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Abstract

In this paper, we formulate agent’s decision process un-
der the framework of Markov decision processes, and in
particular, the multi-agent extension to Markov decision
process that includes agent communication decisions. We
model communication as the way for each agent to obtain
local state information in other agents, by paying a certain
communication cost. Thus, agents have to decide not only
which local action to perform, but also whether it is worth-
while to perform a communication action before deciding
the local action. We believe that this would provide a foun-
dation for formal study of coordination activities and may
lead to some insights to the design of agent coordination
policies, and heuristic approachesin particular. An exam-
ple problem is studied under this framework and its impli-
cationsto coordination are discussed.

1. Introduction

In a multi-agent system, each agent normally only sees
a partial view of the whole system. This implies that an
agent only observes part of the global system state. Al-
though agents do have the ability to communicate with each
other, it is usually unrealistic for the agents to communicate
their local state information to all agents at all times, be-
cause communication actions are usually associated with a
certain cost. Yet, communication is crucial for the agents
to coordinate properly. Therefore, the optimal policy for
each agent must balance the amount of communication such
that the information is sufficient for proper coordination but
the cost for communication does not outweigh the expected
gain.

We propose a decision-theoretic framework to model a
multi-agent system. Our focus is on fully cooperative sys-
tems, where all agents share the same goal of maximizing
the total expected reward. This is different from the self-
interested agents where each agent maximizes its own (lo-

cal) utility. Specifically, since agents are distributed, and
autonomous, we use a local Markov process to describe
each agent’s state space and actions space. To reflect the
cooperative nature of the system, a global reward function
is used to describe the relationship and dependency of the
individual agent’s states. In our model, we assume that each
agent knows its current state, i.e., the agent’s local state is
immediately (fully) observable. An agent has a set of local
actions to choose from, and associated with each action is
a probabilistic distribution of resulting states. The problem
here is to find the set of local policies (one policy for each
agent) that produces maximum expected reward. This de-
fines a multi-agent decision process that can be described as
a decentralized Markov decision process, which is recently
shown to be in the complexity class of NEXP-complete [2].

One limitation of the decentralized MDP is that it does
not address agent communication. In a multi-agent system
setting, an agent cannot observe directly the local state of
other agents, instead, an agent has to use communication in
order to share those information. Clearly, communication
reduces uncertainty. However, the communication incurs a
cost, and the agent needs to decide if it is worthwhile to per-
form the communication. Thus, for our multi-agent deci-
sion process, an agent’s policy has to include agent commu-
nication decisions. Obviously, the complexity of the prob-
lem increases with communication, and it is important to
use approximation methods and try to find sub-optimal so-
lutions.

This work introduces a new decision-theoretic frame-
work for multi-agent systems. Previous work, in particular,
the multi-agent Markov decision process (MMDP) frame-
work proposed by Boutilier [3], does not have the notion
of local states, instead, it assumes that all agents knows the
global state all the time. The benefit of this assumption is
that the system can be modeled into a standard MDP (or
POMDP), but it does not reflect the multi-agent nature of
the system. In contrast, our multi-agent decision process
emphasizes the decentralized nature of the system. Our
work is also an generalization of theoretic works on decen-



tralized control of finite state Markov processes [1, 4, 5].

2. Modédl Description

Here we give a brief summary of our formal model,
which models a cooperative multi-agent system with 2
agents. Systems with 3 or more agents can be easily ex-
tended. We consider discrete, finite-horizon problems at the
moment.

e Agentz’s local Markov process (note it is not an MDP)
is described as M* = (S®, A®, p®(s§|s7,a”)), with §*
as the local states, A, the set of local actions, and p®
(may be time-dependent) is the local state transition
probability. MY is similarly defined for agent ’s local
process.

e Global reward function r¢(s7, s%, a},a;) defines the
reward the system receives when the global state is
(s¥,sY) and the joint action is (af, a}).

e Letm? (from z toy) and m{ (fromy to z) be the com-
munication messages between the two agents at time
t. The messages contain the agents’ local state infor-
mation (there are several combinations of information
transfer, though), and if an agent chooses not to com-
municate, its message would be null.

e The cost of communication is specified via functions
c?(s®,m®) and ¢ (s¥, m¥).

Agent z (or y)’s policy 7 (or m,) is a mapping that re-
flects both agent’s communication decision and action de-
cision at each step of the problem-solving. Note that the
policy is a local policy and in general it would be history-
dependent.

The decision problem for the system is to find the opti-
mal policy tuple = = (m,, m,) that maximizes the total ex-
pected reward minus communication costs.

As mentioned before, solving it exactly is computational
infeasible, so we need to introduce approximation methods,
including simplifying the problem, reducing the size of his-
tory, and using heuristic approaches. Our first results indi-
cate that heuristic solutions exist and are often easy to com-
pute, and they can indeed give us a lot of insight for agent
coordination, and thereby help the design of good policies.

3. Main Results

As an example, we first study a problem of two robots
trying to meet each other ina 4 x 4 grid world. The goal is
to meet each other as early as possible. Each robot’s move-
ment is not reliable, as they can get stuck or wander off
the intended direction (with a certain probability), and each

communication (which they reveal each other’s current po-
sitions) has a fixed cost. We specified this problem under
our multi-agent decision process and studied two heuristic
policies, while varying the system parameters such as the
communication cost, robot’s reliability, time-criticalness of
reward functions, and deadline constraints. One heuristic,
named NN, for its connection with the proverb “no news is
good news”, sets up individual subgoals and change them
(and communicate) only when the subgoals (commitments
in typical agent coordination language) cannot be kept. The
other heuristic, named SC, for “silent commitment”, let
the agents divide the goal into individual goals and try to
archive them without communication or change of commit-
ments. Our evaluation of the heuristics indicates some intu-
itive results, and gives us insights regarding when a dynamic
strategy (allow changes in commitments) performs better or
worse than a static one (with fixed commitments).

We believe that the study on the formal foundation of
coordination in multi-agent system is a key to the develop-
ment of multi-agent systems. Our framework will provide
both a formal foundation and an evaluation tool for the de-
sign of multi-agent coordination strategies. Due to space
limitation, please refer to our report [6] for the details of
our model, approaches, and experimental results.
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