
UDC 681.3

THE DEVELOPMENT OF THE HARDWARE INDEPENDENT
PARTICLE SYSTEM

R.V. Malcheva, S.A. Кovalev, S. Koval, Mohammad Yunis

Donetsk National Technical University
E-mail: raisa@cs.dgtu.donetsk.ua

Introduction

The aim of the work is to develop the hardware independent Particle System.

It is used to simulate certain fuzzy phenomena, which are otherwise very hard to

reproduce with conventional rendering techniques. Examples of such phenomena

which are commonly replicated using particle systems include fire, explosions,

smoke, moving water, sparks, falling leaves, clouds, fog, snow, dust, meteor tails,

hair, fur, grass, or abstract visual effects like glowing trails, magic spells.

Computer graphics researchers have long placed a significant emphasis on

rendering aesthetically pleasing fire in 3D. Until now, efforts have failed to

realistically capture the physical characteristics of fire. The natural randomness and

turbulence of fire typically leads to a rendering solution based on well-understood

calculations, such as Perlin noise and Gaussian distribution-based particle systems.

These visual effects all point to a common model of fire but do not demonstrate the

physical properties of fire beyond a single flame source.

Intel's Smoke demo [1] combines a traditional particle system that captures

the visual effects of fire with a secondary system that treats fire as a heat source.

This heat emitter dictates how a fire spreads by following a fuel source, how

intense the fire is at any particular position, and the proximity of the heat source to

another fuel source.

The Smoke demo architecture uses individual components defined as systems

that house typical game engine features, such as physics, graphics, audio, and AI.

A typical game entity in Smoke is an abstract object linked to several systems. For

example, a horse in Smoke's farm scene has the following systems:

 Graphics for the model and skeletal animation.

 Geometry to control position and orientation.

 Physics for collision detection.

 Audio for sound effects.

The structural logic is the same for every object in the scene, such as the

meteors that rain down from the sky, which include the graphics, physics, and

audio systems as well as the fire system. The fire system is responsible for the

demo's physical and visual properties of fire.

The procedural fire system consists of two discrete parts: a particle emitter

based on a particle system inspired by Luna [2] that includes billboard flame

textures (fire particles) and a heat emitter system that models the heat property of

fire (heat particles). The Smoke demo includes a water hose (Fig.1) that allows

users to move around the scene and extinguish the fire caused by the falling

meteors.

Fig.1. The fire system—water introduced as a cold emitter

As already noted, each fire object—in this case an entity bound to the

geometric tree object—is iterated over every branch that is on fire. The fire object

is checked against each heat emitter contained in the fire for a collision with an

adjacent non-burning branch. Water is a natural extension of the fire system, and

additional checks are used to extinguish a burning element in the collision

checking code and to prevent the water from spreading, as the fire does, to another

object.

 A fuel source, such as a tree in the Smoke demo, consists of multiple

branches and canopies (for each leaf cluster). However, any geometry, including

meteor objects, can be a potential fuel source. Each branch and canopy of a tree

can serve as a host to the fire's smart particle system. The system can use the host

object's axis-aligned bounding box (AABB) to not only determine where the visual

flame particles should be positioned but also to conduct collision checks in the heat

emitter. Just as in a real fire, heat tends to spread upward and away from a heat

source, moving up a tree from branch to branch, finally reaching the canopy. At the

same time, fire can occasionally spread downward, following the path of a canopy

to a branch [3].

Typical implementation

Typically a particle system's position and motion in 3D space are controlled

by what is referred to as an emitter. The emitter acts as the source of the particles

and its location in 3D space determines where they are generated and whence they

proceed. A regular 3D mesh object, such as a cube or a plane, can be used as an

emitter. The emitter has attached to it a set of particle behavior parameters. These

parameters can include the spawning rate (how many particles are generated per

unit of time), the particles' initial velocity vector (the direction they are emitted

upon creation), particle lifetime (the length of time each individual particle exists

before disappearing), particle color, and many more. It is common for all or most

of these parameters to be "fuzzy" — instead of a precise numeric value, the artist

specifies a central value and the degree of randomness allowable on either side of

the center (i.e. the average particle's lifetime might be 50 frames ±20%). When

using a mesh object as an emitter, the initial velocity vector is often set to be

normal to the individual face(s) of the object, making the particles appear to

"spray" directly from each face.

A typical particle system's update loop (which is performed for each frame of

animation) can be separated into two distinct stages: the parameter

update/simulation stage and the rendering stage.

Developing an Update method for the simulation stage

For the simulation stage the Particle Class is used. During the simulation

stage, the number of new particles that must be created is calculated based on

spawning rates and the interval between updates, and each of them is spawned in a

specific position in 3D space based on the emitter's position and the spawning area

specified. Each of the particle's parameters is initialized according to the emitter's

parameters. They are: System lifetime, Emission, Particle lifetime, Direction,

Spread, Start Speed, Gravity, Radial acceleration, Tangential Acceleration, Particle

Size, Particle Spin, Alpha channel, Particle Color. At each update, all existing

particles are checked to see if they have exceeded their lifetime, in which case they

are removed from the simulation. Otherwise, the particles' position and other

characteristics are advanced based on some sort of physical simulation, which can

be as simple as translating their current position, or as complicated as performing

physically-accurate trajectory calculations which take into account external forces.

For each particle the following operations are performed in Update method

using the following formulas:

 vecAccel = par->vecLocation - vecLocation;
 vecAccel.Normalize();
 vecAccel2 = vecAccel;
 vecAccel *= par->fRadialAccel;
 // vecAccel2.Rotate(M_PI_2);
 // the following is faster
 ang = vecAccel2.mX;
 vecAccel2.mX = -vecAccel2.mY;
 vecAccel2.mY = ang;
 vecAccel2 *= par->fTangentialAccel;
 par->vecVelocity += (vecAccel + vecAccel2) * HGE_UPDATE_SPEED;
if (par->fGravity != 0.0f) par->vecVelocity.mY += par->fGravity *

HGE_UPDATE_SPEED;
 par->vecLocation += par->vecVelocity;
 // updates size
 par->fSize += par->fSizeDelta * HGE_UPDATE_SPEED;
 theSprite->SetScale(FPoint(par->fSize, par->fSize));
 // updates color
 par->colColor[0] += par->colColorDelta[0] * HGE_UPDATE_SPEED;

 par->colColor[1] += par->colColorDelta[1] * HGE_UPDATE_SPEED;
 par->colColor[2] += par->colColorDelta[2] * HGE_UPDATE_SPEED;
 par->colColor[3] += par->colColorDelta[3] * HGE_UPDATE_SPEED;

 par->fSpin += par->fSpinDelta * HGE_UPDATE_SPEED;

It is common to perform some sort of collision detection between particles

and specified 3D objects in the scene to make the particles bounce off of or

otherwise interact with obstacles in the environment. Collisions between particles

are rarely used, as they are computationally expensive and not really useful for

most simulations. An example of polygon clipping is shown on the Fig. 2.

Fig. 2. An example of polygon clipping

Operation of polygon clipping is also performed:

bool HGEParticleSystem::wn_PnPoly(Sexy::Point theTestPoint)
{
 int wn = 0; // the winding number counter
 // loop through all edges of the polygon
 for (unsigned int i = 0; i < mPolygonClipPoints.size() - 1; i++)
 { // edge from mPolygonClipPoints[i] to mPolygonClipPoints[i+1]
 if (mPolygonClipPoints[i].mY <= theTestPoint.mY)
 {
// start y <= theTestPoint.mY
if (mPolygonClipPoints[i+1].mY > theTestPoint.mY) // an upward crossing
if (isLeft(mPolygonClipPoints[i], mPolygonClipPoints[i+1], theTestPoint)

> 0) // the TestPoint left of edge
 ++wn; // have a valid up intersect
 }
 else
 {
// start y > theTestPoint.mY (no test needed)
if (mPolygonClipPoints[i+1].mY <= theTestPoint.mY) // a downward crossing
if (isLeft(mPolygonClipPoints[i], mPolygonClipPoints[i+1], theTestPoint)

< 0) // theTestPoint right of edge
 --wn; // have a valid down intersect
 }
 }
 return (wn != 0);
}

Specifics of a Rendering stage

This stage is unique for each hardware. After the update is complete, each

particle is rendered, usually in the form of a textured billboarded quad (i.e. a

quadrilateral that is always facing the viewer). However, this is not necessary; a

particle may be rendered as a single pixel in small resolution/limited processing

power environments. Particles can be rendered as Metaballs in off-line rendering;

isosurfaces computed from particle-metaballs make quite convincing liquids. For

each Particle Sprite class is used, which is directly implemented according using

the API according to used hardware.

Implementation and Summary

The advantages of the developed Particle System are the following. It has

lower system requirements then existing software. It gives 100 FPS on the machine

without 3D acceleration.

Implementation for different hardware extends the spheres of using.

Developed package consists of Editor and extensions for the engines. The Popcap

Framework is used for PC, XNA framework is used for XBOX 360 [4] and

NitroSystem is used for Nintendo DS [5].

1. Ryan Shrout. A Smoke Screen from Intel: Implementing Multi-threaded

Gaming. - Intel, 2008.

2. Luna, Frank D. Introduction to 3D Game Programming with DirectX 9.0c:

A Shader Approach. Plano, TX: Wordware Publishing, 2006.

3. An Overview of How to Accurately Model Procedurally Spreading Fire -

http://software.intel.com/en-us/articles/smokegame-technology-demo-download.

4. www.mirpristavok.com.ua/index.php?cPath=33_46.

5. xnintendo.com/nintendo-ds/page/7.

