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Parallel Signature Analysis Design
with Bounds on Aliasing
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Abstract —This paper presents parallel signature design techniques that guarantee the aliasing probability to be less than 2/L,
where L is the test length. Using y signature samples, a parallel signature analysis design is proposed that guarantees the aliasing

probability to be less than (y/L)ylz. Inaccuracies and incompleteness in previously published bounds on the aliasing probability are
discussed. Simple bounds on the aliasing probability are derived for parallel signature designs using primitive polynomials.

Index Terms —Signature analysis, aliasing probability bounds, random testing, linear feedback shift registers, parallel signature

designs, multiple input signature registers (MISR).

1 INTRODUCTION

HE subject area of this paper is signature analysis design.

There are two main contributions in this paper. One, a
simple relationship between the aliasing probability, the
number of signature register samples, and the length of test
stimulus is derived. This simple relationship provides a
guideline to select the parallel signature design parameters.
Two, inaccuracies in prior work on signature analysis are
reported for the first time. These inaccuracies have some-
how escaped the scrutiny, for almost a decade, of an other-
wise vigilant research community in this subject area.

The organization of this paper is as follows:

e Section 1 introduces the subject area of this paper.

e Section 2 presents definitions and notational frame-
work for this paper. Previous research on signature
analysis design is also critically reviewed in this sec-
tion.

¢ Section 3 presents the motivation behind the deriva-
tion of simple bounds for the aliasing probability in
parallel signature analysis.

e Section 4 is a presentation of an elaborate mathemati-
cal derivation of simple bounds for the aliasing prob-
ability in parallel signature analysis.

e Section 5 is a summary and conclusion of this work.

1.1 Signature Analysis and Aliasing

The problem of testing a system is twofold: test application
and response verification. Test application involves the
careful selection and generation of test stimuli to activate
defects in the system under test. Response verification in-
volves the comparison of the response with the expected re-
sponse from a defect-free system using the same stimuli. It is
generally assumed that the test stimulus will be applied by a
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tester that can store test patterns and the corresponding
defect-free responses. Such testers are expensive. Tester cost
is not the only difficulty encountered in testing. The nhum-
ber of response patterns is also becoming too large to be
handled efficiently by the tester hardware. Due to the lim-
ited visibility and accessibility of very large scale integrated
(VLSI) chips, test application and response analysis are dif-
ficult problems. Built-in self test (BIST) is an approach that
addresses the testing problem in VLSI chips. In a BIST
structure, a test generation circuit and a response compac-
tion circuit can be fabricated on the same VLSI chip as the
circuit under test. In most BIST applications, the test
stimulus is derived from pseudorandom test pattern gen-
erators. A data compaction circuit using a linear feedback
shift register (LFSR) structure is illustrated in Fig. 1. This
method of compaction [22], [23] is called signature analysis.
The term parallel signature analysis is used for LFSR struc-
tures that compact the response from multiple circuit out-
puts [2], [3]; and, the term serial signature analysis is used for
LFSR structures that compact response from a single circuit
output.
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Fig. 1. Parallel signature analysis.

P2

The final state of the linear feedback shift register, after
the response has been compacted, is called the signature of
the response. The signature of the response from a circuit
under test is compared against a reference signature of the
response from a defect-free circuit. The compaction process
reduces a large amount (for example, a million bytes) of
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response data to a small amount of signature data. It is pos-
sible that the signature of some faulty response data to be
the same as that of the defect-free response data. This phe-
nomenon is called aliasing. Aliasing causes test escapes and
lowers the quality of shipped parts. A desirable design
goal, therefore, is to eliminate the incidence of aliasing.

Aliasing depends on the response data, the compaction
function, and the error characteristics of the system under
test. Error characteristics are usually described by probabil-
ity models, and the phenomenon of aliasing is often quanti-
fied by the aliasing probability. The aliasing probability is the
probability that the data compaction method produces the
defect-free signature when the response data is in error.
Probability models are used because there is some uncer-
tainty about the error characteristics. For the aliasing prob-
ability measure to be relevant, it is important to have justi-
fiable and validated probability models. The aliasing prob-
ability in parallel signature analysis is studied in the fol-
lowing context:

1) Test stimulus is derived from random pattern gen-
erators. Although in reality only pseudorandom pat-
tern generators are used; their characteristics can be
approximately modeled by the characteristics of a
random pattern generator [11].

2) The circuit under test is combinational.

3) Faults in the circuit under test are combinational.
Faults that preserve the combinational nature of a cir-
cuit are called combinational faults.

The results for serial signature analysis in [14], [15], [16]
give the following simple relationship between random
pattern test length L, the signature register period, and the
aliasing probability:

e The aliasing probability is less than 1/L for random
pattern test length L and signature register period
greater than L.

For example, if the system designer needs to guarantee ali-
asing probability in serial signature analysis to be less than
one in a 1,000,000, then a random pattern test of length
1,000,000 and a primitive signature register size of 20 would
suffice.

This paper addresses design issues related to parallel
signature analysis. The results in this paper present a sim-
ple relationship between the number of outputs m in the
circuit under test, the random pattern test length L, the
primitive signature register size r, the number of signature
register samples y, and the aliasing probability. It is shown

that the aliasing probability is less than (y/L)"’%if r > m and

2" — 1> L/y. For example, if m = 32 then using two signa-
tures samples (y = 2), a test length L = 2,000,000, a primitive
signature register of size r = 32 will guarantee the aliasing
probability to be less than one in a 1,000,000. If only one sig-
nature sample (y = 1) is used then the aliasing probability is
guaranteed to be less than one in 1,414. Readers can note that
for y =1, the results in this paper show that the aliasing prob-

ability is less than 1/+L for a random pattern test length L
and a primitive signature register period greater than L. This
is not as tight as the 1/L bound for serial-signature analysis.
Researchers are encouraged to improve this bound. Clearly,
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serial-signature bounds are not applicable to parallel signa-
ture analysis. Fig. 2 demonstrates this by comparing the
experimental estimates of aliasing probability for parallel
signature analysis with the 1/L bound for serial-signature
analysis. Fig. 2 shows that in the test length interval 200-250
the experimental aliasing probability estimates far exceed
the 1/L bound. The details of this experiment are described
in Section 2.1.

Aliasing Probability Expanmental Extimate

..... . a

lest Length

Fig. 2. Serial-signature aliasing bound vs. aliasing estimate for parallel
signatures.

The key differences between the design guidelines for
parallel signatures and serial signatures are:

e Multiple signature samples may be required for par-
allel signatures to accomplish acceptable quality lev-
els. For serial-signature analysis a single sample may
suffice if an appropriate test length and a signature
register period are chosen.

e The signature register polynomials for parallel sig-
natures are required to be primitive; whereas, for se-
rial-signature analysis this requirement is not neces-
sary. The only requirement that should hold good for
serial-signature registers is that their period be greater
than the test length; and, nonprimitive polynomials
can also satisfy this requirement.

« For parallel signature designs the signature register
size must be greater than or equal to the number of
circuit outputs. There is no such constraint for serial-
signature designs.

2 ERROR MODELS, ALIASING PROBABILITY , AND
PREVIOUS RESEARCH

For the derivation of the results on parallel signature analy-
sis the following assumptions were made:

e The test stimulus is generated by random pattern

generators,

* The circuit under test is combinational, and

e The faults in the circuit under test are combinational

(i.e., faults do not cause memory behavior in the cir-
cuit).

A reasonable error model for single output circuits un-
der these assumptions is the Bernoulli error model. The
Bernoulli error model has been widely used by several re-
searchers, [5], [8], [10], [11], [14], [15], [16], [18], [19], [24]. In
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the Bernoulli error model, output errors are assumed to
occur with probability p, called the detection probability [11],
in the presence of a fault. An output error for a particular
fault is an event where the output of the faulty circuit is
different from the output of the fault free circuit. The term,
output errors, denotes a sequence of output error events for
a sequence of test patterns. For a random test pattern these
events are independent. For serial signatures, algorithms to
calculate the exact aliasing probability [5], [8], [10], [16], [24]
and simple bounds [14], [15], [16] on the aliasing probabil-
ity have been derived.

A proposed extension [20], [21] of this model to multi-
ple-output circuits is to assume independent single output
combinational circuits. This allows easy extensions of the
results derived for serial signature analysis [14], [15], [16] to
parallel signature analysis. In [24], an exact aliasing formula
for the independent error model is presented for certain test
lengths. The closed-form formula in [24] relies on the inde-
pendent error model and uses binary weight distribution of
Reed-Solomon codes [1]. Although the independent error
model does not preclude the possibility of allowing the
Bernoulli error model, for each output to be characterized
by a different value of p, the assumption of multiple inde-
pendent Bernoulli error models is questionable. There is a
simple reason for this. Outputs in a multiple-output circuit
can share common circuitry. For faults in this common cir-
cuitry, the error behavior in the outputs will be highly cor-
related (see Fig. 3 and Table 1).

Stuck-0 A B

Fault +
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| i |

A>B A=B A<B

Fig. 3. One bit comparator.

TABLE 1
ONE BIT COMPARATOR’S FAULT-FREE
AND FAULTY OUTPUT RESPONSES

Fault-Free Faulty Error Integer
AB Output Output Vector Value i
00 010 010 000 0
01 001 001 000 0
10 100 010 110 6
11 010 001 011 3

The error vector is the bit-wise exclusive-or of the faulty
and fault-free response vectors. For example, the error
vector for the fault shown in Fig. 3 for input pattern AB =
11 is 011 (see Table 1). For compactness in notation we will
denote error vectors by integer values (symbol i in Table 1).

2.1 Q-ary Error Model Review

The g-ary error model, [10], [24], assumes that all error vec-
tors occur with the same probability q = p/(2" — 1), where p

is the detection probability of a given fault and m is the
number of circuit outputs. Although the g-ary model allows
the possibility of correlated errors in the multiple-outputs,
it cannot always be justified. Following are some scenarios
where the g-ary model may not be applicable:

» Faults that affect only a subset of the m-outputs can-
not produce all possible 2" — 1 error vectors.

¢ When the number of primary inputs n to a combina-
tional circuit is strictly less than m, the number of
primary outputs, the number of distinct error vectors
is less than or equal to 2" — 1 and therefore is strictly
less than 2" — 1. The example in Fig. 3 illustrates this.

In an n-input and m-output combinational circuit, for a
given fault and for a random test pattern, the probability, p;,
of producing an error vector with integer value i is equal to
the number of distinct test patterns, k;, that produce these
error vectors divided by the total number, N = 2" of test
patterns. That is, p; = k;/N. The detectability k [11] for a fault
is the summation of k; for that fault for all i, 0 < i < 2",
Likewise, the detection probability p of a fault is the sum-
mation of p; for that fault for all nonzero i. Table 1 illus-
trates the characterization of the error model for an exam-
ple circuit with two-input random test patterns. For exam-
ple, the error vector probabilities for Table 1 are: p, = 0.5, pg
=0.25, p; = 0.25, all other p; = 0; p = 0.5. The assumption that
all error vectors have the same probability is shown to be
not true by this example.

The aliasing probability results derived using the g-ary
model, however, can still be useful if they provide an up-
per-bound on the actual aliasing probability. The probabil-
ity of aliasing, P, in the g-ary error model for test length L,
detection probability p, and number of outputs m is given
in [24, equation (12)] as

2™ :
Pa(p.m.L) = 27| 1-2"(1-p)" + (2" - 1)[1‘ 2" pJ

2™p
2™ -1

Py(p.m,L) < 27"(1-2"(1-p)" +(2" - 1)1-p))

Using the following fact

Vp (1-p) >[1—

2"-1

For p < o

, we have

Simplifying
P,(p,m,L) < 2""‘(1— (1- p)L) <2

m_ 2m
Also for p > Z=1 the absolute value ‘1 - —p‘ < =

2" 2m-1
Using the foregoing inequality we have the following

bound for p > %
1 L-1
2m — 1] ]

The above equation is a bound on aliasing probability for

Py(p,m,L) < 2"‘[1 + (
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g-ary model that depends only on test length L and the
number of outputs m. To test the effectiveness of the g-ary
model in predicting an upper-bound on aliasing probabil-
ity, the following experiment was conducted. A larger ex-
ample (ALU181 circuit with a multiple stuck-at fault, n = 14
and m = 8 for this circuit) was considered. The detectability
profile for this fault was calculated through simulation and
is shown in Table 2.

TABLE 2
DETECTABILITY PROFILE FOR A MULTIPLE STUCK-AT FAULT IN
ALU181
Error Error
Vector i k; pi Vector | k; b

1 620 0.0378 195 312 0.0190

2 680 0.0415 196 336 0.0205

3 252 0.0154 201 124 0.0075

4 752 0.0459 203 240 0.0146
137 176 0.0107 204 404 0.0246
139 264 0.0161 209 188 0.0114
140 456 0.0278 211 240 0.0146
145 240 0.0146 212 356 0.0217
147 264 0.0161 217 40 0.0024
148 384 0.0234 219 312 0.0190
153 88 0.0053 220 528 0.0322
155 228 0.0139 225 172 0.0104
156 460 0.0281 227 288 0.0175
161 264 0.0161 228 316 0.0192
163 264 0.0161 233 60 0.0036
164 352 0.0214 235 324 0.0198
169 128 0.0078 236 504 0.0308
171 228 0.0139 241 84 0.0051
172 428 0.0261 243 372 0.0227
177 176 0.0107 244 440 0.0268
179 228 0.0139 250 680 0.0415
180 364 0.0222 251 72 0.0044
187 336 0.0205 252 192 0.0117
188 560 0.0342 254 1,360 | 0.0830
193 248 0.0151

Table 2 lists only those error vectors that have p; > 0. This
is contrary to the g-ary model because not all p; are equal. The
eight outputs of the ALU181 circuit were compacted using
psarallgl signature design with primitive polynomial XX+
X~ + x~ + 1. The 14-input random test stimulus was derived
by sampling 14-bits from a 32-bit primitive LFSR. The alias-
ing probability was estimated by 50,000 different random
pattern runs of test length up to 254. That is, each experiment
consisted of starting with a different seed for the 32-bit LFSR
pattern generator and running up to test length 254. Within
each run, aliasing events were recorded for the test length
range one to 254. From the ensemble of 50,000 different ex-
periments, the aliasing probability was estimated. Fig. 4
shows the plot of experimentally estimated aliasing versus
the test length. Also shown in this figure is the upper-bound
on aliasing probability (approximately 0.004 in this set-up)
derived from the g-ary model closed-form expression in [24].
The standard deviation error in the estimated aliasing prob-
ability for 50,000 experiments under the hypothesis that the
g-ary model aliasing probability is correct is approximately
square root of 0.004 divided by square root of 50,000. This
amounts to 0.0002. The experimental estimates, for many test
lengths, differ by more than three standard deviations. This
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Expanmental Eslimate

-

Uppar Beund
L L LR Cerived rom
Tes! Lengih @ ary Madel

clearly indicates that g-ary model is not a good predictor of
aliasing probability behavior in parallel signature analysis.

The previous example shows that ignoring the fact that
the error vectors have unequal probabilities may lead to
inaccurate predictors on the aliasing probability behavior.
A general error model proposed in [30] allows for the pos-
sibility of the error vectors having unequal probabilities. It
must be pointed out that the g-ary model is very useful in
cases where the faults in the combinational circuit satisfy
the model’s assumptions. This is because the aliasing prob-
ability can be studied using a simple closed-form formula
derived in [24] for special test lengths and for special sig-
nature register polynomials. For general error models, ar-
bitrary test lengths, and arbitrary signature polynomials,
the analysis of aliasing is not an easy problem. Some other
approaches are needed.

2.2 Simple Bounds and Their Justification

In previous work [14], [15], [16], simple bounds on the ali-
asing probability were derived for single-output combina-
tional circuits, for arbitrary test lengths, and for arbitrary
signature polynomials. These bounds were validated by
experiments. Experimental validation is necessary because
aliasing probability bounds are derived based on the as-
sumption of random test stimulus; however, in actual test
environments pseudorandom patterns are used. This paper
complements the previous work on serial signature design
guidelines by adding a new set of guidelines for parallel
signature design. The following paragraphs justify the mo-
tivation for this work. These paragraphs very briefly ex-
amine each of the several approaches to estimate aliasing
probability. These approaches fall into three categories:

« estimating aliasing probability through fault simula-
tion,.

« deriving an analytical formula to calculate the aliasing
probability,

« deriving bounds for the aliasing probability.

These are reviewed in the following sections.

2.2.1 Estimating Aliasing Using Fault Simulation

Fault simulation experiments can be performed to estimate
the aliasing behavior and in most cases designs can be cho-
sen that eliminate aliasing for the modeled faults [25]. Us-
ing simulation to experimentally estimate aliasing prob-
ability is only useful for simulated faults (usually single
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stuck-at faults). There is an exponential number of combi-
national faults like multiple stuck-at and bridging faults
that also need to be simulated. There are three problems
with this:

1) simulation time may be too long, even for single
stuck-at faults,

2) commercial tools may not exist that simulate faults
other than single stuck-at faults, and

3) simulation results do not give any insight into the
signature design in terms of what signature design
characteristics are suitable to reduce aliasing.

2.2.2 Analytical Formula for Aliasing Probability

Earlier papers [5], [8], [10], [16] presented methods to cal-
culate the exact aliasing probability in serial signature
analysis. In [24], closed-form formula for the aliasing prob-
ability for parallel signature analysis was derived using the
g-ary error model. Section 2.1 has reviewed this in detail. A
recent paper1 [31] acknowledged the limitations of g-ary
model and proposed a modified version of independent
error model [24] to calculate the aliasing probability for
correlated errors. Each output i of a multioutput combina-
tional circuit is characterized by a detection probability
value ¢; for a combinational fault. This still assumes that the
error behavior at each circuit output is statistically inde-
pendent. The authors in [31] derive the aliasing probability
formula through coding theory techniques and arrive at the
same result as in [21]. The formula of aliasing probability
using this independent error model is

2"-1 (m- )
- oo S Fa-o) |-

i=1 \ j=0

w;(i, L) is the number of ones seen by jth stage during L
state transitions for an autonomous LFSR starting at state i.
A program was written by the first author to calculate the
aliasing probability under independent error model. To
validate that the formula was correctly implemented by the
program, the results in [21] and [31] are reproduced in Fig. 5
and Fig. 6, respectively. Fig. 7 calculates the aliasing prob-
ability for the ALU experiment described in Section 2.1. The
values of ¢, through ¢, are given in Fig. 7. Again, it clearly
shows that the aliasing probability predicted by the inde-
pendent error model differs significantly from the experi-
mental estimates shown in Fig. 4.

The exact calculation of aliasing probability for parallel
signature analysis is a more difficult problem than that for
serial signature analysis. This is because serial signature
analysis is a very special case of parallel signature analysis.
In addition, the calculation of detection probability is also
an NP-Hard problem [6], [14].

2.2.3 Previously Published Aliasing Probability Bounds

Previously published bounds [5], [8], [19] depend on the de-
tection probability and therefore do not eliminate the NP-
Hard problem associated with the calculation of detection
probability. Also, the bounds presented in these papers have
incomplete proofs. This is discussed in the following sections.

1. Brought to the attention of the authors during the review process.
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Fig. 7. Aliasing probability prediction for the ALU experiment using
independent error model.

2.2.4 On the Aliasing Probability Bound in [8], [15]

In [8], an upper bound on the aliasing probability for serial
signatures was derived. An attempt to clarify the proof of
this bound was presented in [15]. The main approach in
deriving this bound for aliasing probability was to map the
problem of computing aliasing probability to the problem
of computing signal probability. The method used was to
show that the computation of aliasing probability is a signal
probability problem involving overlapping sets of xor-trees
whose outputs feed to a single or-gate. The probability of
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aliasing was shown to be the same as the probability of
getting signal zero at the output of the or-gate [8], [15].

By using the cutting algorithm [9], a bound on signal
probability and therefore a bound on aliasing probability
was derived in [8], [15]. The fallacy was in the application
of the cutting algorithm. The cutting algorithm can be used
in propagating probability bounds only for unate functions
and it is not applicable for nonunate functions (like xor
gates). It must be pointed out that fallacy in the proof does
not imply that the bound derived in [8], [15] is incorrect. It
only suggests that either a correct proof be presented or a
counter example provided. At this time, the authors are not
aware of a correct proof or a counter example.

However, the fallacy in [15] has been corrected in [16] by
deriving a provably correct bound that differs from that
derived in [8] but shares some essential characteristics that
were necessary to derive simple bounds on aliasing in [16].

2.2.5 On the Bound Presented in [19]

The bound on aliasing probability presented in [19] al-
though empirically appears to be valid has no valid proof
backing it. Unfortunately, this bound has made its way in
the text book [4, p. 445].

2.2.6 On the 4/L Bound [26]

The bounds presented in [14], [15], [16] eliminate the expo-
nential complexity associated with the exact calculation of
aliasing probability; however, they have been derived only
for serial signature analysis. The simple bound, 4/L, pre-
sented in [26], applies to parallel signature analysis but
lacks a complete proof. If the results in [26] are provably
correct, then this paper would not be necessary.

3 CHARACTERIZING ALIASING PROBABILITY AND
SIMPLE BOUNDS

Based on the characterization of the error model in the pre-
vious section, the aliasing probability for parallel signature
analysis can be fully characterized by the function

P, (p,, ...,pzmil,L,U(X)),and

» the implementation of parallel signature analysis (Fig. 8,
Fig. 9, and Fig. 10.

U(X) is the polynomial characterizing the signature register
[14], L is the test length, and p; is the detection probability
of error vectors with integer value i for a particular fault.
Fig. 8, Fig. 9, and Fig. 10 give three possible implementa-
tions of parallel signature analysis. The implementation in
Fig. 8, called the xor-tree implementation, can be easily
analyzed using the results from serial signature analysis
[16]. This is because the xor-tree in Fig. 8 converts the mul-
tioutput combinational circuit into a single-output combi-
national circuit.

The problem with the xor-tree implementation is that it
cannot detect faults in the combinational circuit that always
affect even number of outputs (for example, the stuck-at
fault in Fig. 3). In this paper, only the implementations of
Fig. 9 and Fig. 10 will be considered. In the Fig. 9 imple-
mentation, called the parallel-load implementation, the out-
puts are synchronously loaded into the feedback register
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Fig. 8. XOR-tree implementation.
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Fig. 9. Parallel-load implementation.
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Fig. 10. Scan implementation.

stages through the xor gates. In the parallel-load imple-
mentation, the signature computation takes L clock cycles
for L test input patterns. In the Fig. 10 implementation,
called the scan implementation, the m-outputs are first
loaded into a scan-register and then the contents of the
scan-register are synchronously clocked into the signature
register in m cycles.

For L test input-patterns, the scan implementation takes
mL cycles for signature computation. However, it can be
shown that for every scan implementation there exists an
equivalent parallel-load implementation that requires only
L cycles for signature computation. This is illustrated in Fig.
11. The proof of this equivalence is not the main subject of
this paper and will be published in a separate report. The
proof trivially follows from matrix algebra and this is
sketched, by way of example, in Fig. 11. Matrix algebraic
treatment of computations similar to signature computation
can be found in [1], [27], [28].

3.1 Motivation for Simple Bounds

The calculation of exact aliasing probability for serial sig-
nature analysis was shown to be NP-Hard [14]. For a dis-
cussion of NP-Hard problems see [6]. The best known algo-
rithms [16] require a complexity of O(L2") for test length L
and signature register size r. The calculation of the exact
aliasing probability for parallel signature analysis is a much
harder problem. This is because serial signature analysis
(for m = 1) is a very special case of parallel signature analysis.
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Fig. 11. Scan and parallel-load implementation equivalence.

A practical approach to quantify aliasing in parallel signa-
ture analysis is to derive some bounds on the aliasing prob-
ability denoted by P, (p;, ..., Pyn oL U(X)).

Associated with every combinational fault is a distribu-
tion of detection probability p;. Given a fault, the calculation
of p; is also an NP-Hard problem because it requires the
enumeration of NP-Complete decision problems on Boo-
lean satisfiability [6]. Therefore, we need bounds

Pa(Prr o Py L U(X)) < F(LU(X))

for the aliasing probability that are independent of the dis-
tribution of p;, and only depend on the test length L and the
signature register characterized by the polynomial U(X).
Such bounds are called simple bounds. Simple bounds are
useful in that

e they do not require any exponential complexity in
calculating aliasing probability,
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» they do not require any a priori assumption of the
type of combinational fault,

» they provide simple guidelines in the design of sig-
nature analysis.

4 SIMPLE BOUNDS

Simple bounds on the aliasing probability for parallel sig-
nature analysis are derived in this section. The following
notation and definitions are used in deriving some inter-
mediate results. These results are used in the final deriva-
tion of the simple bounds.

4.1 Notation.

Let us denote m-bit error vectors for a response length L by
Ey, .., EL. Letv; denote the number of error vectors with inte-
ger value j. For an m-output circuit, j is in the range [0, 2" — 1].
For example, the error vectors in Table 1 (for response length
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TABLE 3
SIGNATURES FOR ERROR SEQUENCE PERMUTATIONS

USING SIGNATURE POLYNOMIAL X3 + X+1

Sequence | Time | Time
<E> 1 2
<E>, 000 000
<E>, 000 011
<E>, 000 011
<E>, 011 000
<E>s 011 000
<E>g 011 110
<E>, 000 000
<E> 000 110
<E>q 000 110
<E>10 110 000
<E>p; 110 000
<E>p, 110 011

L = 4) are E; = 000, E, = 000, E; = 110, and E, = 011
(assuming the first row in the table corresponds to the first
response pattern). The values for v; in this example are v, =2,
vi=0,v,=0,v3=1,v,=0,vs=0, vg=1, and v, = 0.

It follows from the notation that

2"-1

Zvj =L.
j=0

Given a population distribution (characterized by v;) of
error vectors E,, ..., E;; in a random test environment, all
permutations of these error sequences are equally likely.
For example, Table 3 enumerates all permutations of error
vectors in the foregoing example.

DErINITION 1. Function N(v,,V,, e Vom s S,U(X)) is the
number of permutations of the error vectors characterized
by population distribution v; that have the same signature
S using signature polynomial U(X).

For example, Table 4 illustrates the calculation of the
value of this function for L = 4, U(X) = X+ X+1 (Fig. 12,
parallel-load implementation), and the error vector popu-
lation distribution vo=2,v;=0,v,=0,v3=1,v,=0, vs= 0,
Vg = 1, and v; = 0. Using the signature values for the various
sequences in Table 3, we can enumerate the values of func-

Response patterns

e 9

A |

. . . . 3
Fig. 12. Signature register using polynomial X + X + 1.

Time |[Time [Signature
3 4 S
011 110 001
110 000 110
000 110 011
000 110 010
110 000 111
000 000 011
110 011 000
011 000 000
000 011 100
000 011 110
011 000 010
000 000 000

tion N(v,, vy, ..., Von o5 S,U(X)). This is presented in Table 4.

4.2 Plan of Attack in Deriving Simple Bounds
This section sketches the methodology used in deriving simple
bounds on the aliasing probability. The function
N(vy, vy, ...,vzm_l;S,U(X)) enumerates the weight distribu-
tion of linear codes in GF(2™) [1]. The aliasing probability in
parallel signature analysis is the same as the probability of
undetected errors in GF(2"). The formulation of aliasing prob-
ability in terms of weight distribution also appears in [30].
Using the function N(vq, vy, ..., V.. ,;S,U(X)), the prob-
ability of aliasing, P, (p,, ..., Pyn oo L U(X)), is given by

Z N(vo,vl,

Vo+V,+...+V =L
0 1 My

v
N3 U)oy .. pi
~(1-p) )
This is similar to the aliasing probability expression derived in
[14], [15] for GF(2). The probability of a particular error vector
sequence with distribution (vo, v, ..., V,. ) is Py’ - p;’;m:ll.
By definition there are N(v,,v,, - Vom s 0,U(X)) se-

quences with distribution (v,,v,, ""Vzm_l) that have

TABLE 4
FUNCTION VALUES FOR N
S N2,0,0,1,0,0,1,0; S, X+ X+ 1)

000 3
001 1
010 2
011 2
100 1
101 0
110 2
111 1
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signature S = 0. Therefore, the probability of an error se-
quence with distribution (v, v,, ..., Vzml) and the signature

. Vo Van
Vom_s 0,U(X))p, .
The probability of any error sequence having signature S =0
is obtained by summing the product,

S = 0 is the product N(v,,Vv,, ...

v m
N(Vg, Vys +oos Vo5 O, UKD - p2T 2,
over all distributions (vy,Vy, ...,V,, ;) such that
Vo +V; + .4V, = L. This summation includes the prob-

ability, (1 - p)L, of an all-zero error sequence. Subtracting
the all-zero error probability from the above summation we
get (1).

Theorem 1 derives an upper bound on the function
N(vy, vy, ...,vzm_l;S,U(X)). The upper bound derived in
Theorem 1 uses a sphere packing bound [28] approach. The
basic idea is to use permutations of error sequences that pro-
duce a specific signature S with population distribution

specified by v;. Now each permutation, denoted by <E>, is
used in generating new error sequences that differ in exactly
one error vector from <E>. Consider that these new error
sequences surrounding <E> are enclosed in a sphere. Theo-
rem 1 proves (an intermediate result) that all the spheres
produced by considering all the permutations of error se-
quences that produce a specific signature S are nonintersect-
ing. That is, the spheres do not have any common error se-
quence. This intermediate result is used by Theorem 1 to es-
tablish an upper bound on N(v,, v, ..., Vo s S, U(X)).

Theorem 2 uses the bound derived by Theorem 1 and
the aliasing probability expression (given in (1)) in deriving
a closed-form aliasing probability bound. Theorem 3, in
turn, uses the closed-form bound derived by Theorem 2
and another closed-form bound on the aliasing probability
to derive a family of simple bounds.

4.3 Derivation of Simple Bounds

THEOREM 1. Given a degree r primitive polynomial and test
length L < 2" — 1, consider a sequence of L, m-bit error vec-
tors Ey, ..., Ei, such that there are v; vectors with integer
value j in the population of these L vectors and

2"-1

2 v, = L.

j=0
The number of permutations N(v,, v;, ...,vzm_l;S,U(X))
of these L vectors that produce a particular signature S

* in the parallel-load implementation for r > m
« in the scan implementation for r > m and 2" — 1 rela-
tively prime tom

is bounded above by

min{ﬁ(vva I._..vzm 1)}(Vj(vj >0)v(i  j) e[o, 2" - 1])

where the multinomial coefficient

L L!
VorVir o Vom_y ) Vol !

is the number of different length L sequences with the error
vector distribution specified by (v,,v,, ..., Vszl)'

PROOF. Let A be the r x r matrix characterizing the parallel-
load implementation of the primitive signature poly-
nomial U(X). The signature of the error vector se-

quence E,, ..., E_ is given by the matrix polynomial

AHEl + AL72E2+ ... + E_ (see Fig. 11 for illustration), if
E, is the first vector in the sequence. Let us assume

that a particular error vector sequence E;, ..., E, pro-

duces a specific signature S = AL_lEl + AL_ZEz +..+E.

By definition there are N(v,,v;, ...,vzm_l;S,U(X))
distinct permutations of this length L error vector se-
quence that produce the same signature.

Pick a particular sequence <E> = E,, ..., E, that
produces signature S. Choose an integer j such that
the v; is greater than zero. Arbitrarily pick an integer i
(not equal to j) that corresponds to an error vector. By
definition we are given that there are v; such error
vector terms. Now, replace one of the error vectors in
the sequence <E> having integer value j with an error
vector having integer value i. This generates a new
sequence that differs from <E> in one vector. Re-
peating this procedure for all locations corresponding
to error vector j will generate v; new distinct error se-
quences from the sequence <E>. The new error se-
quences will have v; + 1 error terms with integer value
i and v; — 1 terms with integer value j. Table 5
(derived from the example presented in Table 3) il-
lustrates this replacement procedure for j = 0, i = 7,
and S = 0. The first column lists all the error vector
sequence permutations, with vop=2, vs=vg=1,v; = Vv,
=v, = V5=V, =0, (each error vector is denoted by its
integer value) that produce signature S = 0. Columns
2 and 3 in Table 5 are obtained by replacing the first
and second occurrence of error vectors respectively
with value j = 0 in column 1 by error vector with
valuei=17.

TABLE 5
GENERATING NEW SEQUENCES THROUGH REPLACEMENT
FORj=0,i=7,5=0

replace replace

<E> first second
0,6,3,0 7,6,3,0 0,6,3,7
6,3,0,0 6,3,7,0 6,3,0,7
0,0,6,3 7,0,6,3 0,7,6,3

Next, we prove that all the new sequences gener-
ated by the above procedure are distinct. Let us con-
sider a sequence <E*> # <E> that is a permutation of
sequence <E> and has the same signature S. Now we
will show that replacing error vectors with integer
value j in <E*> by the error vector that has value i
cannot produce a sequence that is same as that gener-
ated by considering error sequence <E> (Table 5 il-
lustrates this). The proof is by contradiction. Let us
assume that it is possible to produce the same
sequence from error sequences <E> and <E*>. Let us
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assume that in sequence <E> the location t corre-
sponding to the error vector E, with integer value j is
replaced by the error vector with integer value i.
Likewise assume that in sequence <E*> the location k
corresponding to the error vector E, with integer
value j is replaced by the error vector with integer
value i. This is shown in Fig. 13. Assume that they
generate the same new sequence. Notice that k cannot
be equal to t because this implies that both sequences
<E> and <E*> are the same. The case of interest is k
not equal to t. Since we assumed that the new se-
quences are the same it implies (follows from the il-
lustration in Fig. 13) that location t in <E*> has an er-
ror vector that has integer value equal to i. Likewise,
it follows that location k in <E> has an error vector
with value i.

This means E, = E, with integer value j and

E, = E, with integer value i in the sequences <E> and
<E*>, respectively. Since sequences <E> and <E*>
have the same signature S, by linearity this implies
that the signature of the sequence generated by the
bit-by-bit exclusive-or sum of the error sequences <E>
and <E*> will be zero. This bit-by-bit xor operation
will result in only two nonzero terms because the er-
ror vectors in the shaded areas of the illustration (in
Fig. 13) are identical both in value and location. For

C =E,+E =E +E (Cisnotequal to zero as the er-
ror vectors i, j are distinct by definition), in matrix

polynomial terms this means A“'c+ A" *c =0 =>

Ac=cC (Algebra is in modulo 2 arithmetic). O

LEMMA 1. If A is a matrix representing a degree r primitive
polynomial and C is a nonzero vector, then for z > 0, A'C=
C ifand only if z is a nonzero multiple of 2" — 1.

PROOF. We are given that matrix A corresponds to a degree
r primitive polynomial. Since we are given a primitive
polynomial, for every nonzero vector C, there exists
an integer w (0 < w < 2) [1], [28] such that the vector E
can be represented by «", where o is a nonzero
primitive element in the Galois field defined by the
degree r primitive polynomial. Note that such a rep-
resentation may not exist for a nonprimitive polyno-
mial. The vector obtained by considering the matrix
product AC is represented by o"*'. This is because
matrix multiplication by A is essentially a multiplica-
tion by the primitive field element «. Also, addition of
vectors corresponds to addition of corresponding
field elements in the Galois field. From this discus-

Pmnabainms e Senngnoe

Fig. 13. Error sequences illustration.
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sion, it follows that A°C = C if and only if & = &".

By canceling the common factor ", this equality is
satisfied if and only if &’= 1. Note that the cancellation
is allowed because « is a nonzero field element. Since
o is a primitive element in the Galois field defined by
a degree r primitive polynomial and z > 0, the equal-
ity o = 1 is possible if and only if z is a nonzero multi-
pleof 2" — 1 [1]. O

Without any loss in generality assume k > t. This implies
k—t>0. With kand t less than L and L < 2" — 1, it follows
that k —t < L < 2" — 1. Since we are given that the signature
polynomial is primitive, from Lemma 1 the equality A “c=cC
is only possible if and only if k — t is a nonzero multiple of
2" — 1. This contradicts the fact that k —t <L < 2" — 1.

This replacement procedure generates

VIN(Vg, Vg, ooy Vo 3S,U(X))

distinct permutations (Table 5 illustrates this) with the fol-
lowing error vector population
Voi Yy, -

S+l v =1 v

f e Vo -
This cannot be greater than the multinomial coefficient

L
Lo Vvi=1, 0, v,
J 27-1

Vo3 SU(X)) <€

(vo,vl, YA N
Therefore,

N(vo,vl,

Vszl)

Since any value of i # j can be chosen, after some algebra, we
get a family of upper bounds on N(vg,v,, ..., Vo g S, U(X)).

1 L
V_j VoiVyy Vi + 1y =1 e

They are
N(vo,vl,
1 L YA m
Vi +1 (VOI Vll sy Vzm_l)(ajv(l * J) € I:O’ 20 - 1])
Therefore, the tightest upper bound on
Vom_13S,U(X))

,vzm_l;S,U(X)) <

N(Vg, Vs ...

from this family of bounds is

. 1 L . o _
mln{—vi +1(v0,v1, ""Vzm_l)}(vj(vj > O)V(l #]j)e [0, om 1])
This min value is obtained by picking the max value of v; for
someiand jin [0, 2" — 1] such that i is not equal to j and v;>0.

For the scan implementation of parallel signature analy-
sis, the signature of the error sequence is given by BHE1 +
B"’E, + .. + E,, where B = A" and A is the matrix charac-
terizing the primitive signature polynomial U(X). If m is
relatively prime to 2" — 1, the matrix B also will have a
primitive characteristic polynomial. Now we can use the
same proof we developed for parallel-load implementation.

ILLUSTRATIVE EXAMPLE. From Table 3, we have N(2, 0, 0, 1,
0,0, 1, 0; S =000, X3+ X + 1) = 3. By picking the max
value vy =2 (i=0and j =3 or 6) and using Theorem 1,
we have
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TABLE 6
SIGNATURE FOR ERROR SEQUENCE WITH EQUAL AND NONZERO VECTORS
Sequence Timel |[Time2 |Time3 |[Time4 Signature
1 001 001 001 001 011
2 010 010 010 010 110
3 011 011 011 011 101
4 100 100 100 100 001
5 101 101 101 101 010
6 110 110 110 110 111
7 111 111 111 111 100

. 3 1 4 _
N(z, 0,0,1,0,0,1 0:0,X +x+1)sm ) 11)=4

The exact value N(2, 0,0, 1, 0, 0, 1, 0; S = 000, X° + X +
1) = 3 satisfies the above bound.

In certain cases, the bound derived in Theorem 1 gives
the exact value. For example, the error sequence <E> = E,,
E,, E; E, =001, 001, 001, 010 (Fig. 12 signature register im-
plementation) has signature S = 0. Here v; = 3, v, =1, and v,
= V3=V, = V5 = Vg = V7 = 0. Any other permutation of this
error sequence has a nonzero signature. Thus, in this case,
the function N(0, 3, 1, 0, 0, 0, 0, 0; S = 000, X2+ X + 1)=1
Picking the max value v, = 3 (with i = 1, and j = 2) by Theo-

rem 1, we have
1 (a4
37 1(3, 1) =L

LEMMA 2. Given a degree r primitive polynomial (r > m, m is the
number of outputs) and a test of length L < 2" — 1, the sig-
nature of an error sequence with nonzero error vectors E; =
E,=... = E_ = E is nonzero.

N(o, 3,1,0,0,0,0,0; 0,x3+x+1)g

which is the same as the exact value.

PROOF. The signature of this error sequence is given by the

matrix polynomial S = A'E+AY’E+ .. +E, where A
is the matrix representation of degree r primitive
polynomial. Since we are given a primitive polyno-
mial, for every nonzero vector E there exists an inte-
ger j (0 <j < 2" [1], [28] such that the vector E can be

represented by o, where « is a nonzero primitive
element in the Galois field defined by the degree r
primitive polynomial. Note that such a representation
may not exist for a nonprimitive polynomial. The
vector obtained by considering the matrix product AE
is represented by o™, This is because matrix multipli-
cation by A is essentially a multiplication by the
primitive field element o. Also, addition of vectors
corresponds to addition of corresponding field ele-
ments in the Galois field. From this discussion, it fol-
lows that the signature S of the error sequence is rep-

resented by the field element o + o T+ .+ ol =

o?l(ocL_l + o 1). The signature S is zero if and

only if the corresponding field element o?(o:L_1 +o 7+

... + 1) is zero. We will assume that the signature S is
zero and show that such an assumption leads to a

L-2

contradiction. If S =0, then d‘(aH +a “+.+1)=0.

Since a is a nonzero element of the Galois field, oJ(ocL_l

L-2

L-2
+ o

+..+1h=0onlyif (¢ +od 2+ .. +1) =0

L-2

Now let us multiply (ozL’1 +o "+ .. +1)by 1+ 0).

L-2

Because (oc"71+ o “+..+1)=0,we have(l + a)(a"’1+

o i D=1+ o = 0. This implies o = 1. Since we

know that « is a primitive element of the Galois field
defined by a degree r primitive polynomial, the
equality is possible if and only if L is a nonzero multi-

ple of 2" — 1. This contradicts the assumption that L is
less than 2" — 1. Therefore, the signature S cannot be
Zero. O

Table 6 illustrates the nonzero signature values of nonzero
error sequences with the same error vectors for L = 4 and
signature polynomial X+ X+1 (Fig. 12 implementation).
THEOREM 2. Given a degree r primitive polynomial; test length L

< 2" = 1; a combinational fault with detection probability
distribution p,, p;, Py and k in [0, p - 1] such
that p, is the max of p,,p,, ...

probability P, (p,, ...

+P,n_,. then the aliasing
D, L UX)
« in the parallel-load implementation for r > m

« in the scan implementations for r > m and 2" — 1 rela-
tively prime tom

is bounded above by
L
-(1-p)-

PRrRooF. From Theorem 1, it follows (we can pick v, that corre-
sponds to p,) that the aliasing probability is bounded
above by

Pa,(pl,

1 L . v )
Z vV +1(v0,v1, ...,vzm_ljpo" P -(1-p)

The above summation includes the cases of error

1
Pal(p1' ceey pZm—l’ L,U(X)) < m

By LUX)) <

sequences with nonzero error vectors E; = E,= ... = E_
= E for all nonzero E. We know from Lemma 2 that
these nonzero error sequences with E; = E,= ... = E, =

E for all nonzero E do not produce a zero signature
and therefore do not cause aliasing. Keeping these er-
ror sequences in the summation simplifies the algebra
required to derive a closed-form aliasing probability
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(po +py +

formula. The expression (1 — p)L is subtracted in the
above aliasing probability bound to exclude the prob-
ability of an all-zero error sequence. The above sum-

. S L
= L. This summation has ex-

mation is over all v; such that 0 <v,,v,, o Vym

and vy +V; + ... 4V,
actly the same number of terms as the expansion of
the polynomial (p, +p, + ... + pzml)L in multinomial

coefficients [29].
We will use the multinomial coefficient expansion

L L
. +p2m—1) =2(V07V17 ---vvzm jpo . pzﬁ‘ f

to derive a closed-form bound on the aliasing prob-
ability. If we integrate the multinomial expansion,
treating p, as an auxiliary variable, we have

jopk (po+py+ .. + pszl)Ldpk =

1 L V, Vm
pkz v, + 1(v0,v1, ---,Vzm_l)poo Py

After some algebra we have

J— 0 27 -1 =
zvk +1(V01V1: ---,Vszljpo e Poym

1 (- p)
p(L+1) p(L+1)

Ignoring the second term in the right hand side of the
above expression and excludmg the all-zero error se-
quence probability, (1 — p) we have the following
bound on the aliasing probability

__p)L

The scan implementation has the same bound on
the aliasing probability as that of the parallel-load
implementation but puts an additional constraint on
the primitive signature register size r such that 2" — 1
and m (the number of outputs) are relatively prime.
Given any value of m, a smallest value of r > m can be
found such that 2" — 1 and m are relatively prime. Ta-

LU(X)) <

1
Pa,(pl, Py PR (1

ble 7 illustrates some values. O
TABLE 7
SMALLEST r(r=m) SUCH THAT gcd(m, 2'-1) =1
m r
2 2
3 3
7 7
21 23
31 31
32 32
42 43
63 65

The results proved thus far do not yet provide a simple

bound on the aliasing probability since they depend on the
detection probability. Theorem 3 provides a family of sim-
ple bounds on the aliasing probability building upon re-
sults derived in Theorems 1 and 2.

THEOREM 3 If y uniformly spaced signature samples Sy, S, ...
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.S
are taken from the response of an m-output combinationa1
circuit by a signature register defined by a primitive poly-
nomial of degree r, then the simple bound, f(L, U(X)), on
the aliasing probability for

the parallel-load implementation with r > m, and
the scan implementation with r > m and m relatively prime
to2" - 1is

yY/?
f(L,U(X)) < o

PrROOF. For a given test length L, consider the signature at

f(L,U(X)) < min{

test length L — 1. The aliasing probability is always
bounded above by the maximum conditional prob-
ability that the signature of the error vector sequence
at test length L is zero given a particular signature at
test length L — 1. Independent of the signature value
at test length L — 1, this conditional aliasing probabil-
ity is always bounded above by p, = max p;. Using the
results in Theorem 2, the worst case bound on the ali-
asing probability is obtained by

. 1 L
f(L,U(X)) < mln{m— (l— p) s pk}

The expression mln{ ey -(1-p-, pk} attains

maximum value when
1 L
p(L+1) ~(1-p)
Solving for p, we have the following bound on the
root, z, of the above equation.
LIS
S+l L
Therefore, a simple bound on the aliasing probability
is

Py =

1 1 1
aivn P12 Y s S g

If we take y equally spaced samples of signatures at
test interval lengths of L/y, then, by the statistical inde-
pendence of random test vectors, aliasing occurs if all
the signature samples alias. The probability for each

sample to alias is bounded above by (y/L)1/2. There-

fore, the probability that all y signature samples S;, S,,
/2
)y

. Sy alias is bounded above by (y/L)"". Also, the con-

straint on test length L for y samplesisL<y(2'—1). O

5 CONCLUSIONS

This paper addressed design issues related to parallel sig-
nature analysis. The results in this paper present a simple
relationship between the number of outputs m in the circuit
under test, the random pattern test length L, the primitive
signature register size r, the number of signature register
samples y, and the aliasing probability. It is shown that the
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aliasing probability is less than (y/L)y/2 ifr>mand2 - 1>
L/y. For example, if m = 32, then using two signatures sam-
ples (y = 2), a test length L = 2,000,000, a primitive signature
register of size r = 32 will guarantee the aliasing probability
to be less than one in a 1,000,000. If only one signature
sample (y = 1) is used, then the aliasing probability is guar-
anteed to be less than one in 1,414. Readers can note that for
y =1, the results in this paper show that the aliasing prob-

ability is less than 1/+L for a random pattern test length L
and a primitive signature register period greater than L.
This is not as tight as the 1/L bound for serial-signatures.
Researchers are encouraged to improve this bound. Clearly,
serial-signature bounds are not applicable to parallel sig-
nature analysis. Fig. 2 demonstrates this by comparing the
experimental estimates of aliasing probability for parallel
signature analysis with the 1/L bound for serial-signature
analysis. The key differences between the design guidelines
for parallel signatures and serial signatures are:

¢ Multiple signature samples may be required for par-
allel signatures to accomplish acceptable quality lev-
els. For serial-signature analysis a single sample may
suffice if an appropriate test length and a signature
register period are chosen.

¢ The signature register polynomials for parallel sig-
natures are required to be primitive; whereas, for se-
rial-signature analysis, this requirement is not neces-
sary. The only requirement that should hold good for
serial-signature registers is that their period be greater
than the test length; nonprimitive polynomials can
also satisfy this requirement.

e For parallel signature designs the signature register
size must be greater than or equal to the number of
circuit outputs. There is no such constraint for serial-
signature designs.

For parallel signature analysis scheme, by using two sig-
nature samples we can guarantee that the aliasing prob-
ability to be less than 2/L. If more than two signature sam-
ples are used, the aliasing probability can be significantly
reduced. Experimental results in [13], [25] demonstrate this.
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