

 Int. J. Manufacturing Research, Vol. 3, No. 3, 2008 301

 Copyright © 2008 Inderscience Enterprises Ltd.

Applying Ant Colony Optimization (ACO) algorithm to
dynamic job shop scheduling problems

Rong Zhou, Heow Pueh Lee*
and Andrew Y.C. Nee
Department of Mechanical Engineering,
National University of Singapore,
9 Engineering Drive 1, 117576, Singapore
E-mail: mpeleehp@nus.edu.sg
*Corresponding author

Abstract: Ant Colony Optimization (ACO) is applied to two dynamic job
scheduling problems, which have the same mean total workload but different
dynamic levels and disturbing severity. Its performances are statistically
analysed and the effects of its adaptation mechanism and parameters
such as the minimal number of iterations and the size of searching ants are
studied. The results show that ACO can perform effectively in both cases;
the adaptation mechanism can significantly improve the performance of ACO
when disturbances are not severe; increasing the size of iterations and ants per
iteration does not necessarily improve the overall performance of ACO.

Keywords: dynamic job shop scheduling; Ant Colony Optimization; ACO.

Reference to this paper should be made as follows: Zhou, R., Lee, H.P. and
Nee, A.Y.C. (2008) ‘Applying Ant Colony Optimization (ACO) algorithm to
dynamic job shop scheduling problems’, Int. J. Manufacturing Research,
Vol. 3, No. 3, pp.301–320.

Biographical notes: R. Zhou is a PhD student in the Department of
Mechanical Engineering, National University of Singapore. She received a BE
in Mechanical Engineering in 1994 from the South China University of
Technology. Her research interests are in the areas of production scheduling,
artificial intelligence, multi-agent systems and simulation, and distributed
manufacturing systems.

H.P. Lee is an Associate Professor in the Department of Mechanical
Engineering, National University of Singapore, as well as the Deputy Executive
Director for Research, Institute of High Performance Computing. He received
his BA and MA from Cambridge, his ME from the National University of
Singapore as well as a MS and PhD from Stanford University. His research
interests are in biomechanics and nanomechanics.

A.Y.C. Nee is a Professor of Manufacturing Engineering, Department of
Mechanical Engineering, National University of Singapore. He received his
PhD and DEng from the University of Manchester and UMIST, respectively.
His research interests are in computer applications to tool, die, fixture design
and planning, distributed manufacturing systems, virtual and augmented reality
applications in manufacturing. He is a fellow of CIRP and an elected fellow of
the Society of Manufacturing Engineers (USA), both in 1990. He had held
appointments as Head of the Department of Mechanical Engineering, Dean of
Faculty of Engineering and currently, he is the Director of Research of NUS.

 302 R. Zhou et al.

1 Introduction

A job shop manufacturing system is specifically designed to simultaneously
process different types of products in one shop floor. Jobs have their own technical
orders and a pre-determined processing time for each one of their operations. They route
in the shop floor to be processed on machines till all of their operations are completed.
A Job Shop Scheduling Problem (JSSP) refers to the static problem where
optimal schedules are searched for a given set of jobs. It is generally NP-hard
(Garey and Johnson, 1979). In the real world, a JSSP becomes dynamic when jobs arrive
continuously and it thus has an additional complexity. Continuing with production
in the face of dynamic events, while optimising the system performance, remains
a challenge.

Industry has generally combined pragmatic approaches like Manufacturing Resource
Planning (MRP II) or Enterprise Resource Planning (ERP) for medium-term production
planning and then dispatching rules for short-term operational resource allocation.
Dispatching rules are widely adopted for their robustness. However, they do not
guarantee the realisation of the full potential of a shop floor since their decision making is
based on local and current conditions. As computer capability is improved greatly,
scheduling systems using algorithms, especially metaheuristic algorithms, have
continuously been a research topic for providing optimised solutions. For example,
the Genetic Algorithm (GA) has been applied to dynamic JSSPs by Lin et al. (1997) and
others.

Ant Colony Optimization (ACO) is another metaheuristic proposed by Dorigo et al.
(1999) and it has been applied to JSSP by Colorni et al. (1994) and van der Zwaan and
Marques (1999). However, its applications in dynamic JSSP are limited. The goal of this
study is to apply ACO to two dynamic JSSPs exploring its unique property of seeking
solutions through the adaptation of its pheromone matrix. The inspiration is from the
phenomenon that ants will not go back to their nest to restart searching a new route when
the existing one is not available; instead, they search for another shortest route based on
the current pheromone information.

This study aims to analyse the performances of a basic version of ACO on two
dynamic JSSPs. The importance of its adaptation mechanism, which is applied in the
procedure of updating the pheromone matrix, is also studied. Furthermore, the effects of
two important parameters: the minimal number of iterations and the size of searching ants
per iteration are investigated.

The outline of the paper is as follows: in Section 2, a literature review of ACO on
scheduling related problems is given; in Section 3, the analysis of dynamic scheduling
problem is given; in Section 4, the application of ACO to dynamic JSSP is described.
In Section 5, the design of experiments is provided and computational results are given in
Section 6. Finally, conclusions and further studies are discussed in Section 7.

2 Literature review

ACO is a general term for ant-based algorithms used for solving NP-hard combinatorial
Optimisation problems. Its introduction can be found in Dorigo et al. (1996, 1999),
Dorigo and Gambardella (1997a, 1997b), Dorigo and Di Caro (1999) and Dorigo and
Stützle (2004).

 Applying Ant Colony Optimization (ACO) algorithm to dynamic job 303

ACO was first introduced to solve JSSP by Colorni et al. (1994) and it was successful
in finding solutions within 10% of the optima for both instances of 10 × 10 and 10 × 15
JSSPs (Dorigo et al., 1996). However, despite showing the viability of the approach, the
computational results are not competitive with the state-of-the-art algorithms (Stützle and
Dorigo, 1999). Then it was applied to three benchmark JSSPs by van der Zwaan and
Marques (1999). The schedules were within 8% and 26%, respectively, of the best known
optima for the 10/10/G/Cmax Muth-Thompson (10 × 10 job-shop scheduling problem:
ten machines and ten jobs) and the 20/10/G/Cmax Lawrence problems, which are the
classic JSSPs for optimising makespan and are known to have optimal solutions recorded
in OR-Library. The authors considered the results promising since the tests were only
partially executed with an iteration number of 2000. The study also presented the
importance of parameter settings.

ACO has also been applied to dynamic JSSPs. The main concern here is about the
updating of the problem graph and the pheromone matrix, which are the main procedures
taking computational space and time. Thus, the strategies to modify the pheromone
matrix become the main topic. Vogel et al. (2002) proposed a continuously
operating the Ant Algorithm, which could easily adapt to sudden changes
in the production system. A Position-Operation-Pheromone-matrix and an allocation
table are maintained. Pheromone values were reset whenever there was a change.
The dynamic ACO was tested on the data collected from a real-world practice
for two months and was compared to a manual, a priority-rule and the GA approaches.
The result generated by ACO was only inferior to the GA approach for the same
problem.

The applications of ACO in the dynamic Travelling Salesman Problem (TSP)
using the adaptation mechanism of the pheromone matrix (Angus and Hendtlass, 2002;
Guntsch and Middendorf, 2001; Guntsch et al., 2001; Guntsch and Middendorf, 2002)
also inspired the current study. The result of Angus and Hendtlass (2002) indicates
that a new route found through adaptation is significantly faster than those found
through starting searching all over again. The experimental results of Guntsch and
Middendorf (2002) also showed that the ACO keeping previous information performs
superior than the approach of restarting, all over again, the procedure upon dynamic
events.

In summary, the applications of ACO in dynamic JSSP are few and it is not clear how
ACO performs in dynamic JSSP. The promising findings in dynamic TSPs inspire the
current studies.

3 Analysis of dynamic scheduling problem

The dynamism of a scheduling problem is usually treated following the approach of a
rolling time horizon (Raman and Talbot, 1993) where a scheduling problem consisting of
all known jobs is solved. When a new job arrives at time t, the part of the solution
consisting of operations already started before t is fixed and a new problem is
constructed, consisting of the backlog to be starting after time t, plus all the operations
from the newly arrived job. The dynamic problem is thus decomposed into a series of
static intermediate problems over time (Branke, 2002). The following analysis is based
on following assumption.

 304 R. Zhou et al.

• the performance objective is makespan, which is the ‘length’ of the schedule, or an
interval between the time at which the schedule begins and the time at which the
schedule ends

• the unexpected incoming job is the only type of dynamic event in the job shop

• the length of processing time is counted in hours.

The optimality values of intermediate schedules over time in a dynamic environment can
be illustrated in Figure 1, with the optimality value formulated as 1/makespan so that the
minimum makespan means the maximal optimality. In the figure, a schedule with an
optimality value of a0 has been executed from time t0 to t1, when a new job J1 arrives.
The optimality of the current schedule immediately drops to 0a′ if job J1 is simply put at
the end of the schedule. Then a rescheduling procedure is triggered to form an
intermediate problem with the backlog operations and all of the operations from job J1
assuming that the scheduling period allowed is 1 1[,]t t′ . A new schedule with an
optimality value of a1 is generated and executed from 1t′ till the second job J2 arrives at
time t2, where a similar procedure repeats.

Figure 1 The optimality values of schedules over time in a dynamic environment

The optimality of a schedule for a given performance measure found in the time intervals
of 1 1[,]t t′ or 2 2[,]t t′ can be affected by the following factors:

• the length of the computational time slot

• the size of an intermediate problem

• the quality of the scheduling algorithm

• dynamic scheduling strategies.

3.1 The length of a computational time slot

A computational time slot refers to the time span that can be allowed for searching a new
intermediate schedule. Its length is problem-dependent; for example, the computational
time slot for the intermediate problem caused by job J1 can be decided by its travelling
time from the reception area to its first workcentre. The length may proportionally affect
the optimality of an intermediate schedule.

 Applying Ant Colony Optimization (ACO) algorithm to dynamic job 305

3.2 The size of an intermediate problem

Given the same length of a computation time slot, a smaller scheduling problem implies
lower computational cost and a better solution and vice versa. A schedule minimising
makespan may have a better opportunity to complete more operations before an
interruption occurs. Thus, the resulting intermediate problem can have a smaller size and
hence a better chance to find a good schedule, which facilitates the generation of another
good schedule in the following disturbed moment. On the contrary, a greater intermediate
problem may have less opportunity to find a good schedule. The poor schedule, in turn,
may produce a larger intermediate problem at the next disturbing moment. As the
procedure goes on, the overall performance of the scheduling system may deteriorate.

3.3 The quality of a scheduling algorithm

A good scheduling algorithm should generate a timely and satisfactory schedule to
guide production. Information adaptation can speed up the procedure of finding
a new optimum as mentioned in Section 2. The idea is to generate a schedule, not from
scratch, but to exploit the optimal information kept in the current solution and quickly
find a good solution for the modified problem. This adaptation also has the advantage of
maintaining similarity between two continual schedules, which is preferred in real life
applications.

3.4 Dynamic scheduling strategies

Dynamic scheduling strategies involve choosing the scheduling frequency or employing
partial scheduling. Scheduling frequency refers to how often the rescheduling procedure
is triggered. It can be event-driven, periodic or performance-driven. The event-driven
approach triggers a rescheduling procedure whenever an event occurs; the periodic
approach triggers the rescheduling procedure according to a pre-set time period;
the performance-driven approach uses performance values of current production system
as the initiator of the rescheduling procedure. These approaches essentially solve
different dynamic scheduling problems where the last two alter the original problem by
postponing the reactions to interrupters.

Partial scheduling considers only a partial set of jobs from an intermediate problem in
a computing interval in order to cover the next estimated execution period. This approach
is inspired by the fact that a schedule may not have an opportunity to be fully executed
before dynamic interrupts; thus, there is no need to include the operations that may not be
processed before those interruptions. Partial scheduling can save computational costs but
its solutions may lack a wide view.

4 ACO applied to dynamic job shop scheduling problem

4.1 ACO algorithm

The flow chart of the ACO algorithm is given in Figure 2. The basic idea is to repetitively
initiate a set of ants to walk in a common environment (problem graph). Each ant
walks through all of those operations (nodes) one by one and thus forms a route,

 306 R. Zhou et al.

which can be interpreted as schedules and its length can represent the value of some
performance measures, like makespan, in this study. The goal of each ant is to minimise
this value.

Figure 2 The flow chart of ACO algorithm

A walking ant leaves behind itself, on its route, some amount of pheromone, which
changes the global environment. The probability for an ant to choose its next node is
directed by both the pheromone amount on the route and the distance from its current
location to the targeted one. Ant i chooses the next node according to the State Transition
Rule in formula (1) (Dorigo et al., 1996).

allowed nodes

(()) 1
() .

(()) 1

ij ij
ij

ij ijj

h d
p h

h d

βα

βα

τ

τ
∈ −

  =
  ∑

 (1)

 Applying Ant Colony Optimization (ACO) algorithm to dynamic job 307

h: iteration index

τij: quantity of pheromone on the edge

dij: heuristic distance between nodes i and j

pij: probability to travel from node i to node j.

The parameters α and β tune the relative importance of the pheromone and the heuristic
distance in decision making. The heuristic distance dij in this study is the sum of the
travelling time between the current workcentre to the target one and the processing time
of the operation in the target workcentre. The environment is represented by a pheromone
matrix, which is updated by the best solution at each iteration. The updating can be
described in formulae (2) and (3) (Dorigo et al., 1996).

(1) (1) () (1).ij ij ijh h hτ ρ τ τ+ = − ⋅ + ∆ + (2)

evaluation (best_so_far)(1) .
0, otherwise

ij

Q
fhτ


∆ + = 


 (3)

ρ: evaporation coefficient

Q: quality of pheromone per unity of distance.

h is the iteration index to indicate the number of iterations that sets of ants have been
initiated. ρ is the evaporation coefficient, which can be a real number between 0 and 1.0.
Pheromones on all edges evaporate at the rate of ρ so as to diversify the searching
procedure into a bigger solution space or out of local optima. Meanwhile, the best
solution kept so far also maintains some good features worthy of further exploration.
This information can be used to intensify certain searching areas through strengthening
the pheromones on all edges of the best route by an amount of ∆τij(h + 1). The abilities to
diversify and intensify its searching areas provide ACO the opportunity to find optimal
solutions for combinatorial problems within reasonable times. Q is an adjustable constant
representing the quantity of pheromone per unity of distance and the choice of its value is
problem-dependent.

4.2 ACO for job shop scheduling problems

Each job in a classical JSSP comprises several operations to be processed on
different machines. Generally, their technique orders and the processing times
are represented in a technical matrix T and a processing time matrix P,
respectively. Each row of T indicates the order of machines that all the
operations of one job will visit while each row of P indicates the processing times that all
those operations will take on their processing machines. Simple examples of them are
given as follows.

Figure 3 presents a technical matrix and a processing matrix of a JSSP with two jobs
and three machines. The first job has three operations O11, O12, and O13 that will be
processed on machines M1, M2 and M3, in that order, and its three operations need
processing times of t(O11), t(O12), and t(O13), respectively, to be processed.

 308 R. Zhou et al.

Figure 3 The technical matrix T and the processing matrix P for a 2 × 3 JSSP

The JSSP above can be represented as a graph (Figure 4). Nodes 1–6 represent operations
O11, O12, to O13, and O21, O22, to O23. They are connected by horizontal
and directional edges reflecting the precedence constraints given in matrix T and
bi-directional edges, which indicate that there are no ordering constraints among
connected operations. Dummy nodes 0 and 7, representing the source and the sink of the
graph, are the starting and the ending points of routing. They are connected by directional
edges to the first and the last operations of all jobs, respectively.

Figure 4 The graph representing a 2 × 3 JSSP

Each edge is associated with a pair of values {tij, dij}, representing the values of the
pheromone on it and the heuristic distance between the two nodes it connects. The value
of dij can be easily looked up from matrix P while the value for tij should be found in the
pheromone matrix, which is updated by the ants who found best solutions (Figure 4).
An example of the pheromone matrix for the previous JSSP is shown in Figure 5, which
records the pheromone values of all the edges.

The first row of Figure 5 gives the pheromone values of the edges starting from node
0 to the rest six nodes (The pheromones of edges end at nodes 7 are not necessary to be
included). Only τ01 = 0.1and τ04 = 0.1 exist since node 0 can only reach node 1
and node 4. Others are initiated to be 0. Similarly, the second row gives the
pheromones of the edges starting from node 1. τ10, τ11 and τ13 do not exist and are thus
initiated as 0. The updating of the pheromone matrix takes the majority of the
computational effort due to the dominant size of the pheromone matrix (n × m + 1)2,
where n and m are the sizes of jobs and machines, respectively. As each ant
walks through all the nodes in the matrix, the computational complexity is
O(s × u × (n × m)2), where s is the size of iterations and u is the number of ants per
iteration.

Ant i cannot guarantee to find a feasible route for a JSSP before it is equipped with
three lists: scheduled operation list (Si), accessible operation list (Ai), and non-accessible
operation list (NAi). List Si includes the nodes that have been visited by ant i; Ai stores the
currently accessible nodes; NAi stores the rest of the unvisited nodes. The size of Si
increases as ant i proceeds in the graph. Finally, the ordered nodes in list Si form a
complete route, which is a schedule for the JSSP.

 Applying Ant Colony Optimization (ACO) algorithm to dynamic job 309

Figure 5 An example of the pheromone matrix for a 2 × 3 JSSP

4.2.1 ACO for job shop scheduling problem with parallel machines

It is assumed in the current study that there can be an arbitrary number of machines in
one workcentre. Thus, a list Mij recording the earliest available times of all machines in
workcentre j has to be maintained by ant i. For example, a M23 = {1.0, 1.3, 2.1}
represents the earliest available times of all three machines in workcentre 3 kept by ant 2.
Machine 1 is available from time 1.0; machine 2 is from time 1.3; and machine 3 is from
time 2.1. M23 turns out to be M23 = {1.8, 1.3, 2.1} if an operation with a processing time
of 0.8 is allocated to machine 1.

The rule to choose a machine from among several available machines is based on the
times that machines become available. In this study, the machine with the earliest
available time has the highest priority to be chosen, assuming all the machines in one
workcentre are identical. A machine should be chosen randomly if more than one
machine has the same earliest available time. This approach avoids the prolonged
idleness of some machines.

4.2.2 ACO in a dynamic job shop scheduling environment

• Updating an intermediate JSSP

At each rescheduling moment, an intermediate JSSP has to be updated before the ACO
algorithm can be executed. The updating of a pheromone matrix involves updating of
nodes and pheromone values. Updating nodes has two aspects: deleting the nodes
representing completed or processing operations and adding the nodes representing all
the operations of the new job. For example, a new job with three operations O31, O32 and
O33 arrives at the job shop at the moment that node 1 is completed and node 4 is on
processing. The updating of nodes includes deleting all the cells related to node 1, as well
as adding in the three new nodes (Figure 6).

The cells related to nodes 1 include those from the third column and the third row
while the cells related to node 4 include those from the sixth column and the sixth row.
All of them are shaded in Figure 6(a) and need to be deleted. Then three new nodes
representing three operations of the new job are added to both the ends of the row and the
column surrounded by black borders in Figure 6(b); all of the new cells are initiated with
appropriate values. Finally, the nodes are re-numbered according to the updated order and
a new pheromone matrix is generated in Figure 6(c).

 310 R. Zhou et al.

Updating pheromone values of a new pheromone matrix can be with or without the
adaptation mechanism. In the former case, the pheromone values on all edge are
re-initiated while in the latter case only the new edges are initiated and the others remain
unchanged. For example, the adaptation mechanism is presented in Figure 6, where only
new edges within the frame of Figure 6(b) are initiated and the others remain unchanged.
In this way, some Optimisation information in the previous problem can be kept and a
new schedule is sought based on it.

Figure 6 Updating the pheromone matrix upon the reception of a new job: (a) deleting the cells
related to nodes 1 and 4; (b) adding in three nodes 7, 8, 9 and (c) the updated
pheromone matrix

(a)

(b)

(c)

 Applying Ant Colony Optimization (ACO) algorithm to dynamic job 311

• Parameters in the dynamic environment

Increasing the values of s and u increases the computational time according to
O(s × u × (n × m)2). Thus both values of s and u have to be constrained as the timeslot for
solving each intermediate JSSP is always limited in a dynamic environment.

The value of smin decides the minimal sets of ants that can be initiated. Its role is to
guarantee a minimal computational timeslot for each intermediate JSSP. The value of smax
decides the maximal sets of ants that can be initiated. Its role is to avoid
over-enhancement of pheromone values on some edges. The variable s within [smin, smax]
can improve the quality of an intermediate schedule as much as possible in the current
test bed where the rescheduling procedure and the event action for a new arrival job (e)
run independently on different computational threads. For example, if e arrives before
smin smin is satisfied in the previous intermediate JSSP, its execution will be delayed until
smin is completed; otherwise, the event action of e can be immediately executed.
Meanwhile, more iterations are allowed to improve the solution if the rescheduling
procedure is not stopped by e and s is not greater than smax. The number of ants (u) per
iteration is also adjustable and its effects will be investigated in experiments.

5 Experimental design

In this study, a scheduler is combined with the existing job shop, which is simulated as a
discrete event system (Zhou et al., 2008) and is responsible for generating new schedules
to direct the operation in the simulated job shop. It is assumed that the reception of a new
job will trigger a rescheduling procedure to find a full schedule within the computational
timeslot, and makespan is the only performance measure. The best-so-far schedule is then
dispatched to be executed in all workcentres. The rescheduling procedure repeats until
the preset stop criteria are met.

5.1 Experimental environments

The studied dynamic job shop is shown in Figure 7 and it has five workcentres and one
receiving or shipping station. The numbers of machines in workcentres 1 to 5 are 4, 2, 5,
3, and 2, respectively. The machines in the same workcentre are assumed identical.
Transportation times (hours) between any two workcentres are given in Table 1, which
are added to with the processing time to form the heuristic value indicated in Section 4.1.

Figure 7 Layout of the job shop (see online version for colours)

 312 R. Zhou et al.

Table 1 Transportation times between workcentres (hours)

Workcentre 1 2 3 4 5 6
1 0 0.01 0.01 0.02 0.02 0.01
2 0.01 0 0.01 0.02 0.02 0.01
3 0.01 0.01 0 0.01 0.01 0.01
4 0.02 0.02 0.01 0 0.01 0.01
5 0.02 0.02 0.01 0.01 0 0.01
6 0.01 0.01 0.01 0.01 0.01 0

New jobs first arrive at the receiving/shipping station (workcentre 6) and travel through
workcentres according to their technical orders and finally leave the system from the
receiving/shipping station. There are totally 5! = 120 types of jobs and each type of job
occurs with a probability of 1/5! and the total processing time for each job is one hour.
The technical matrix and the processing time matrix are given in Figure 8.

Figure 8 The technical matrix and the processing time matrix

The parameters of the ACO algorithm are α = 10.0, β = 10.0, ρ = 0.01, Q = 1.0, and
τ = 0.5 tuned by van der Zwaan and Marques (1999) to solve several JSSP benchmarks.
They are adopted here as each intermediate JSSP is similar to those benchmarks. It is also
assumed that the computation timeslot decided by smin is within the time constraint in
realistic applications. The following are the default values: smin = 25, smax = 100, and
u = 10.

5.2 Experimental variables

Jobs arrive at the shop floor with inter-arrival times that are independent exponential
random variables. The mean job inter-arrival time and the lot size are two problem
variables that decide the utilisations of workcentres. Two levels of job-arrival frequencies
with the same mean size of total jobs are tested. In problem 1, jobs arrive one by one with
the mean job inter-arrival time of nine jobs per hour. In problem 2, jobs are released in
lots and arrive one lot per hour with nine jobs per lot. Jobs in one lot can be different
types and will be processed job by job. In both problems, the type of a job is randomly
decided so that each one of the 120 types has an equal chance of being chosen. Thus, the
mean total processing time demanded from each workcentre is the same.

The size of jobs in a lot decides the severity that an underlying scheduling problem is
disturbed. For example, there are 16 unprocessed operations when a lot of new jobs are
released to the shop floor. The size of operations for the new intermediate JSSP is
increased to 22 if there is only one job (with six operations) in the lot. Thus, the
operations in the previous JSSP take about 73% (16/22) of the total operations in the new

 Applying Ant Colony Optimization (ACO) algorithm to dynamic job 313

JSSP. However, they take only 57% (16/28) if one more job (also with six operations) is
included in the lot. Obviously, the underlying problem is changed more severely by a
large lot than a small one.

The simulation for each problem runs five replications for 200 simulation hours
(totally about 1800 jobs). Only steady-state performance is measured and the average
values of five replications are listed for all performance measures.

5.3 Performance measures

Many performance measures are also recorded as the results of dynamic scheduling
using ACO. Those include machine utilisation and other inventory measures such as
average Work-in-Process (WIP), average/maximal number in each queue, average daily
throughput, average time of jobs spending in the job shop, and average total time of jobs
in queues. Furthermore, the average/maximal size of operations per iteration for ACO is
also measured for performance evaluation.

Machine utilisation refers to the rate of the machine busy time to the whole
experimental steady state period. Average WIP refers to the average size of jobs during
the experimental period. Average daily throughput refers to the average number of
completed jobs per day (eight hours).

6 Computational results and analysis

The results are given in Tables 2–7 where each table records two sets of experimental
results separated by the sign of ‘/’. The corresponding experimental conditions are given
in the first row of table and also separated by the sign of ‘/’. For example, Table 1 records
the experimental results of ACO with and without the pheromone adaptation mechanism.
This condition is given in the first row of Table 1 as “ACO (with/without pheromone
adaptation); the results of ACO with pheromone adaptation are recorded before ‘/’ while
the results of ACO without pheromone adaptation are recorded after ‘/’.

Some general observations can be found as follows. Firstly, workcentres 2 and 5 are
bottlenecks. Secondly, the machine utilisation is inversely proportional to the size of
machines in its workcentre. The above two results are in accordance with the facts that
workcentres 2 and 5 have the smallest numbers of machines (2) while they have the same
workload as the rest of the workcentres. Thirdly, the improvement in the average daily
throughput and the machine utilisation also implies the decreasing in the average number
of jobs in a queue, the maximal number of jobs in a queue, the job average time in the
system, the job average total waiting times in queues, the maximal size of WIP, and the
maximal/average size of operations of intermediate problems, which reflects the overall
performance of ACO as analysed in Section 3.2.

6.1 ACO performance analysis

The performance evaluations of ACO in two dynamic JSSPs are listed in Tables 2 and 3.
The 200 hourly throughputs of the five replications for both problems with the adaptation
mechanism are plotted in Figures 9 and 10 where the moving average (20)iΥ with a
window of 20 (Law and Kelton, 2000) is used. A warming up period of l = 20 hours
(about 180 jobs) can be obtained.

 314 R. Zhou et al.

Figure 9 Moving average (w = 20) of hourly throughputs of problem 1 with adaptation

Figure 10 Moving average (w = 20) of hourly throughputs of problem 2 with adaptation

Table 2 Effectiveness and adaptation of ACO – problem 1

Mean job inter-arrival time: 1/9 hour, 1 job/lot Number of machines: 4, 2, 5, 3, 2
ACO (with/without pheromone adaptation) (10 ants) Simulation time: 200 hours
120 types of jobs (randomly) Warming up time: 20 hours

Performance measure 1 2 3 4 5

Machine utilisation
(workcentre)

0.404/
0.421

0.902/
0.830

0.355/
0.334

0.564/
0.563

0.916/
0.839

Average number in queue
(workcentre)

0.703/
5.764

5.558/
36.115

0.404/
3.316

1.297/
14.793

5.838/
35.726

Maximum number in
queue(workcentre)

7.0(10)/
20.4(33)

21.2(28)/
104.4(140)

5.2(6)/
14.0(24)

9.4(12)/
41.4(70)

21.0(31)/
77.6(123)

Average daily throughput
(shop floor)

72.258/64.871

Average time in system
(shop floor)

2.524/11.022

Average total time in
queues (shop floor)

1.448/9.946

Maximal size of WIP
(shop floor)

48.8(69)/216(380)

Maximal size of
operations

138.8(198)/734.4(1335)

Average size of
operations

59.8/285.8

 Applying Ant Colony Optimization (ACO) algorithm to dynamic job 315

Then 90% confidence intervals for the steady-state mean daily throughputs of the two
problems are constructed as 9,0.9572.258 0.46 5t± (or [72.09, 72.43]) for Problem 1 and

9,0.9573.973 2.13 5t± (or [73.19, 74.75]) for Problem 2. The results show that ACO can
perform well in both dynamic JSSPs to meet the expected daily throughput of 72 jobs as
the mean inter-arrival time of jobs is 1/9 hour and there are 8 hours per day.

Table 3 Effectiveness and adaptation of ACO – problem 2

Mean job inter-arrival time: 1/9 hour, 1 job/lot Number of machines: 4, 2, 5, 3, 2

ACO (smin = 25/40 iterations) (10 ants) Simulation time: 200 hours

120 types of jobs (randomly) Warming up time: 20 hours

Performance measure 1 2 3 4 5

Machine utilisation
(workcentre)

0.438/
0.462

0.922/
0.924

0.364/
0.361

0.617/
0.617

0.935/
0.935

Average number in queue
(workcentre)

3.482/
3.488

27.839/
29.382

2.420/
2.445

5.564/
5.523

30.195/
29.774

Maximum number in
queue (workcentre)

15.8(17)/
17.6(21)

70.0(84)/
80.4(86)

15.2(18)/
15.2(17)

21.0(28)/
22.4(26)

69.8(87)/
71.4(91)

Average daily throughput
(shop floor)

73.973/73.929

Average time in system
(shop floor)

8.426/8.545

Average total time in
queues (shop floor)

7.350/7.469

Maximal size of WIP
(shop floor)

151.4(178)/152.6(178)

Maximal size of
operations

565.8(669)/569.4(683)

Average size of
operations

275.4(364)/278.8

6.2 The effects of the ACO adaptation mechanism

The performance comparisons of ACO with/without adaptation in both problems are also
listed in tables in Tables 2 and 3. The daily throughputs drop from 72.258 to 64.871 in
Problem 1 and from 73.973 to 73.929 in Problem 2 when the adaptation mechanism is
first applied and then removed. The change is significant in Problem 1 and minor in
Problem 2.

The results indicate that the adaptation mechanism has a great effect in the situation
where disturbances are not severe as in Problem 1 and has little effect in the situation
where disturbances are severe as in Problem 2. The observation can be explained as
follows. In Problem 1, jobs arrive one by one and neighbouring intermediate JSSPs are
not markedly different. A good solution can be found through the adaptation mechanism
within a given computational timeslot. However, in Problem 2, there would be no much
difference between the pheromone matrices with and without the adaptation mechanism
since the underlying problem can be dramatically changed by a large lot.

 316 R. Zhou et al.

6.3 The effects of the number of minimal iterations

The results given in Tables 4 and 5 show that increasing the smin deteriorates the
performance of ACO in both problems, especially in Problem 1 (72.258 for smin = 25 and
64.693 for smin = 40), when both problems adopt the adaptation mechanism. This seems
against the initial expectation that increasing the number of iterations can increase the
optimality of an intermediate schedule and thus improve the performance of the overall
performance of ACO.

Table 4 Increase the minimal number of iterations – Problem 1

Mean job inter-arrival time: 1/9 hour, 1 job/lot Number of machines: 4, 2, 5, 3, 2
ACO (smin = 25/40 iterations) (10 ants) Simulation time: 200 hours
120 types of jobs (randomly) Warming up time: 20 hours
Performance measure 1 2 3 4 5
Machine utilisation
(workcentre)

0.404/
0.419

0.902/
0.826

0.355/
0.332

0.564/
0.560

0.916/
0.835

Average number in queue
(workcenre)

0.703/
6.040

5.558/
37.344

0.404/
3.113

1.297/
15.989

5.838/
37.085

Maximum number in
queue (workcentre)

7.0(10)/
24.4(35)

21.2(28)/
78.2(140)

5.2(6)/
13.4(27)

9.4(12)/
45.4(75)

21.0(31)/
75.4(117)

Average daily throughput
(shop floor)

72.258/64.693

Average time in system
(shop floor)

2.524/11.458

Average total time in
queues (shop floor)

1.448/10.382

Maximal size of WIP
(shop floor)

48.8(69)/222(383)

Maximal size of ACO
operations

138.8(198)/778.2(1362)

Average size of ACO
operations

59.8/300.2

This phenomenon could be explained as follows. The pheromone values of certain edges
are increased too much as the result of increasing smin and the over-strengthened
pheromone matrix becomes too rigid to be developed further to find a new good solution.
Thus, the scheduler can only produce a worse intermediate schedule each time, especially
in a highly dynamic environment where the computational time is limited.

6.4 The effects of changing the number of ants per iteration

The results testing the effects of changing the number of ants per iteration are given in
Tables 2, 3, 6 and 7, which show that the overall performance of ACO gets worse as the
size of ants per iteration increases. For example, with other problem parameters
unchanged, the average daily throughput decreases from 72.258, 68.364, to 65.502 in
Problem 1 and from 73.973, 72.978, to 71.502 in Problem 2 when the size of ants per
iteration increases from 10, 20, to 40.

 Applying Ant Colony Optimization (ACO) algorithm to dynamic job 317

Table 5 Increase the minimal number of iterations – Problem 2

Mean job inter-arrival time: 1/9 hour, 1 job/lot Number of machines: 4, 2, 5, 3, 2

ACO (smin = 25/40 iterations) (10 ants) Simulation time: 200 hours

120 types of jobs (randomly) Warming up time: 20 hours

Performance measure 1 2 3 4 5

Machine utilisation
(workcentre)

0.438/
0.459

0.922/
0.918

0.364/
0.334

0.617/
0.530

0.935/
0.930

Average number in queue
(workcentre)

3.482/
4.640

27.839/
31.667

2.420/
3.436

5.564/
8.295

30.195/
32.961

Maximum number in queue
(workcentre)

15.8(17)/
19.0(30)

70.0(84)/
73.6(90)

15.2(18)/
16.4(24)

21.0(28.0)/
25.2(37)

69.8(87)/
73.6(86)

Average daily throughput
(shop floor)

73.973/73.138

Average time in system
(shop floor)

8.426/9.657

Average total time in queues
(shop floor)

7.350/8.581

Maximal size of WIP
(shop floor)

151.4(178)/164(194)

Maximal size of ACO
operations

565.8(669)/598.6(687)

Average size of ACO
operations

275.4(364)/302.2(413)

The phenomenon can be explained as follows. A schedule with a smaller makespan is
more likely found by ants with increased number; subsequently, a greater pheromone
value is added on related edges. The optimality found in this schedule is an advantage if
it can be fully realised without disturbance. Otherwise, it could be a disadvantage for
causing over-strengthened edges. Similar to the situation in Section 6.3, the pheromone
matrix may become rigid in capturing new information introduced by new jobs and fail to
give good schedules for the following intermediate problems. Thus, increasing the
number of ant per iteration may lead to an inferior overall performance in a dynamic
environment. For both cases, u = 10 seems working well.

Table 6 Increase the number of ants per iteration – Problem 1

Mean job inter-arrival time: 1/1 hour, 9 jobs/lot Number of machines: 4, 2, 5, 3, 2
ACO (u = 20/40) Simulation time: 200 hours
120 types of jobs (randomly) Warming up time: 20 hours

Performance measure 1 2 3 4 5

Machine utilisation
(workcentre)

0.421/
0.423

0.873/
0.838

0.348/
0.335

0.550/
0.566

0.884/
0.848

Average number in
queue (workcentre)

4.666/
5.209

34.264/
32.949

3.112/
2.937

12.153/14.
593

34.237/
32.734

 318 R. Zhou et al.

Table 6 Increase the number of ants per iteration – Problem (continued)

Mean job inter-arrival time: 1/1 hour, 9 jobs/lot Number of machines: 4, 2, 5, 3, 2

ACO (u = 20/40) Simulation time: 200 hours

120 types of jobs (randomly) Warming up time: 20 hours

Performance measure 1 2 3 4 5

Maximum number in
queue(workcentre)

18.2(34)/
22.2(34)

75.2(143)/
70(138)

13.2(22)/
11.8(21)

36.2(79)/
41.2(83)

72.8(122)/
68.6(116)

Average daily
throughput (shop floor)

68.364/65.502

Average time in system
(shop floor)

9.999/10.232

Average total time in
queues (shop floor)

8.923/9.156

Maximal size of WIP
(shop floor)

189.8(389)/200.2(382)

Maximal size of ACO
operations

626.6(1320)/674.2(1332)

Average size of ACO
operations

275.4(529)/262.6(531)

Table 7 Increase the number of ants per iteration – Problem 2

Mean job inter-arrival time: 1/1 hour, 9 jobs/lot Number of machines: 4, 2, 5, 3, 2

ACO (u = 20/40) Simulation time: 200 hours

120 types of jobs (randomly) Warming up time: 20 hours

Performance measure 1 2 3 4 5

Machine utilisation
(workcentre)

0.434/
0.453

0.916/
0.903

0.319/
0.355

0.614/
0.605

0.929/
0.914

Average number in
queue (workcentre)

4.940/
9.140

31.686/
37.849

3.372/
6.538

8.251/
16.221

33.826/
37.819

Maximum number in
queue (workcentre)

19.8(32)/
30.0(41)

73.4(84)/
77.2(97)

17.6(23)/
27.4(36)

25.2(36)/
38.8(45)

72.4(87)/
75.6(94)

Average daily
throughput (shop floor)

72.978/71.502

Average time in system
(shop floor)

9.759/12.349

Average total time in
queues (shop floor)

8.683/11.273

Maximal size of WIP
(shop floor)

166.6(213)/177.6(282)

Maximal size of ACO
operations

599.8(679)/718.2(963)

Average size of ACO
operations

305.4(443)/358.6(507)

 Applying Ant Colony Optimization (ACO) algorithm to dynamic job 319

7 Conclusions and further studies

A basic version of ACO has been applied to two dynamic JSSPs with the same workloads
but in different dynamic levels and disturbing severity. The experimental results show:

• the ACO performs effectively in both cases

• the adaptation mechanism of the ACO does have a great effect in the situation where
disturbances are slight but it has little effect in the situation where disturbances are
severe

• improving the optimality of immediate schedules but reducing the flexibility of the
pheromone matrix will lead to an inferior long-term performance.

Further studies include applying a more advanced version of ACO to dynamic JSSP,
exploring better ways to updating the pheromone matrix dynamically, and comparing the
performance of ACO with other approaches in systematically designed scenarios.

References
Angus, D. and Hendtlass, T. (2002) Ant Colony Optimization Applied to a Dynamically Changing

Problem, IEA/AIE, LNAI 2358, pp.618–627.
Branke, J. (2004) Evolutionary Optimization in Dynamic Environments, Kluwer Academic

Publishers, Boston.
Colorni, A., Dorigo, M., Maniezzo, V. and Trubian, M. (1994) ‘Ant system for Job-shop

scheduling’, JORBEL-Belgian Journal of Operations Research Statistics and Computer
Science, Vol. 34, No. 1, pp.39–53.

Dorigo, M. and Di Caro, G. (1999) ‘The Ant Colony Optimization Meta-Heuristic’, in Corne, D.,
Dorigo, M. and Glover, F. (Eds.): New Ideas in Optimization, McGraw-Hill, pp.11–32.

Dorigo, M. and Gambardella, L.M. (1997a) ‘Ant colonies for the traveling salesman problem’,
BioSystems, Vol. 43, No. 2, pp.73–81.

Dorigo, M. and Gambardella, L.M. (1997b) ‘Ant colony System: a cooperative learning approach
to the traveling salesman problem’, IEEE Transactions on Evolutionary Computation, Vol. 6,
No. 4, pp.317–365.

Dorigo, M. and Stützle, T. (2004) Ant Colony Optimization, A Bradford Book, The MIT Press,
Cambridge, Massachusetts, London, England.

Dorigo, M., Di Caro, G. and Gambardella, L.M. (1999) ‘Ant algorithms for discrete optimization’,
Artificial Life, Vol. 5, No. 3, pp.137–172.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996) ‘The Ant system: optimization by a colony of
cooperating agents’, IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol. 26,
No. 1, pp.1–13.

Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability: An Introduction to the Theory
of NP-Completeness, Freeman W.H., San Francisco.

Guntsch, M. and Middendorf, M. (2001) ‘Pheromone modification strategies for ant algorithms
applied to dynamic TSP’, in Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S.,
Hart, E., Raidl, G.R. and Tijink, H. (Eds.): Applications of Evolutionary Computing:
Proceedings of EvoWorkshops 2001, Number 2037 in Lecture Notes in Computer Science,
Springer-Verlag, pp.213–222.

Guntsch, M., Middendorf, M. and Schmeck, H. (2001) ‘An ant colony optimization
approach to dynamic TSP’, in Spector, L., Goodman, E.D., Wu, A., Langdon, W.B. and
Voigt, H.M. (Eds.): Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), Morgan Kaufmann Publishers, pp.860–867.

 320 R. Zhou et al.

Guntsch, M. and Middendorf, M. (2002) ‘Applying population based ACO to dynamic
optimization problems, in Ant algorithms’, Proceedings of Third International Workshop
ANTS 2002, Vol. 2463, of LNCS, pp.111–122.

Law, A.M. and Kelton, W.D. (2000) Simulation Modeling and Analysis, McGraw-Hill,
Boston, MA.

Lin, S-C., Goodman, E.D. and Punch, W.F. (1997) ‘A genetic algorithm approach to dynamic job
shop scheduling problems’, in Back, T. (Ed.): Proceedings of the 7th International Conference
on Genetic Algorithm, Morgan Kaufmann, San Francisco, CA, pp.481–488.

Raman, N. and Talbot, F.B. (1993) ‘The job shop tardiness problem: a decomposition approach’,
European Journal of Operational Research, Vol. 69, pp.187–199.

Stützle, T. and Dorigo, M. (1999) ‘ACO algorithms for the traveling salesman problem’,
|in Miettinen, K., Mäkälä, M.M., Neittaanmäki, P. and Périaux, J. (Eds.): In Evolutionary
Algorithms in Engineering and Computer Science, John Wiley & Sons, Chichester, UK,
pp.163–183.

Vogel, A., Fischer, M., Jaehn, H. And Teich, T. (2002) ‘Real-world shop floor scheduling by ant
colony optimization’, in Dorigo, M., Middendorf, M. and Stützle, T. (Eds.): ANTS 2002,
LNCS 2463, pp.268–273.

Zhou, R., Lee, H.P. and Nee, A.Y.C. (2008) ‘Simulating the generic job shop as a multi-agent
system’, Special Issue of International Journal of Intelligent Systems Technologies and
Applications (IJISTA), Vol. 4, Nos. 1–2, pp.5–33.

van der Zwaan, S. and Marques, C. (1999) ‘Ant colony optimization for job shop scheduling’,
Proceedings of the 3rd’Workshop on Genetic Algorithms and Artificial Life (GAAL’99)),
22 April, LaSEEB – IST, IST, Lisbon.

Website
OR-Library, www.ms.ic.ac.uk/info.html

