
   

 

   

   
 

   

   

 

   

   Int. J. Manufacturing Research, Vol. 3, No. 3, 2008 301    
 

   Copyright © 2008 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Applying Ant Colony Optimization (ACO) algorithm to 
dynamic job shop scheduling problems 

Rong Zhou, Heow Pueh Lee*  
and Andrew Y.C. Nee 
Department of Mechanical Engineering, 
National University of Singapore, 
9 Engineering Drive 1, 117576, Singapore 
E-mail: mpeleehp@nus.edu.sg 
*Corresponding author 

Abstract: Ant Colony Optimization (ACO) is applied to two dynamic job 
scheduling problems, which have the same mean total workload but different 
dynamic levels and disturbing severity. Its performances are statistically 
analysed and the effects of its adaptation mechanism and parameters  
such as the minimal number of iterations and the size of searching ants are 
studied. The results show that ACO can perform effectively in both cases;  
the adaptation mechanism can significantly improve the performance of ACO 
when disturbances are not severe; increasing the size of iterations and ants per 
iteration does not necessarily improve the overall performance of ACO. 
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1 Introduction 

A job shop manufacturing system is specifically designed to simultaneously  
process different types of products in one shop floor. Jobs have their own technical  
orders and a pre-determined processing time for each one of their operations. They route 
in the shop floor to be processed on machines till all of their operations are completed.  
A Job Shop Scheduling Problem (JSSP) refers to the static problem where  
optimal schedules are searched for a given set of jobs. It is generally NP-hard  
(Garey and Johnson, 1979). In the real world, a JSSP becomes dynamic when jobs arrive 
continuously and it thus has an additional complexity. Continuing with production  
in the face of dynamic events, while optimising the system performance, remains  
a challenge. 

Industry has generally combined pragmatic approaches like Manufacturing Resource 
Planning (MRP II) or Enterprise Resource Planning (ERP) for medium-term production 
planning and then dispatching rules for short-term operational resource allocation. 
Dispatching rules are widely adopted for their robustness. However, they do not 
guarantee the realisation of the full potential of a shop floor since their decision making is 
based on local and current conditions. As computer capability is improved greatly, 
scheduling systems using algorithms, especially metaheuristic algorithms, have 
continuously been a research topic for providing optimised solutions. For example,  
the Genetic Algorithm (GA) has been applied to dynamic JSSPs by Lin et al. (1997) and 
others. 

Ant Colony Optimization (ACO) is another metaheuristic proposed by Dorigo et al. 
(1999) and it has been applied to JSSP by Colorni et al. (1994) and van der Zwaan and 
Marques (1999). However, its applications in dynamic JSSP are limited. The goal of this 
study is to apply ACO to two dynamic JSSPs exploring its unique property of seeking 
solutions through the adaptation of its pheromone matrix. The inspiration is from the 
phenomenon that ants will not go back to their nest to restart searching a new route when 
the existing one is not available; instead, they search for another shortest route based on 
the current pheromone information. 

This study aims to analyse the performances of a basic version of ACO on two 
dynamic JSSPs. The importance of its adaptation mechanism, which is applied in the 
procedure of updating the pheromone matrix, is also studied. Furthermore, the effects of 
two important parameters: the minimal number of iterations and the size of searching ants 
per iteration are investigated. 

The outline of the paper is as follows: in Section 2, a literature review of ACO on 
scheduling related problems is given; in Section 3, the analysis of dynamic scheduling 
problem is given; in Section 4, the application of ACO to dynamic JSSP is described.  
In Section 5, the design of experiments is provided and computational results are given in 
Section 6. Finally, conclusions and further studies are discussed in Section 7. 

2 Literature review 

ACO is a general term for ant-based algorithms used for solving NP-hard combinatorial 
Optimisation problems. Its introduction can be found in Dorigo et al. (1996, 1999), 
Dorigo and Gambardella (1997a, 1997b), Dorigo and Di Caro (1999) and Dorigo and 
Stützle (2004). 
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ACO was first introduced to solve JSSP by Colorni et al. (1994) and it was successful 
in finding solutions within 10% of the optima for both instances of 10 × 10 and 10 × 15 
JSSPs (Dorigo et al., 1996). However, despite showing the viability of the approach, the 
computational results are not competitive with the state-of-the-art algorithms (Stützle and 
Dorigo, 1999). Then it was applied to three benchmark JSSPs by van der Zwaan and 
Marques (1999). The schedules were within 8% and 26%, respectively, of the best known 
optima for the 10/10/G/Cmax Muth-Thompson (10 × 10 job-shop scheduling problem:  
ten machines and ten jobs) and the 20/10/G/Cmax Lawrence problems, which are the 
classic JSSPs for optimising makespan and are known to have optimal solutions recorded 
in OR-Library. The authors considered the results promising since the tests were only 
partially executed with an iteration number of 2000. The study also presented the 
importance of parameter settings. 

ACO has also been applied to dynamic JSSPs. The main concern here is about the 
updating of the problem graph and the pheromone matrix, which are the main procedures 
taking computational space and time. Thus, the strategies to modify the pheromone 
matrix become the main topic. Vogel et al. (2002) proposed a continuously  
operating the Ant Algorithm, which could easily adapt to sudden changes  
in the production system. A Position-Operation-Pheromone-matrix and an allocation 
table are maintained. Pheromone values were reset whenever there was a change.  
The dynamic ACO was tested on the data collected from a real-world practice  
for two months and was compared to a manual, a priority-rule and the GA approaches. 
The result generated by ACO was only inferior to the GA approach for the same  
problem.  

The applications of ACO in the dynamic Travelling Salesman Problem (TSP)  
using the adaptation mechanism of the pheromone matrix (Angus and Hendtlass, 2002; 
Guntsch and Middendorf, 2001; Guntsch et al., 2001; Guntsch and Middendorf, 2002) 
also inspired the current study. The result of Angus and Hendtlass (2002) indicates  
that a new route found through adaptation is significantly faster than those found  
through starting searching all over again. The experimental results of Guntsch and 
Middendorf (2002) also showed that the ACO keeping previous information performs 
superior than the approach of restarting, all over again, the procedure upon dynamic 
events. 

In summary, the applications of ACO in dynamic JSSP are few and it is not clear how 
ACO performs in dynamic JSSP. The promising findings in dynamic TSPs inspire the 
current studies. 

3 Analysis of dynamic scheduling problem 

The dynamism of a scheduling problem is usually treated following the approach of a 
rolling time horizon (Raman and Talbot, 1993) where a scheduling problem consisting of 
all known jobs is solved. When a new job arrives at time t, the part of the solution 
consisting of operations already started before t is fixed and a new problem is 
constructed, consisting of the backlog to be starting after time t, plus all the operations 
from the newly arrived job. The dynamic problem is thus decomposed into a series of 
static intermediate problems over time (Branke, 2002). The following analysis is based 
on following assumption.  
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• the performance objective is makespan, which is the ‘length’ of the schedule, or an 
interval between the time at which the schedule begins and the time at which the 
schedule ends 

• the unexpected incoming job is the only type of dynamic event in the job shop 

• the length of processing time is counted in hours. 

The optimality values of intermediate schedules over time in a dynamic environment can 
be illustrated in Figure 1, with the optimality value formulated as 1/makespan so that the 
minimum makespan means the maximal optimality. In the figure, a schedule with an 
optimality value of a0 has been executed from time t0 to t1, when a new job J1 arrives. 
The optimality of the current schedule immediately drops to 0a′  if job J1 is simply put at 
the end of the schedule. Then a rescheduling procedure is triggered to form an 
intermediate problem with the backlog operations and all of the operations from job J1 
assuming that the scheduling period allowed is 1 1[ , ]t t′ . A new schedule with an 
optimality value of a1 is generated and executed from 1t′  till the second job J2 arrives at 
time t2, where a similar procedure repeats. 

Figure 1 The optimality values of schedules over time in a dynamic environment 

 

The optimality of a schedule for a given performance measure found in the time intervals 
of 1 1[ , ]t t′  or 2 2[ , ]t t′  can be affected by the following factors:  

• the length of the computational time slot 

• the size of an intermediate problem 

• the quality of the scheduling algorithm 

• dynamic scheduling strategies. 

3.1 The length of a computational time slot 

A computational time slot refers to the time span that can be allowed for searching a new 
intermediate schedule. Its length is problem-dependent; for example, the computational 
time slot for the intermediate problem caused by job J1 can be decided by its travelling 
time from the reception area to its first workcentre. The length may proportionally affect 
the optimality of an intermediate schedule.  
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3.2 The size of an intermediate problem 

Given the same length of a computation time slot, a smaller scheduling problem implies 
lower computational cost and a better solution and vice versa. A schedule minimising 
makespan may have a better opportunity to complete more operations before an 
interruption occurs. Thus, the resulting intermediate problem can have a smaller size and 
hence a better chance to find a good schedule, which facilitates the generation of another 
good schedule in the following disturbed moment. On the contrary, a greater intermediate 
problem may have less opportunity to find a good schedule. The poor schedule, in turn, 
may produce a larger intermediate problem at the next disturbing moment. As the 
procedure goes on, the overall performance of the scheduling system may deteriorate. 

3.3 The quality of a scheduling algorithm 

A good scheduling algorithm should generate a timely and satisfactory schedule to  
guide production. Information adaptation can speed up the procedure of finding  
a new optimum as mentioned in Section 2. The idea is to generate a schedule, not from 
scratch, but to exploit the optimal information kept in the current solution and quickly 
find a good solution for the modified problem. This adaptation also has the advantage of 
maintaining similarity between two continual schedules, which is preferred in real life 
applications. 

3.4 Dynamic scheduling strategies 

Dynamic scheduling strategies involve choosing the scheduling frequency or employing 
partial scheduling. Scheduling frequency refers to how often the rescheduling procedure 
is triggered. It can be event-driven, periodic or performance-driven. The event-driven 
approach triggers a rescheduling procedure whenever an event occurs; the periodic 
approach triggers the rescheduling procedure according to a pre-set time period;  
the performance-driven approach uses performance values of current production system 
as the initiator of the rescheduling procedure. These approaches essentially solve 
different dynamic scheduling problems where the last two alter the original problem by 
postponing the reactions to interrupters. 

Partial scheduling considers only a partial set of jobs from an intermediate problem in 
a computing interval in order to cover the next estimated execution period. This approach 
is inspired by the fact that a schedule may not have an opportunity to be fully executed 
before dynamic interrupts; thus, there is no need to include the operations that may not be 
processed before those interruptions. Partial scheduling can save computational costs but 
its solutions may lack a wide view. 

4 ACO applied to dynamic job shop scheduling problem 

4.1 ACO algorithm 

The flow chart of the ACO algorithm is given in Figure 2. The basic idea is to repetitively 
initiate a set of ants to walk in a common environment (problem graph). Each ant  
walks through all of those operations (nodes) one by one and thus forms a route,  
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which can be interpreted as schedules and its length can represent the value of some 
performance measures, like makespan, in this study. The goal of each ant is to minimise 
this value. 

Figure 2 The flow chart of ACO algorithm 

 

A walking ant leaves behind itself, on its route, some amount of pheromone, which 
changes the global environment. The probability for an ant to choose its next node is 
directed by both the pheromone amount on the route and the distance from its current 
location to the targeted one. Ant i chooses the next node according to the State Transition 
Rule in formula (1) (Dorigo et al., 1996). 
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h: iteration index 

τij: quantity of pheromone on the edge 

dij: heuristic distance between nodes i and j 

pij: probability to travel from node i to node j. 

The parameters α and β tune the relative importance of the pheromone and the heuristic 
distance in decision making. The heuristic distance dij in this study is the sum of the 
travelling time between the current workcentre to the target one and the processing time 
of the operation in the target workcentre. The environment is represented by a pheromone 
matrix, which is updated by the best solution at each iteration. The updating can be 
described in formulae (2) and (3) (Dorigo et al., 1996).  

( 1) (1 ) ( ) ( 1).ij ij ijh h hτ ρ τ τ+ = − ⋅ + ∆ +  (2) 

evaluation (best_so_far)( 1) .
0, otherwise

ij

Q
fhτ


∆ + = 


 (3) 

ρ: evaporation coefficient 

Q: quality of pheromone per unity of distance. 

h is the iteration index to indicate the number of iterations that sets of ants have been 
initiated. ρ is the evaporation coefficient, which can be a real number between 0 and 1.0. 
Pheromones on all edges evaporate at the rate of ρ so as to diversify the searching 
procedure into a bigger solution space or out of local optima. Meanwhile, the best 
solution kept so far also maintains some good features worthy of further exploration.  
This information can be used to intensify certain searching areas through strengthening 
the pheromones on all edges of the best route by an amount of ∆τij(h + 1). The abilities to 
diversify and intensify its searching areas provide ACO the opportunity to find optimal 
solutions for combinatorial problems within reasonable times. Q is an adjustable constant 
representing the quantity of pheromone per unity of distance and the choice of its value is 
problem-dependent. 

4.2 ACO for job shop scheduling problems 

Each job in a classical JSSP comprises several operations to be processed on  
different machines. Generally, their technique orders and the processing times  
are represented in a technical matrix T and a processing time matrix P,  
respectively. Each row of T indicates the order of machines that all the  
operations of one job will visit while each row of P indicates the processing times that all 
those operations will take on their processing machines. Simple examples of them are 
given as follows. 

Figure 3 presents a technical matrix and a processing matrix of a JSSP with two jobs  
and three machines. The first job has three operations O11, O12, and O13 that will be 
processed on machines M1, M2 and M3, in that order, and its three operations need 
processing times of t(O11), t(O12), and t(O13), respectively, to be processed. 
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Figure 3 The technical matrix T and the processing matrix P for a 2 × 3 JSSP 

 

The JSSP above can be represented as a graph (Figure 4). Nodes 1–6 represent operations 
O11, O12, to O13, and O21, O22, to O23. They are connected by horizontal  
and directional edges reflecting the precedence constraints given in matrix T and  
bi-directional edges, which indicate that there are no ordering constraints among 
connected operations. Dummy nodes 0 and 7, representing the source and the sink of the 
graph, are the starting and the ending points of routing. They are connected by directional 
edges to the first and the last operations of all jobs, respectively. 

Figure 4 The graph representing a 2 × 3 JSSP  

 

Each edge is associated with a pair of values {tij, dij}, representing the values of the 
pheromone on it and the heuristic distance between the two nodes it connects. The value 
of dij can be easily looked up from matrix P while the value for tij should be found in the 
pheromone matrix, which is updated by the ants who found best solutions (Figure 4).  
An example of the pheromone matrix for the previous JSSP is shown in Figure 5, which 
records the pheromone values of all the edges. 

The first row of Figure 5 gives the pheromone values of the edges starting from node 
0 to the rest six nodes (The pheromones of edges end at nodes 7 are not necessary to be 
included). Only τ01 = 0.1and τ04 = 0.1 exist since node 0 can only reach node 1  
and node 4. Others are initiated to be 0. Similarly, the second row gives the  
pheromones of the edges starting from node 1. τ10, τ11 and τ13 do not exist and are thus 
initiated as 0. The updating of the pheromone matrix takes the majority of the 
computational effort due to the dominant size of the pheromone matrix (n ×  m + 1)2, 
where n and m are the sizes of jobs and machines, respectively. As each ant  
walks through all the nodes in the matrix, the computational complexity is  
O(s × u × (n × m)2), where s is the size of iterations and u is the number of ants per 
iteration. 

Ant i cannot guarantee to find a feasible route for a JSSP before it is equipped with 
three lists: scheduled operation list (Si), accessible operation list (Ai), and non-accessible 
operation list (NAi). List Si includes the nodes that have been visited by ant i; Ai stores the 
currently accessible nodes; NAi stores the rest of the unvisited nodes. The size of Si 
increases as ant i proceeds in the graph. Finally, the ordered nodes in list Si form a 
complete route, which is a schedule for the JSSP. 
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Figure 5 An example of the pheromone matrix for a 2 × 3 JSSP 

 

4.2.1 ACO for job shop scheduling problem with parallel machines 

It is assumed in the current study that there can be an arbitrary number of machines in 
one workcentre. Thus, a list Mij recording the earliest available times of all machines in 
workcentre j has to be maintained by ant i. For example, a M23 = {1.0, 1.3, 2.1} 
represents the earliest available times of all three machines in workcentre 3 kept by ant 2. 
Machine 1 is available from time 1.0; machine 2 is from time 1.3; and machine 3 is from 
time 2.1. M23 turns out to be M23 = {1.8, 1.3, 2.1} if an operation with a processing time 
of 0.8 is allocated to machine 1. 

The rule to choose a machine from among several available machines is based on the 
times that machines become available. In this study, the machine with the earliest 
available time has the highest priority to be chosen, assuming all the machines in one 
workcentre are identical. A machine should be chosen randomly if more than one 
machine has the same earliest available time. This approach avoids the prolonged 
idleness of some machines.  

4.2.2 ACO in a dynamic job shop scheduling environment 

• Updating an intermediate JSSP 

At each rescheduling moment, an intermediate JSSP has to be updated before the ACO 
algorithm can be executed. The updating of a pheromone matrix involves updating of 
nodes and pheromone values. Updating nodes has two aspects: deleting the nodes 
representing completed or processing operations and adding the nodes representing all 
the operations of the new job. For example, a new job with three operations O31, O32 and 
O33 arrives at the job shop at the moment that node 1 is completed and node 4 is on 
processing. The updating of nodes includes deleting all the cells related to node 1, as well 
as adding in the three new nodes (Figure 6). 

The cells related to nodes 1 include those from the third column and the third row 
while the cells related to node 4 include those from the sixth column and the sixth row.  
All of them are shaded in Figure 6(a) and need to be deleted. Then three new nodes 
representing three operations of the new job are added to both the ends of the row and the 
column surrounded by black borders in Figure 6(b); all of the new cells are initiated with 
appropriate values. Finally, the nodes are re-numbered according to the updated order and 
a new pheromone matrix is generated in Figure 6(c).  



   

 

   

   
 

   

   

 

   

   310 R. Zhou et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Updating pheromone values of a new pheromone matrix can be with or without the 
adaptation mechanism. In the former case, the pheromone values on all edge are  
re-initiated while in the latter case only the new edges are initiated and the others remain 
unchanged. For example, the adaptation mechanism is presented in Figure 6, where only 
new edges within the frame of Figure 6(b) are initiated and the others remain unchanged.  
In this way, some Optimisation information in the previous problem can be kept and a 
new schedule is sought based on it.  

Figure 6 Updating the pheromone matrix upon the reception of a new job: (a) deleting the cells 
related to nodes 1 and 4; (b) adding in three nodes 7, 8, 9 and (c) the updated 
pheromone matrix 

 
(a) 

 
(b) 

 
(c) 
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• Parameters in the dynamic environment 

Increasing the values of s and u increases the computational time according to 
O(s × u × (n × m)2). Thus both values of s and u have to be constrained as the timeslot for 
solving each intermediate JSSP is always limited in a dynamic environment.  

The value of smin decides the minimal sets of ants that can be initiated. Its role is to 
guarantee a minimal computational timeslot for each intermediate JSSP. The value of smax 
decides the maximal sets of ants that can be initiated. Its role is to avoid  
over-enhancement of pheromone values on some edges. The variable s within [smin, smax] 
can improve the quality of an intermediate schedule as much as possible in the current 
test bed where the rescheduling procedure and the event action for a new arrival job (e) 
run independently on different computational threads. For example, if e arrives before 
smin smin is satisfied in the previous intermediate JSSP, its execution will be delayed until 
smin is completed; otherwise, the event action of e can be immediately executed. 
Meanwhile, more iterations are allowed to improve the solution if the rescheduling 
procedure is not stopped by e and s is not greater than smax. The number of ants (u) per 
iteration is also adjustable and its effects will be investigated in experiments. 

5 Experimental design 

In this study, a scheduler is combined with the existing job shop, which is simulated as a 
discrete event system (Zhou et al., 2008) and is responsible for generating new schedules 
to direct the operation in the simulated job shop. It is assumed that the reception of a new 
job will trigger a rescheduling procedure to find a full schedule within the computational 
timeslot, and makespan is the only performance measure. The best-so-far schedule is then 
dispatched to be executed in all workcentres. The rescheduling procedure repeats until 
the preset stop criteria are met. 

5.1 Experimental environments 

The studied dynamic job shop is shown in Figure 7 and it has five workcentres and one 
receiving or shipping station. The numbers of machines in workcentres 1 to 5 are 4, 2, 5, 
3, and 2, respectively. The machines in the same workcentre are assumed identical. 
Transportation times (hours) between any two workcentres are given in Table 1, which 
are added to with the processing time to form the heuristic value indicated in Section 4.1. 

Figure 7 Layout of the job shop (see online version for colours) 
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Table 1 Transportation times between workcentres (hours) 

Workcentre 1 2 3 4 5 6 
1 0 0.01 0.01 0.02 0.02 0.01 
2 0.01 0 0.01 0.02 0.02 0.01 
3 0.01 0.01 0 0.01 0.01 0.01 
4 0.02 0.02 0.01 0 0.01 0.01 
5 0.02 0.02 0.01 0.01 0 0.01 
6 0.01 0.01 0.01 0.01 0.01 0 

New jobs first arrive at the receiving/shipping station (workcentre 6) and travel through 
workcentres according to their technical orders and finally leave the system from the 
receiving/shipping station. There are totally 5! = 120 types of jobs and each type of job 
occurs with a probability of 1/5! and the total processing time for each job is one hour. 
The technical matrix and the processing time matrix are given in Figure 8. 

Figure 8 The technical matrix and the processing time matrix 

 

The parameters of the ACO algorithm are α = 10.0, β = 10.0, ρ = 0.01, Q = 1.0, and 
τ = 0.5 tuned by van der Zwaan and Marques (1999) to solve several JSSP benchmarks. 
They are adopted here as each intermediate JSSP is similar to those benchmarks. It is also 
assumed that the computation timeslot decided by smin is within the time constraint in 
realistic applications. The following are the default values: smin = 25, smax = 100, and 
u = 10. 

5.2 Experimental variables 

Jobs arrive at the shop floor with inter-arrival times that are independent exponential 
random variables. The mean job inter-arrival time and the lot size are two problem 
variables that decide the utilisations of workcentres. Two levels of job-arrival frequencies 
with the same mean size of total jobs are tested. In problem 1, jobs arrive one by one with 
the mean job inter-arrival time of nine jobs per hour. In problem 2, jobs are released in 
lots and arrive one lot per hour with nine jobs per lot. Jobs in one lot can be different 
types and will be processed job by job. In both problems, the type of a job is randomly 
decided so that each one of the 120 types has an equal chance of being chosen. Thus, the 
mean total processing time demanded from each workcentre is the same.  

The size of jobs in a lot decides the severity that an underlying scheduling problem is 
disturbed. For example, there are 16 unprocessed operations when a lot of new jobs are 
released to the shop floor. The size of operations for the new intermediate JSSP is 
increased to 22 if there is only one job (with six operations) in the lot. Thus, the 
operations in the previous JSSP take about 73% (16/22) of the total operations in the new 
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JSSP. However, they take only 57% (16/28) if one more job (also with six operations) is 
included in the lot. Obviously, the underlying problem is changed more severely by a 
large lot than a small one.  

The simulation for each problem runs five replications for 200 simulation hours 
(totally about 1800 jobs). Only steady-state performance is measured and the average 
values of five replications are listed for all performance measures.  

5.3 Performance measures 

Many performance measures are also recorded as the results of dynamic scheduling  
using ACO. Those include machine utilisation and other inventory measures such as 
average Work-in-Process (WIP), average/maximal number in each queue, average daily 
throughput, average time of jobs spending in the job shop, and average total time of jobs 
in queues. Furthermore, the average/maximal size of operations per iteration for ACO is 
also measured for performance evaluation.  

Machine utilisation refers to the rate of the machine busy time to the whole 
experimental steady state period. Average WIP refers to the average size of jobs during 
the experimental period. Average daily throughput refers to the average number of 
completed jobs per day (eight hours).  

6 Computational results and analysis 

The results are given in Tables 2–7 where each table records two sets of experimental 
results separated by the sign of ‘/’. The corresponding experimental conditions are given 
in the first row of table and also separated by the sign of ‘/’. For example, Table 1 records 
the experimental results of ACO with and without the pheromone adaptation mechanism. 
This condition is given in the first row of Table 1 as “ACO (with/without pheromone 
adaptation); the results of ACO with pheromone adaptation are recorded before ‘/’ while 
the results of ACO without pheromone adaptation are recorded after ‘/’. 

Some general observations can be found as follows. Firstly, workcentres 2 and 5 are 
bottlenecks. Secondly, the machine utilisation is inversely proportional to the size of 
machines in its workcentre. The above two results are in accordance with the facts that 
workcentres 2 and 5 have the smallest numbers of machines (2) while they have the same 
workload as the rest of the workcentres. Thirdly, the improvement in the average daily 
throughput and the machine utilisation also implies the decreasing in the average number 
of jobs in a queue, the maximal number of jobs in a queue, the job average time in the 
system, the job average total waiting times in queues, the maximal size of WIP, and the 
maximal/average size of operations of intermediate problems, which reflects the overall 
performance of ACO as analysed in Section 3.2. 

6.1 ACO performance analysis 

The performance evaluations of ACO in two dynamic JSSPs are listed in Tables 2 and 3. 
The 200 hourly throughputs of the five replications for both problems with the adaptation 
mechanism are plotted in Figures 9 and 10 where the moving average (20)iΥ  with a 
window of 20 (Law and Kelton, 2000) is used. A warming up period of l = 20 hours 
(about 180 jobs) can be obtained. 
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Figure 9 Moving average (w = 20) of hourly throughputs of problem 1 with adaptation 

 

Figure 10 Moving average (w = 20) of hourly throughputs of problem 2 with adaptation 

 

Table 2 Effectiveness and adaptation of ACO – problem 1 

Mean job inter-arrival time: 1/9 hour, 1 job/lot Number of machines: 4, 2, 5, 3, 2 
ACO (with/without pheromone adaptation) (10 ants) Simulation time: 200 hours 
120 types of jobs (randomly) Warming up time: 20 hours 

Performance measure 1 2 3 4 5 

Machine utilisation 
(workcentre) 

0.404/ 
0.421 

0.902/ 
0.830 

0.355/ 
0.334 

0.564/ 
0.563 

0.916/ 
0.839 

Average number in queue 
(workcentre) 

0.703/ 
5.764 

5.558/ 
36.115 

0.404/ 
3.316 

1.297/ 
14.793 

5.838/ 
35.726 

Maximum number in 
queue(workcentre) 

7.0(10)/ 
20.4(33) 

21.2(28)/ 
104.4(140) 

5.2(6)/ 
14.0(24) 

9.4(12)/
41.4(70) 

21.0(31)/ 
77.6(123) 

Average daily throughput 
(shop floor) 

72.258/64.871 

Average time in system 
(shop floor) 

2.524/11.022 

Average total time in 
queues (shop floor) 

1.448/9.946 

Maximal size of WIP 
(shop floor) 

48.8(69)/216(380) 

Maximal size of 
operations 

138.8(198)/734.4(1335) 

Average size of 
operations 

59.8/285.8 
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Then 90% confidence intervals for the steady-state mean daily throughputs of the two 
problems are constructed as 9,0.9572.258 0.46 5t±  (or [72.09, 72.43]) for Problem 1 and 

9,0.9573.973 2.13 5t±  (or [73.19, 74.75]) for Problem 2. The results show that ACO can 
perform well in both dynamic JSSPs to meet the expected daily throughput of 72 jobs as 
the mean inter-arrival time of jobs is 1/9 hour and there are 8 hours per day. 

Table 3 Effectiveness and adaptation of ACO – problem 2 

Mean job inter-arrival time: 1/9 hour, 1 job/lot Number of machines: 4, 2, 5, 3, 2 

ACO (smin = 25/40 iterations) (10 ants) Simulation time: 200 hours 

120 types of jobs (randomly) Warming up time: 20 hours 

Performance measure 1 2 3 4 5 

Machine utilisation 
(workcentre) 

0.438/ 
0.462 

0.922/ 
0.924 

0.364/ 
0.361 

0.617/ 
0.617 

0.935/ 
0.935 

Average number in queue 
(workcentre) 

3.482/ 
3.488 

27.839/ 
29.382 

2.420/ 
2.445 

5.564/ 
5.523 

30.195/ 
29.774 

Maximum number in 
queue (workcentre) 

15.8(17)/ 
17.6(21) 

70.0(84)/
80.4(86) 

15.2(18)/
15.2(17) 

21.0(28)/ 
22.4(26) 

69.8(87)/ 
71.4(91) 

Average daily throughput 
(shop floor) 

73.973/73.929 

Average time in system 
(shop floor) 

8.426/8.545 

Average total time in 
queues (shop floor) 

7.350/7.469 

Maximal size of WIP 
(shop floor) 

151.4(178)/152.6(178) 

Maximal size of 
operations 

565.8(669)/569.4(683) 

Average size of 
operations 

275.4(364)/278.8 

6.2 The effects of the ACO adaptation mechanism 

The performance comparisons of ACO with/without adaptation in both problems are also 
listed in tables in Tables 2 and 3. The daily throughputs drop from 72.258 to 64.871 in 
Problem 1 and from 73.973 to 73.929 in Problem 2 when the adaptation mechanism is 
first applied and then removed. The change is significant in Problem 1 and minor in 
Problem 2. 

The results indicate that the adaptation mechanism has a great effect in the situation 
where disturbances are not severe as in Problem 1 and has little effect in the situation 
where disturbances are severe as in Problem 2. The observation can be explained as 
follows. In Problem 1, jobs arrive one by one and neighbouring intermediate JSSPs are 
not markedly different. A good solution can be found through the adaptation mechanism 
within a given computational timeslot. However, in Problem 2, there would be no much 
difference between the pheromone matrices with and without the adaptation mechanism 
since the underlying problem can be dramatically changed by a large lot.  
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6.3 The effects of the number of minimal iterations 

The results given in Tables 4 and 5 show that increasing the smin deteriorates the 
performance of ACO in both problems, especially in Problem 1 (72.258 for smin = 25 and 
64.693 for smin = 40), when both problems adopt the adaptation mechanism. This seems 
against the initial expectation that increasing the number of iterations can increase the 
optimality of an intermediate schedule and thus improve the performance of the overall 
performance of ACO.  

Table 4 Increase the minimal number of iterations – Problem 1 

Mean job inter-arrival time: 1/9 hour, 1 job/lot  Number of machines: 4, 2, 5, 3, 2 
ACO (smin = 25/40 iterations) (10 ants) Simulation time: 200 hours 
120 types of jobs (randomly) Warming up time: 20 hours 
Performance measure 1 2 3 4 5 
Machine utilisation 
(workcentre) 

0.404/ 
0.419 

0.902/ 
0.826 

0.355/ 
0.332 

0.564/ 
0.560 

0.916/ 
0.835 

Average number in queue 
(workcenre) 

0.703/ 
6.040 

5.558/ 
37.344 

0.404/ 
3.113 

1.297/ 
15.989 

5.838/ 
37.085 

Maximum number in 
queue (workcentre) 

7.0(10)/ 
24.4(35) 

21.2(28)/ 
78.2(140) 

5.2(6)/ 
13.4(27) 

9.4(12)/ 
45.4(75) 

21.0(31)/ 
75.4(117) 

Average daily throughput 
(shop floor) 

72.258/64.693 

Average time in system 
(shop floor) 

2.524/11.458 

Average total time in 
queues (shop floor) 

1.448/10.382 

Maximal size of WIP 
(shop floor) 

48.8(69)/222(383) 

Maximal size of ACO 
operations 

138.8(198)/778.2(1362) 

Average size of ACO 
operations 

59.8/300.2 

This phenomenon could be explained as follows. The pheromone values of certain edges 
are increased too much as the result of increasing smin and the over-strengthened 
pheromone matrix becomes too rigid to be developed further to find a new good solution. 
Thus, the scheduler can only produce a worse intermediate schedule each time, especially 
in a highly dynamic environment where the computational time is limited. 

6.4 The effects of changing the number of ants per iteration 

The results testing the effects of changing the number of ants per iteration are given in 
Tables 2, 3, 6 and 7, which show that the overall performance of ACO gets worse as the 
size of ants per iteration increases. For example, with other problem parameters 
unchanged, the average daily throughput decreases from 72.258, 68.364, to 65.502 in 
Problem 1 and from 73.973, 72.978, to 71.502 in Problem 2 when the size of ants per 
iteration increases from 10, 20, to 40. 
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Table 5 Increase the minimal number of iterations – Problem 2 

Mean job inter-arrival time: 1/9 hour, 1 job/lot Number of machines: 4, 2, 5, 3, 2 

ACO (smin = 25/40 iterations) (10 ants) Simulation time: 200 hours 

120 types of jobs (randomly) Warming up time: 20 hours 

Performance measure 1 2 3 4 5 

Machine utilisation 
(workcentre) 

0.438/ 
0.459 

0.922/ 
0.918 

0.364/ 
0.334 

0.617/ 
0.530 

0.935/ 
0.930 

Average number in queue 
(workcentre) 

3.482/ 
4.640 

27.839/ 
31.667 

2.420/ 
3.436 

5.564/ 
8.295 

30.195/ 
32.961 

Maximum number in queue 
(workcentre) 

15.8(17)/
19.0(30) 

70.0(84)/ 
73.6(90) 

15.2(18)/
16.4(24) 

21.0(28.0)/ 
25.2(37) 

69.8(87)/ 
73.6(86) 

Average daily throughput 
(shop floor) 

73.973/73.138 

Average time in system  
(shop floor) 

8.426/9.657 

Average total time in queues 
(shop floor) 

7.350/8.581 

Maximal size of WIP  
(shop floor) 

151.4(178)/164(194) 

Maximal size of ACO 
operations 

565.8(669)/598.6(687) 

Average size of ACO 
operations 

275.4(364)/302.2(413) 

The phenomenon can be explained as follows. A schedule with a smaller makespan is 
more likely found by ants with increased number; subsequently, a greater pheromone 
value is added on related edges. The optimality found in this schedule is an advantage if 
it can be fully realised without disturbance. Otherwise, it could be a disadvantage for 
causing over-strengthened edges. Similar to the situation in Section 6.3, the pheromone 
matrix may become rigid in capturing new information introduced by new jobs and fail to 
give good schedules for the following intermediate problems. Thus, increasing the 
number of ant per iteration may lead to an inferior overall performance in a dynamic 
environment. For both cases, u = 10 seems working well. 

Table 6 Increase the number of ants per iteration – Problem 1 

Mean job inter-arrival time: 1/1 hour, 9 jobs/lot Number of machines: 4, 2, 5, 3, 2 
ACO (u = 20/40) Simulation time: 200 hours 
120 types of jobs (randomly) Warming up time: 20 hours 

Performance measure 1 2 3 4 5 

Machine utilisation 
(workcentre) 

0.421/ 
0.423 

0.873/ 
0.838 

0.348/ 
0.335 

0.550/ 
0.566 

0.884/ 
0.848 

Average number in 
queue (workcentre) 

4.666/ 
5.209 

34.264/ 
32.949 

3.112/ 
2.937 

12.153/14.
593 

34.237/ 
32.734 
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Table 6 Increase the number of ants per iteration – Problem (continued) 

Mean job inter-arrival time: 1/1 hour, 9 jobs/lot Number of machines: 4, 2, 5, 3, 2 

ACO (u = 20/40) Simulation time: 200 hours 

120 types of jobs (randomly) Warming up time: 20 hours 

Performance measure 1 2 3 4 5 

Maximum number in 
queue(workcentre) 

18.2(34)/ 
22.2(34) 

75.2(143)/
70(138) 

13.2(22)/ 
11.8(21) 

36.2(79)/ 
41.2(83) 

72.8(122)/ 
68.6(116) 

Average daily 
throughput (shop floor) 

68.364/65.502 

Average time in system 
(shop floor) 

9.999/10.232 

Average total time in 
queues (shop floor) 

8.923/9.156 

Maximal size of WIP 
(shop floor) 

189.8(389)/200.2(382) 

Maximal size of ACO 
operations 

626.6(1320)/674.2(1332) 

Average size of ACO 
operations 

275.4(529)/262.6(531) 

Table 7 Increase the number of ants per iteration – Problem 2 

Mean job inter-arrival time: 1/1 hour, 9 jobs/lot Number of machines: 4, 2, 5, 3, 2 

ACO (u = 20/40) Simulation time: 200 hours 

120 types of jobs (randomly) Warming up time: 20 hours 

Performance measure 1 2 3 4 5 

Machine utilisation 
(workcentre) 

0.434/ 
0.453 

0.916/ 
0.903 

0.319/ 
0.355 

0.614/ 
0.605 

0.929/ 
0.914 

Average number in 
queue (workcentre) 

4.940/ 
9.140 

31.686/ 
37.849 

3.372/ 
6.538 

8.251/ 
16.221 

33.826/ 
37.819 

Maximum number in 
queue (workcentre) 

19.8(32)/
30.0(41) 

73.4(84)/
77.2(97) 

17.6(23)/
27.4(36) 

25.2(36)/
38.8(45) 

72.4(87)/ 
75.6(94) 

Average daily 
throughput (shop floor) 

72.978/71.502 

Average time in system 
(shop floor) 

9.759/12.349 

Average total time in 
queues (shop floor) 

8.683/11.273 

Maximal size of WIP 
(shop floor) 

166.6(213)/177.6(282) 

Maximal size of ACO 
operations 

599.8(679)/718.2(963) 

Average size of ACO 
operations 

305.4(443)/358.6(507) 
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7 Conclusions and further studies 

A basic version of ACO has been applied to two dynamic JSSPs with the same workloads 
but in different dynamic levels and disturbing severity. The experimental results show:  

• the ACO performs effectively in both cases 

• the adaptation mechanism of the ACO does have a great effect in the situation where 
disturbances are slight but it has little effect in the situation where disturbances are 
severe 

• improving the optimality of immediate schedules but reducing the flexibility of the 
pheromone matrix will lead to an inferior long-term performance. 

Further studies include applying a more advanced version of ACO to dynamic JSSP, 
exploring better ways to updating the pheromone matrix dynamically, and comparing the 
performance of ACO with other approaches in systematically designed scenarios. 
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