving the use of deterministic
test patterns that are known a-priori or by making use of correlated test
vectors whose correlation is complemented by suitable means.

6. As a future check on the system, one can simply generate the inputs
using the weighted pseudo random technique described in the report and
find the corresponding outputs. Then one can run a statistical check on
the data obtained so as to confirm whether the probabilities match with
those designed for. However the sample set needs to be large to make
such computations.

11. References

[1] Silvio Bou-Ghazale and Peter N. Marinos, “Testing with correlated test
vectors,” pp. 254 – 262, FTCS-22. Digest of Papers., Twenty-Second International
Symposium on Fault Tolerant Computing., July 1992

[2] Miguel A. Maranda and Carlos A. Lopez- Barrio, “Generation of Optimized
Single Distribution of Weights for Random Built In Test,” Proceedings of the
IEEE International Test Conference, 1993.

[3] Paul H. Bardell, and Jacob Savir, “Built in Test for VLSI – Pseudo random
Techniques,” (Text Book).

 32

5. The method used is good for demonstration purposes but is inefficient if
we look with respect to hardware and time efficiency. Hardware-wise,
we use a lot more number of LFSR bits compared to the number of
inputs of the CUT leading to an increase in the hardware. Time-wise,
we generate one test vector per clock cycle of the LFSR in an unbiased
pseudo random testing scheme while in a weighted scheme we generate
one test vector every ‘b’ clock cycles of the LFSR where ‘b’ is the
maximum number of LFSR bits used by the weighted bits. Such

4. We should keep in mind that in an unbiased pseudo random testing
process, if the number of test vectors generated is less than the period of
the LFSR, no two test vectors will be repeated in that set. However, in
our scheme wherein m LFSR bits map into n weighted bits (where m is
about 3-4 times n), there will be repetition. Because of this, the effective
number of test vectors in the weighted pseudo random case is lesser
than the number of test vectors generated.

