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Introduction

The geometry of the location of nodes (mobile users, base stations, access
points etc.) plays a key role in several classes of wireless communication
networks, since it determines the signal to noise or signal to interference ratio
for each potential communication and hence the possibility of establishing
simultaneously some set of communications at a given bit rate.

Stochastic geometry provides a natural way of defining and computing
macroscopic properties of such networks, by some averaging over all poten-
tial geometrical patterns for the nodes, in the same way as queuing theory
provides averaged response times or congestion over all potential arrival pat-
terns within a given parametric class.

The course will survey recent results obtained by this approach on two
classes of wireless networks:

• mobile ad hoc networks (MANETs), where all nodes are essentially of
the same type;

• cellular networks, where one distinguishes two or more types of nodes:
concentration nodes and terminal nodes.

The aim of the course will be two fold:

1



1. To provide a concise introduction to relevant models of stochastic ge-
ometry:

• Spatial shot noise processes;

• Coverage processes;

• Random tessellations.

2. To show how stochastic geometry allows one to analyze and optimize
key features of these two classes of wireless networks:

• Coverage and connectivity;

• Power, admission and multiple access control;

• Routing, diffusion or concentration of informations;

• Capacity.

Course 1: Basic Stochastic Geometry Models

This course will review the definition and basic properties of Poisson point
processes in the plane. We will review key operations on Poisson point pro-
cesses (thinning, superposition, displacement) as well as key formulas like
Campbell’s formula.

We will show how to derive basic properties of a spatial shot noise process:
its continuity properties, its Laplace transform, its moments. We will also
analyze the law of max shot noise processes.

We will also focus on the Boolean model. Its basic coverage characteristics
be reviewed. We will also give a brief account of its percolation properties.

Finally, we will review basic definitions and properties of Poisson Voronoi
tessellations and cells. We will in particular discuss various random objects
associated with bivariate point processes like for instance the set of points
of the first point process that fall in a Voronoi cell w.r.t. the second point
process.

Course 2: Signal to Interference Ratio Cells of a Poisson
Point Process

Consider a marked point process of the Euclidean space, where the mark of a
point is a positive random variable that represents its ”transmission power”.
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Assume that the power radiated from a point decays in some isotropic way
with Euclidean distance.

Define the signal to interference ratio (SIR) cell of a point to be the region
of the space where the reception power from this point is larger than some
increasing function of the interference. In this definition, the interference at
some location of the space is just the sum of the reception powers from all
other points.

This course will analyze a few basic stochastic geometry questions per-
taining to such SIR cells in the case with independent marks:

• the volume and the shape of the typical cell;

• the properties of the coverage of the space by SIR cells, such as volume
fraction;

• the law of the number of cells that cover a given location.

• the connections between these SIR cells and classical objects of stochas-
tic geometry such as the Boolean model and Voronoi tessellations.

This course will be based on the paper :

“On a Coverage Process Ranging from the Boolean Model to the Poisson-
Voronoi Tessellation”, Advances in Applied Probability, 33, pp. 293-
323, 2001, by the authors.

Course 3: Connectivity of MANETs

This course will study the impact of interferences on the connectivity of
large-scale ad-hoc networks, using percolation theory. The set of nodes is
represented by a Poisson point process of the plane. Assume that a connec-
tion can be set up between two nodes if the signal to noise and interference
ratio at the receiver is larger than some threshold. The interference is the
sum of the contributions of interferences from all other nodes weighted by a
coefficient γ, which could be seen as the inverse of the processing gain in a
CDMA (Code Division Multiple Access) context, and the noise is an external
random field.

We will show that there is a critical value of γ above which the network
is made of disconnected and finite clusters of nodes. We also prove that if γ
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is non zero but small enough, there exist node spatial densities for which the
network almost surely contains an infinite cluster of nodes, enabling distant
nodes to communicate in multiple hops.

The shape of the region where such an infinite cluster exists is a function
of the intensity of nodes and the γ parameter. It will in particular be shown
that increasing the density of nodes may disconnect such a network, namely
drive the network from the infinite cluster case to the disconnected finite
cluster case.

This course will be based on the paper:

“Impact of Interferences on the Connectivity of Ad Hoc Networks”, IEEE
Trans. Networking, volume 13, number 2, pp 425–436, co-authored by O.
Dousse, F.B. and P. Thiran.

Course 4: Power Control in Cellular Networks

Cellular networks involve a bivariate point process for representing the loca-
tion of concentration nodes (e.g. base stations) and that of terminal nodes
(users). The terminal node point processes is often assumed to be Poisson
whereas the concentration node point process is either Poisson or periodic.
In the simplest models, the terminal nodes associated with a given concen-
tration node are those located in its Voronoi cell w.r.t. the point process of
concentration nodes.

This course will focus on the case where terminal nodes require a fixed bit
rate, and where power is controlled so as to maximize the number of terminal
nodes that can be served by such a cellular network. In this case, powers
become functionals of the underlying point processes.

We will first show how to estimate the number of terminal nodes with a
predefined bit rate that have to be rejected from a static Poisson configuration
because of power control infeasibility.

We will then study a pure-jump Markov generator which can be seen as
a generalization of the spatial birth-and-death generator and which allows to
represent the arrival, mobility and departure of terminal nodes, and which
can be used to model the dynamics of such power controlled cellular wireless
communication networks. From the analysis of this generator, we will deduce
an expression for the blocking probability in such wireless networks. This
expression can be seen as a spatial version of the classical Erlang loss formula.
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We will also discuss the case of elastic traffic (ongoing work).
This course will be based on the following papers:

“Spatial Averages of Coverage Characteristics in Large CDMA Networks”,
ACM WINET (Wireless Networks), 8, 2002. by F.B., B.B. and F.
Tournois,

“Up and Downlink Admission and Congestion Control and Maximal Load
in Large Homogeneous CDMA Networks” ACM MONET, Vol. 9, No. 6,
Dec. 2004, by F.B., B.B. and M. Karray,

“Blocking Rates in Large CDMA Networks via a Spatial Erlang Formula”,
Proceedings of IEEE Infocom’05, 2005, Miami, co-authored by F.B.,
B.B. and M. Karray.

Course 5: Multiple Access Control in MANETs

In this course, we will analyze an Aloha type access control mechanism for
large MANETs. The access scheme is designed for the multihop context,
where it is important to find a compromise between the spatial density of
communications and the range of each transmission. More precisely, the
analysis aims at optimizing the product of the number of simultaneously suc-
cessful transmissions per unit of space (spatial reuse) by the average range
of each transmission. The optimization is obtained via an averaging over all
Poisson configurations for the location of interfering nodes, where an exact
evaluation of signal over noise ratio is possible. The main mathematical tools
are spatial versions of the so-called additive and max shot noise processes.
The resulting MAC protocol exhibits some interesting properties. In partic-
ular, its transport capacity is proportional to the square root of the density
of nodes.

This course will be based on the paper:

“An Aloha Protocol for Multihop Mobile Wireless Networks”, IEEE Trans-
actions on Information Theory, Vol. 52, No. 2, pp. 421-436, 2006,
co-authored by F.B., B.B. and P. Muhlethaler.
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Course 6: Routing

In this course, we will analyze a class of spatial random spanning trees built
on a realization of an homogeneous Poisson point process of the plane. This
tree has a simple radial structure with the origin as its root This class of
spanning trees has applications in

• multihop diffusion from a given node in MANETs;

• multihop routing to a given node in MANETs;

• concentration in wireless sensor communication networks where infor-
mation has to be gathered at a central node.

We will first show how to use stochastic geometry arguments to analyze
local functionals of the random tree such as the distribution of the length of
its edges or the mean degree of its nodes. Far away from the origin, these
local properties are shown to be close to those of the directed spanning tree
introduced by Bhatt and Roy.

We will then use the theory of continuous state space Markov chains to
analyze some non local properties of the tree such as the shape and structure
of its semi-infinite paths or routes, the shape of the set of its nodes less than k
generations away from the origin etc.. We will also stress the differences that
exist between several types of averages like path averages and space averages.

This course will be based on the paper:

“The Radial Spanning Tree of a Poisson Point Process”, Proceedings of the
43th Allerton Conference, 2005, Illinois University at Urbana Champaign,
submitted to Annals of Applied Probab. co-authored by F.B. and C.
Bordenave.
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