
Implementation of an Ant Colony
Optimization technique for job shop
scheduling problem

Jun Zhang, Xiaomin Hu, X. Tan, J.H. Zhong and
Q. Huang
Department of Computer Science, Sun Yat-sen University, P.R. China

Research on optimization of the job shop scheduling problem (JSP) is one of the most significant
and promising areas of optimization. Instead of the traditional optimization method, this paper
presents an investigation into the use of an Ant Colony System (ACS) to optimize the JSP. The
main characteristics of this system are positive feedback, distributed computation, robustness
and the use of a constructive greedy heuristic. In this paper, an improvement of the
performance of ACS will be discussed. The numerical experiments of ACS were implemented
in a small JSP. The optimized results of the ACS are favourably compared with the traditional
optimization methods.

Key words: job shop scheduling problem (JSP); Ant Colony System (ACS); Ant Colony
Optimization (ACO); natural computation (NC).

1. Introduction

The job shop scheduling problem (JSP) is one of the most difficult combinatorial
problems in classical scheduling theory (Garey et al ., 1976) and it is NP-hard (non-
deterministic polynomial time-hard). Only some special cases with a small number of
jobs and machines can be solved in polynomial times (Ling, 2003). The standard model

Address for correspondence: Jun Zhang, Department of Computer Science, Sun Yat-sen University,
P.R. China. E-mail: junzhang@ieee.org

– 2006 The Institute of Measurement and Control 10.1191/0142331206tm165oa

Transactions of the Institute of Measurement and Control 28, 1 (2006) pp. 93�/108

of a JSP is the J/M/G/Cmax model, where J and M stand for the number of jobs and
machines, and the G and Cmax represent the precedence rules and the minimum
makespan, respectively. Makespan is the time used in completing operations of all
jobs. Cmax is the maximum earliest completion time of the last operation of any job. In
1989, Carlier and Pinson used a branch-and-bound algorithm to solve 10/10/G/Cmax

exactly. Many methods have been applied to the JSP, including linear programming,
Lagrangian relaxation, branch-and-bound, constraint satisfaction, local search, neural
networks, (Huang and Ma, 1999; Huang et al ., 2005) expert systems (Jain and Meeran,
1999), genetic algorithm (Candido et al ., 1998; Della Croce et al ., 1995; Ling, 2003; Mati
et al ., 2001), greedy heuristic (Mati et al ., 2001), Taboo Search (Bames and Chambers,
1995; Dell Amico and Trubian, 1993; Wan and Feng, 2003), simulated annealing (van
Laarhoven et al ., 1992; Matsuo et al ., 1988) and the Ant System (Colorni et al ., 1993a;
Zhou et al ., 2004).

The Ant Colony System (ACS) algorithm is a distributed algorithm which is
extensively used to solve NP-hard combinatorial optimization problems. Its original
model is based on the foraging behaviour of real ants who find an approximately
shortest way to the food by detecting the density of pheromone deposited on the route.
Pheromone for the real ants is a chemical substance deposited by ants as they walk,
but here it acts as something that lures the artificial ants. Deneubourg has shown that
ants create pheromone paths from their nests to a food source and that the path with
the highest pheromone concentration is the shortest path between the nest and the
food source. In the computer-based algorithm �/ ACS algorithm �/ its objective is also
to find a ‘shortest route’, ie, a solution with the optimal cost over all feasible ones.

In this paper, the ACS algorithm was applied in a JSP. The parameters in ACS are
tuned to make the results better. The ACS in this paper used a�/ 0.1, b�/ 2.0, r�/ 0.01
and q0�/0.8 in solving the JSP. The case when b�/0 is studied and a conclusion is
drawn.

This paper is structured as follows. In Section 2, the JSP is explained and is formally
defined. In Section 3, a modified ACS algorithm by Dorigo is described. In Section 4,
the transformations of ACS applied to JSP are given. In Section 5, there are case studies
with the ACS algorithm described in this paper and a comparison is made with
optimal values in seven classic JSP problems. The summary and conclusions are given
in Section 6.

2. Jop shop scheduling problem

2.1 Definition of a JSP

A JSP may be formulated as follows: given an n�/m static JSP, in which n jobs must
be processed exactly once on each of m machines, the set of n jobs can be defined as
J�/{J1,. . ., Jn}, while the set of m machines is M�/{M1,. . ., Mm}. Each job is routed
through the m machines in a pre-defined order, which is also known as operation
precedence constraints. The processing of a job on one machine is called an operation,
and the processing of job i on machine j is denoted by uij . So the set of operations can
be defined as O�/{uij ji �/[1, n], j �/[1, m]}, in which n denotes the number of jobs and
m denotes the number of machines. Once processing is initiated, an operation cannot

94 Ant Colony Optimization for JSP

be interrupted, and concurrency is not allowed. That is, processing uij cannot begin
processing until ui,j�1 has completed.

Each operation of uij �/O on machine j of job i must have an integral processing time
pij (pij �/0), which is also known as the machine processing constraints. The set O is
decomposed into chains corresponding to the jobs: if the relation uip 0/uiq is existed in
a chain, then both operations uip and uiq belong to job Ji and there is no machine k ,
which is not p or q , and relations such as uip 0/uik or uik 0/uiq . This means, in relation
uip 0/uiq , uiq is directly immediate to uip .

The value Cij �/Cik�/pij is a completion time in operation uij in relation uik 0/uij . pij is
pre-set and the problem is only to find out the completion time Cij (/�uij �/O) which
minimizes:

Cmax� max
all uij �O

(Cij)�max
uik0uij

(Cik�pij) (1)

which is goal of our JSP.

2.2 Constraints for the JSP

The JSP subjects to two constraints, known as the operation precedence constraint and
machine processing constraint:

1) The operation precedence constraint on the job is that the order of operations of job is
fixed and the processing of an operation cannot be interrupted and concurrent.

��k(uip 0 uik�uik 0 uiq); when uip 0 uiq; k"pfflk"q (2)

Considering delays in a job such as waiting time for a machine during operations,
we can obtain

Cij]Cik�pij when uik 0 uij (3)

2) The machine processing constraint is that only a single job can be processed at the
same time on the same machine

Cij]Ckj�pij; operation ukj is finished before uij (4)

The operations must be assigned to the time intervals in such a way that once an
operation is started it must be completed.

2.3 Representation of the JSP

The disjunctive graph D�/ (N, A, B) is a useful tool for visualizing the problem. N is
the set of nodes, which correspond to all of the operations. A is the set of conjunctive
directed arcs that are based on the precedence rules, and B is the set of disjunctive,
undirected edges that connect two operations from two different jobs that are
processed on the same machine. On a disjunctive graph associated with an instance
of JSP, N, A and B are defined as:

Zhang et al. 95

N�/O@/ {u0}@/ {uN�1}; {u0} and {uN�1} are the special dummy nodes which identify the
start and the completion of the overall job shop. N is the total number of valid operations
that N�/n*m , here n is the number of jobs while m is the number of machines.

A�/{(uij , ui,j�1)juij 0/ui,j�1 is the operation order for job Ji , 15/i5/n , 15/j5/m }@/{(u0, ui 1):
ui 1 is the first operation for job Ji , 15/i5/n }@/{(uim, uN� 1): uim is the last operation for job
Ji , 15/i5/n }.

/ B�f(uij; uhj) ½15 i5n; 15 j5m; h" ig:
The edge weight is associated with the processing time p

ij
with each operations uij �/O

(p0�/pN�1�/0). The length of a path is defined as the sum of the weight within the
constraints of jobs and machines of all operations in this path from the start point to
the completion point of a job.

An example of 3/3/G/Cmax JSP (FT03) with three jobs and three machines is shown
in Figure 1.

Here, each node represents one operation which is assigned with a unique number
based on the job and the use of the machine. The tuples (job, machine) time beside the
operation node stand for the number of job and machine and the processing time of
this operation. For example, (1, 2) 5 beside node 1 shows us operation 1 belongs to job
1 and will be handled on machine 2, with the processing time of 5. We can also use u11

to stand for node 1, while the latter 1 stands for the first operation in job 1. The
machine that job i used in its jth operation is defined in uij .machine . Hence, we know
that all of the nodes in Figure 1 form the node set N , while nodes 0 and 10 are the
special dummy nodes which identify the start and the completion of the job shop. In a
JSP of n jobs and m machines, the maximum number of nodes is jN j�/n*m�/2.
Besides node 0 and node 10, every line of nodes in Figure 1 makes up of one specific
job, eg, nodes 1, 2 and 3 make up job 1, while nodes 4, 5 and 6 is job 2, and so on. Every
job must use m machines once and only once, so there are m operations in each job.
With a node of number index (0B/index B/jN j), we can get it as in job (index�/ 1)/m
with the operation (index�/ 1)%m�/1 in the job. The arrowheads in Figure 1 show us
the operation order of each operation. Based on the operation precedence constraint,
we know that each node has exactly one pre-operation node and exactly one
immediate one, excluding the start node and the completion node.

1 2 3

4 5 6

7 8 9

0 10

(1, 2) 5 (1, 3) 2 (1, 1) 3

(2, 1) 2 (2, 2) 4 (2, 3) 1

(3, 1) 1 (3, 3) 4
(3, 2) 3

Figure 1 Graphic representation of 3/3/G/Cmax JSP (FT03)

96 Ant Colony Optimization for JSP

There is a solution of the problem in Figure 1, with a processing chain as {4, 1, 7, 8, 2,
3, 5, 9, 6}, in which the numbers of the chain stand for the node number. The procedure
of the solution is described in Figure 2.

The values Cij in the matrix are the completion times of job i on machine j . All of the
operations are started at time 0. First, node 4 is executed, which is from job 2 and
operates on machine 1. During this time, machine 1 is busy until it finishes the
operation in node 4. When the operation on node 4 finishes, the time is 2, so C21�/ 2.
When node 4 is operating, machines 2 and 3 are free, so any operation demand within
the job precedence constraint on these two machines could be satisfied. Node 1 is
executed, which is operated on machine 2 of job 1. When this finishes, the time is 5, so
C12�/5. Node 7 is executed, which is operated on machine 1 of job 3. At time 2, the
operation of job 2 on machine 1 has completed, and the operation in node 7 is the first
operation in job 3, so the execution in node 7 can start at time 2 and complete at time 3,
so C31�/3. To node 8, its precedent is node 7, which has been finished at time 3. The
immediate operation of node 7 is node 8, so the next operation in job 3 is node 8. At
time 3, machine 3 is free so that node 8 can be started and it completes at time 7, so
C33�/7. The rest of the operations can be analysed in the same way. When all the
operations have been completed, the time we get is 12, which is the makespan of
the operation chain. Note that the procedure in the processing chain does not violate
the constraints of the JSP. Our aim is to find the feasible operation chain of the
minimum makespan.

3. Ant Colony System

3.1 The fundamentals of Ant Colony Optimization (ACO)

Ant colonies exhibit very interesting behaviours: one ant has limited capabilities, but
the behaviour of a whole ant colony is highly structured. They are capable of finding
the shortest path from their nest to a food source, without using visual cues but by
exploiting pheromone information (Beckers et al ., 1992; Hölldobler and Wilson, 1990;
Huang and Zhao, 2005). While walking, ants can deposit some pheromone on the
path. The probability that the ants coming later choose the path is proportional to the
amount of pheromone on the path, previously deposited by other ants.

Figure 3 (a)�/(d) show the ants’ miraculous behaviour. Considering Figure 3(a), ants
want to find food, so they set off from their nest and arrive at a decision point at which
they have to decide which path to go on, for there are three different paths. Since they
have no clue about which is the best choice, they choose the path just randomly, and

Figure 2 Matrix description of Figure 1

Zhang et al. 97

on average the numbers of ants on every path are the same. Figure 3(b) shows what
happens in the instant immediately following, supposing that all ants walk at the same
speed and deposit the same amount of pheromone. In Figure 3(c), since the middle
path is the shortest one, ants following this path reach the food point first. Therefore
more ants will complete their tour through the middle path in the same period of time,
and more pheromone will be deposited in this road correspondingly. Figure 3(d)
shows what happens when ants return to their nest after they find the food; since there
is more pheromone in the middle path, ants will prefer in probability to choose the
middle path. This in turn increases the number of ants choosing the middle and
shortest path. This is a positive feedback effect with which very soon all ants will
follow the shortest path.

Real ants are not only capable of finding the shortest path from a food source to the
nest (Colorni et al ., 1993; Dorigo and Gambardella, 1997; Hölldobler and Wilson, 1990)
without using visual cues, but also they are capable of adapting to changes in the
environment. For example, they will find a new shortest path once the old one is no
longer feasible because of an obstacle placed in the way (Beckers et al ., 1992). The
notions and motivations of the ant algorithm were originally introduced in Colorni
and Dorigo (1991) and Colorni et al . (1993). Studies of ants’ behaviour on problem
solving and optimization were explored in those papers.

The first algorithm inspired by the behaviour of real ants was the Ant System (AS),
which was first derived by Dorigo (1992). AS has been tested on some small TSP
(Travelling Salesman Problem) instances and compared with other general heuristics.
Some initial results were promising and have shown the viability of the approach.
However, for larger size instances, AS gives a very poor solution quality compared with
other heuristic algorithms. To improve the performance, a new ant algorithm, called
Ant Colony System (ACS), was presented in 1997 (Dorigo and Gambardella, 1997).

Nest Food

A1

A2

Nest Food

A1

A2
A3

A4

A5

(a)

Nest Food

A1

A2

A3

A4

A5

A6

A7

A8

A9 Nest Food

A1

A2

A3

A4

A5

A8

A7

A10

A11

A6A9

(c) (d)

(b)

Figure 3 How real ants find a shortest road. (a) Ants arrive at a
decision point. (b) Ants choose three roads randomly. (c) Since
ants move at a constant speed, the ants which choose the shortest
road in the middle reach the food faster than those who choose the
other two roads. (d) Pheromone accumulates at a higher rate in the
middle road, and more ants will choose this road.

98 Ant Colony Optimization for JSP

3.2 State transition rule

The basic model of the ACS is that: m ants are initially placed at a start point with n
decision points to the destination, and then let go to find routes according to some
rules.

At the very beginning, we assume that the pheromone in every possible tour is at
a quite low level t0. Dorigo et al . (1996) has made some experiments on t0�/0, t0�/

1/(n*Lnn), t0 is inspired by Q-learning. Lnn is the tour length produced by the nearest
neighbour heuristic (Rosenkrantz et al ., 1977) and n is the number of decision points.
He found that the result on t0�/ 0 is worse than the other ones and the latter ones
perform quite well. In this paper, we choose to use t0�/ 1/(n*Lnn) for the reason that it
is simpler and the performance is adequate.

To accelerate the convergent speed of the ants, which is also known as the speed of
finding a best way, once at a decision point, the ants make their choices based on the
pheromone on the routes and the length of the selective routes. The more ants select
the specific route, the more pheromone is dropped and the route must be a short one.
To fully utilize the guiding information and avoid early convergence of finding a
route, two selection methods are applied. Early convergence happens when too many
ants gather in a wrong path and the pheromone becomes so dense that a better route
cannot be discovered.

Each ant builds a tour by repeatedly applying a stochastic greedy rule, which is
called the state transition rule.

s� arg maxu � J(r)f[t(r; u)] �[h(r; u)b]g; if q5q0 (exploitation)
S; otherwise (biased exploitation)

�
(5)

(r, u) represents an edge between point r and u , and t (r, u) stands for the pheromone
on edge (r, u). h(r, u) is the desirability of edge (r, u), which is usually defined as the
inverse of the length of edge (r, u). q is a random number uniformly distributed in
[0, 1], q0 is a user-defined parameter with (05/q05/1), b is the parameter controlling
the relative importance of the desirability. J(r) is the set of edges available at decision
point r. S is a random variable selected according to the probability distribution given
below.

P(r; s)�

[t(r; s)] � [h(r; s)b]X
u� J(r)

[t(r;u)] � [h(r;u)b]
; if s � J(r)

0; otherwise

8>><
>>:

(6)

The selection strategy used above is also called ‘roulette wheel’ selection since its
mechanism is a simulation of the operation of a roulette wheel. Every city has its
percentage in the roulette wheel and the bigger this percentage is, the larger the width
of slot in the wheel so that the probability of choosing that city becomes larger. After a
random spinning of the wheel, which is performed by generating a random number, a
slot is chosen and the next route the ant will go on is determined.

Zhang et al. 99

3.3 Pheromone updating rule

A certain amount of pheromone is dropped when an ant goes by. It is a continuous
process, but we can regard it as a discrete release by some rules. Here we introduce
two kinds of pheromone update strategies, called local updating rule and the global
updating rule.

3.3.1 Local updating rule: While constructing its tour, an ant will modify the
amount of pheromone on the passed edges by applying the local updating rule.

t(r; s) 1 (1�r) �t(r; s)�r �t0 (7)

where r is the coefficient representing pheromone evaporation (note: 0B/rB/1).

3.3.2 Global updating rule: Once all ants have arrived at their destination, the
amount of pheromone on the edge is modified again by applying the global updating
rule.

t(r; s) 1 (1�a) �t(r; s)�a �Dt(r; s) (8)

where

Dt(r; s)
(Lgb)

�1; if (r; s) � global-best-tour
0; otherwise

�
(9)

Here 0B//aB/1 is the pheromone decay parameter, and Lgb is the length of the globally
best tour from the beginning of the trial. Dt(r; s) is the pheromone addition on edge
(r, s). We can see that only the ant that finds the global best tour can achieve the
pheromone increase.

3.4 The performance of the ACS

The flowchart for the ACS algorithm can be defined in Figure 4.
At the beginning of the algorithm, all parameters are initialized. There are m ants in

the colonies that are placed at the starting points, and one iteration is completed when
all ants arrive at the destination. When an ant chooses an edge to go on, it performs a
local pheromone update. When the whole ant colony has reached the destination,
global pheromone updating is performed. It influences the next iteration of ant
colonies finding routes. When the maximum number of iterations reached, the
algorithm stopped and the shortest route from the start point to the destination is
found.

4. Integration of ACS and JSP

4.1 Conversion from the ACS problem formulation to the JSP

From the ACS model described above, we can convert it to solve the JSP. In a JSP of n
jobs and m machines, the modified ACS is described as follows.

100 Ant Colony Optimization for JSP

By adding two dummy nodes which identify the start and the completion of the
overall job shop, we now have the start point and the destination in the ACS. At first,
ants are all allocated in operation u0 (as in node 0), whose aim is uN� 1 (as in node
n+m�/1).

The set of next operations for an ant in node i to visit is not all those not visited, as in
the general ACS, but the nodes that follow the operation precedence constraints
(machine constraints do not need to be considered here, for the ants’ tour is linear).
The set ant k can visit in the next operation is Sk , which is formed dynamically
according to the order constraint of jobs and the working states (busy or free) of the
machines. At the beginning of the iteration, Sk is initialized to be the first operation of
all the jobs, ie, Sk �/ {ui1ji �/[1, n]}, where n is the number of jobs. We can determine
which machine the operation is using by uij .machine . When ant k moves from uip to uiq ,
uip is deleted but uiq is added to Sk if machine uiq .machine is free. All the next

Start

Initialize parameters

 Terminal condition
is reached ?

Place each ant on
a starting node

All ants
arrived ?

Each ant applies state
transition rule to choose

a next route

Perform local pheromone
updating rule

Apply global pheromone
updating rule

Finish

Yes

No

Yes

No

Figure 4 Flowchart for ACS

Zhang et al. 101

operations in the other jobs whose pre-operations have completed but where the new
one has not yet been started are also added to Sk .

The transition rule of ant k in ACO can be changed to:

s� arg maxu�Sk
f[t(r; u)] �[h(u)b]g; if q5q0 (exploitation)

S; otherwise (biased exploitation)

�
(10)

and

Pk(r; s)�

[t(r; s)] � [h(s)b]X
u �Sk

[t(r;u)] � [h(u)]b
; if s � Sk

0; otherwise

8>><
>>:

(11)

t(r, s) is the pheromone on the edge (r, s), which is from node r to node s . h(s)�/ 1/p(s),
which is the inverse of the processing time of operation s . Sk is the set of operations
that ant k can visit in the next step.

Correspondingly, Dt(r; s) in ACO is changed to

Dt(r; s)� (Tgb)
�1; if (r; s) � global-best-tour

0; otherwise

�
(12)

where Tgb is the global best scheduling time in a complete job shop iteration.
The remaining formulas in ACO are used as their original types.

4.2 The performance of ACS in JSP

After completing all operations, we have to compute the maximum scheduling time
of this tour. The algorithm of computing the scheduling time of a tour is shown in
Figure 5.

The algorithm of the ACS for the JSP mainly includes two loops, which is the same
as the original ACS in Figure 4. A complete pseudocode for ACS in JSP is presented in
the Appendix.

5. Case study

Seven classic JSP problems (Ling, 2003) have been tested by using the ACS algorithm
in this paper, which are FT03, FT06, ABZ6, LA06, LA07, LA11 and LA36. Table 1 shows
the average results and the best results computed by the ACS algorithm in 100 runs of
the program. The known optimal values of these problems are also listed in Table 1
and an error violation is made by comparing the ACS_Best with the optimal values
(Kim and Lee, 1994). The ‘�/‘ in the grid stands for no optimal value discovered until
now.

In the table, we can see the results made by the ACO algorithm. In the FT03
problem, ACO obtained the optimal value. In FT06, ABZ6 and LA06 problems, ACO
achieved modest results. However, in LA07, LA11 and LA36 problems, ACO could not
reach the optimal value, but it has approached the optimal results.

102 Ant Colony Optimization for JSP

In the experiments, the setting of parameters is very important. Experimental
observation has shown that a�/ 0.1, b�/ 2.0, r�/ 0.01 and q0�/0.8 are the best choices of
these parameters in general, which are also the choices of tests used in Table 1. t0 is the
initial pheromone on the edges of the ACS algorithm. The setting of t0 is Tnn

� 1, where
Tnn
� 1 is the total time of all operations by the nearest neighbour heuristic.
Figures 6�/8 show the convergent speed of the ACS for the JSP (for problems LA06,

ABZ6 and LA07) in 1000 iterations, from which we can see that the convergent speed
is quite fast, especially in the first 500 iterations.

It is interesting that b�/ 0 is a better choice for many given problems such as LA06,
FT03 and FT06, and Figure 9 shows this strange instance (ACS for LA06 and FT06),

Table 1 The average and best results of seven problems of 100 runs using ACS for JSP

JSP name n m Average ACS_Best Optimal value Error

FT03 3 3 12 12 12 0%
FT06 6 6 59.1 55 �/ �/

ABZ6 10 10 1245 1154 �/ �/

LA06 15 5 1024 934 926 0.8%
LA07 15 5 1020 917 890 3%
LA11 20 5 1379 1254 1222 2.6%
LA36 15 15 1612 1461 1268 15.2%

Start

M_time[0…m]=0
J_time[0…n]=0

All operations are finished?

t=MAX(M_time[uij.machine], J_time[i])

M_time[uij.machine]=J_time[i]=t+pij

Return (max(J_time[i]), i∈ [1,n])

Yes

No

Figure 5 Flowchart for computing the maximum scheduling time

Zhang et al. 103

from which it is very clear that the ACS with b�/ 0 finds a good solution and the
convergent speed is also quicker than the ACS with b�/ 2.

There is an explanation for this instance. For some given problem, LA06 for
example, constraints (the operation precedence constraint and the machine constraint)
are very strict. For example, consider the ant located in operation u11, and a processing
time of u11 is 6, the next_set is {u12, u21}, the processing time for u12 and u21 are 1 and 5,
the pheromones of these two operations are 0.1 and 0.2, respectively. According to (3),
the probability transfer to u12 is larger than that of u21, so ant will probably choose u12

as its next-visit operation. However, where u12 belongs to the same job as u11, if the ant
choose u12 as its next-visit operation, it has to wait 6 units of processing time until u11

is processed, so u12 is a poorer choice than u21. If b�/ 0, the ant has a bigger probability
to choose the right next-visit operation u21 only according to pheromone. However,
this is not true for all JSP problems, it is necessary to test different values for
parameters in solving specific problems.

0 200 400 600 800 1000

1200

1300

1400

1500

1600

1700

1800
The best Result in every iteration

with β=2, α=0.1, ρ=0.01

Sc
he

du
lin

g
T

im
e

Iterations

Figure 6 The result of ACS for LA06

0 200 400 600 800 1000
1000

1500

2000

2500

3000

3500

The best Result in every iteration
with β=2,α=0.1,ρ=0.01

Sc
he

du
lin

g
T

im
e

Iteration

Figure 7 The result of ACS for ABZ6

104 Ant Colony Optimization for JSP

6. Summary and conclusion

This paper has applied the ACS to a JSP problem and analysed the experiment results.
The results have shown that the ACS is an effective method for the JSP and it can find
a good solution. However, the performance of the ACS for the JSP largely depends on

0 200 400 600 800 1000

1100

1200

1300

1400

1500
The best Result in every iteration
with β=2,α=0.1,ρ=0.01

Sc
he

du
lin

g
T

im
e

Iteration

Figure 8 The result of ACS for LA07

0 1000 2000

1200

1600

2000

2400

2800

Sc
he

du
lin

gT
im

e

Iteration

β=2,α=0.1,ρ=0.01
β=0,α=ρ=0.1

(a) LA06

0 200 400 600 800 1000

60

80

100

120

140
β=2,α=0.1,ρ=0.01

β=0,α=ρ=0.1

Sc
he

du
lin

g
T

im
e

Iteration
(b) FT06

Figure 9 Comparison of b�/ 0 and 2.0 (ACS for LA06 and FT06)

Zhang et al. 105

the parameter values and the number of the ants. Adjusting these parameter values
takes a great deal of time, for the optimal parameter values depend on the problem to
solve, and it is difficult to find an all-purpose setting of parameters for all problems.

Acknowledgements

This work was supported by the National Natural Science Foundation of China project
No. 60573066 and Guangdong Natural Science Foundation project No. 5003346.

References

Bames, J.W. and Chambers, J.B. 1995: Solving
the job-shop scheduling problem using tabu
search. IIE Transactions 27, 257�63.

Beckers, R., Deneubourg, J.L. and Goss, S.
1992: Trails and U-turns in the selection of
the shortest path by the ant Lasius niger.
Journal of Theoretical Biology 397�415.

Candido, M.A.B., Khator, S.K. and Barcia,
R.M. 1998: A genetic algorithm based proce-
dure for more realistic job shop scheduling
problem. International Journal of Production
Research 36, 3437�57.

Colorni, A., Dorigo, M. and Maniezzo, V.
1991: Distributed optimization by ant colo-
nies. In Proceedings of ECAL91 � European
Conference on Artificial Life . Elsevier, 134�42.

Colorni, A., Dorigo, M., Maniezzo, V. and
Trubian, M. 1993: Ant system for Job-Shop
scheduling. Belgian Journal of Operations Re-
search, Statistics and Computer Science 34,
39�54.

Dell Amico, M. and Trubian, M. 1993: Apply-
ing tabu search to the job shop scheduling
problem. Annals of Operations Research 41,
231�52.

Della Croce, F., Tadei, R. and Volta, G. 1995:
A genetic algorithm for the job shop pro-
blem. Computers & Operations Research 22,
15�24.

Dorigo, M. 1992: Optimization, learning, and
natural algorithms. PhD thesis, Politecnico di
Milano.

Dorigo, M. and Gambardella, L.M. 1997: Ant
Colony System: a cooperative learning ap-
proach to the Traveling Salesman Problem.
IEEE Transactions on Evolutionary Computation
1, 53�66.

Dorigo, M., Maniezzo, V. and Colorni, A.
1996: Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on

Systems, Man, and Cybernetics � Part B: Cyber-
netics 26, 29�41.

Garey, M.R., Johnson, D.S. and Sethi, R. 1976:
The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Re-
search 1, 117�29.

Hölldobler, B. and Wilson, E.O. 1990: The ants .
Springer-Verlag.

Huang, D.S. and Ma, S.D. 1999: Linear
and nonlinear feedforward neural network
classifiers: a comprehensive understanding.
Journal of Intelligent Systems 9, 1�38.

Huang, D.S. and Wen-Bo Zhao, 2005: Deter-
mining the centers of radial basis probabil-
ities neural networks by recursive orthogonal
least square algorithms. Applied Mathematics
and Computation 162, 461�73.

Huang, D.S., Ip, H.S., Law, K.C.K. and Zheru
Chi. 2005: Zeroing polynomials using mod-
ified constrained neural network approach.
IEEE Transanction on Neural Networks 16,
721�32.

Jain, A. and Meeran, S. 1999: Deterministic
job-shop scheduling: past, present and fu-
ture. European Journal of Operational Research
113, 390�434.

Kim, G.H. and Lee, C.S.G. 1994: An evolu-
tionary approach to the job-shop scheduling
problem. Robotics and Automation. Proceedings
1994 IEEE International Conference , 8�13 May
1994, Volume 1, 501�506.

Mati, Y., Rezg, N. and Xiaolan Xie. 2001:
An integrated greedy heuristic for a flexi-
ble job shop scheduling problem. Systems,
Man, and Cybernetics, 2001 IEEE International
Conference 7�10 October 2001, Volume 4,
2534�39.

Matsuo, H., Suth, C.J. and Sullivan, R.S. 1988:
A controlled search simulated annealing method
for the general Job-Shop scheduling problem .

106 Ant Colony Optimization for JSP

Appendix: The algorithm of ACS for JSP

1)/* Initialization phase*/
For each pair(r, s), t(r, s)�/t0 End-for
For i�/1 to ANTS do

Let visited to be empty for ant i;/*visited is the set ant i has visited*/
Let next_set�/{Operation11, Operation21, . . ., OperationJOBS,1}

/*next_set is the set can be visited by ant i in the next step*/
Let time�/0, Tour[0]�/0 and current_operation�/0 for ant i ;
/*time is the time used by ant i , Tour is the array records the tour visited by ant i*/
/*current_operation is the operation where ant i is located*/

End-for
2)/*This is the phase in which ants build their tours. The tour of ant i is stored in Tourk*/

For i�/1 to OPERATIONS-1 do
If i B/ OPERATIONS-1 then

For k�/1 to ANTS do
IF is the first iteration AND ant k is in the first operation Then
/*In this program, the number of ants is as same as that of Jobs, */

/*and at the beginning of the program each Job has a ant*/
Let the first operation of Job k to the ant k ’s first visited operation
Let visited[k][1]�/1 for ant k /*mark the visited operation for ant k*/
Put the Operationk ,2 into next_set
Let Tour[1]�/the first operation of Job k for ant k ;

Else
Choose the next operation according to function choose_next_operation
Let Tour[i�/1]�/next_operaion for ant k
/*next_operation is the [(next_operation-1)%MACHINES�/1]th operation*/

/* of Job [(next_operation-1)/MACHINES] */
Let visited [(next_operation-1)/MACHINES]

[(next_operation-1)%MACHINES�/1]�/1
If next_operation is not the last operation of some job Then

Put the operation uij after next_operation (next_operation0/uij)

Graduate School of Business, University of
Texas.

Rosenkrantz, D.J., Stearns, R.E. and Lewis,
P.M. 1977: An analysis of several heuristics
for the traveling salesman problem. SIAM
Journal of Computing 6, 563�81.

van Laarhoven, P.J.M., Aarts, E.H.L. and
Lenstra, J.K. 1992: Job shop scheduling by
simulated annealing. Operations Research 40,
113�25.

Wan, G. and Wan, F. 2003: Job shop scheduling
by taboo search with fuzzy reasoning. Sys-

tems, Man and Cybernetics, 2003. IEEE Inter-
national Conference 5�8 October 2003, Volume
2, 1566�70.

Wang Ling. 2003: Shop scheduling with genetic
algorithm . TsingHua University Press, 59�
67.

Zhou Pin, Li Xiao-ping and Zhang Hong-fang.
2004: An ant colony algorithm for Job Shop
scheduling problem. Proceedings of the 5th
World Congress on Intelligent Control and
Automation , 15�19 June.

Zhang et al. 107

into the next_set of ant k ;
End-if

End-if
End-for

Else
For k�/1 to ANTS do
Let OPERATIONS-1 is the next operation for ant k
Let Tour[i�/1]�/OPERATIONS-1
End-for

End-if
/*In this phase local updating occurs and pheromone is updating*/
For k�/1 to ANTS do

t(current_operation, next_operation)�/(1�/r)t(current_operation, next_operation)
�/rt0

current_operation�/next_operation for ant
End-for

End-for /*end a iteration* /
3)/*In this phase global updating occurs and pheromone is updated*/

For k�/1 to ANTS do
Computer the timek for ant k/* timek is the time used by ant k*/

End-for
Find the shortest time from all timek and tourbest as well
/*Update edge belong to tourbest */
For each edge(r, s) belong to tourbest do

t(r, s)�/(1�/a) t(r, s)�/a(shortest_time)�1

End-for
4) If (End_condition�/True) Then

Print the result
Else goto 2

108 Ant Colony Optimization for JSP

