
A GENETIC ALGORITHM FOR VIDEO SEGMENTATION
AND SUMMARIZATION

Patrick Chiu, Andreas Girgensohn, Wolf Polak, Eleanor Rieffel, Lynn Wilcox

FX Palo Alto Laboratory, 3400 Hillview Ave, Bldg 4, Palo Alto, CA 94304, USA, lastname@pal.xerox.com

ABSTRACT
We describe a genetic segmentation algorithm for video. This
algorithm operates on segments of a string representation. It is
similar to both classical genetic algorithms that operate on bits of
a string and genetic grouping algorithms that operate on subsets
of a set. For evaluating segmentations, we define similarity
adjacency functions, which are extremely expensive to optimize
with traditional methods. The evolutionary nature of genetic
algorithms offers a further advantage by enabling incremental
segmentation. Applications include video summarization and
indexing for browsing, plus adapting to user access patterns.

1. INTRODUCTION

Segmenting multimedia data streams is a fundamental problem
with many applications. Properly segmented streams can be
better organized and reused. They provide points of access that
facilitate browsing and retrieval. As more and more multimedia
data are created and made available, segmentation algorithms can
serve the important function of helping summarize this mass of
material.

There are several advantages of genetic algorithms over current
methods for segmentation such as clustering (e.g. see [3], [11],
[12]). First, the genetic mechanism is independent of the
prescribed evaluation function and can be tailored to support a
variety of characterizations based on heuristics depending on
genre, domain, user type, etc. Second, evolutionary algorithms
are naturally suited for doing incremental segmentation that can
be applied to streaming media (e.g. video over the Web). Third, it
can support dynamically updated segmentation that adapts to
usage patterns, like adaptively increasing the likelihood that
frequently accessed points will appear as segment boundaries.

In this paper, we will focus on video. This may be produced video
or raw video. Examples of produced video are news, movies, and
training videos. Examples of raw video are video of meetings,
surveillance records, and wearable personal video cameras[6].

The method that we describe in this paper can be applied to non-
image data streams. The genetic segmentation algorithm remains
the same; what is required are different fitness functions that take
into account the appropriate characteristics of that medium and
software for processing that medium.

2. EVALUATING SEGMENTATIONS
When characterizing and evaluating segmentations of video, the
specific applications must be kept in mind. For the purposes of
browsing and summarization, we define similarity adjacency
functions with varying degrees of sophistication. In the simplest

form, these functions only take into account image differences. In
the more complex forms, information retrieval ideas are used.

2.1 Preprocessing

A video can have many thousands of frames, and a large number
of adjacent ones are likely to be similar. We reduce the size of the
set of images by only looking at those that are not too similar. For
a video recorded at 30 frames per second, we first subsample at a
lower rate (one frame per half second is reasonable to capture the
action in most domains), and call this set of images F. From this
set, we pick out the least similar images by measuring their
differences with the standard technique of color histograms (e.g.
see [1]). For any two images i and j we define

h(i, j) = histogram difference between i and j,
dh(i) = h(i −1, i) with dh(0) = h(1, 0).

The number of elements is reduced by taking only those with dh
greater than one standard deviation from the mean:

})(|{' σ+>∈= dhjdhFjF .

On this reduced set F', define the length of an element i

δ(i) = number of frames in F from i
 to the next element in F'.

On F', define dH(i) as we did dh(i)

dH(i) = histogram difference between
 the (i −1)-th and i-th elements of F'.

2.2 Evaluation Functions

There are a multitude of possibilities for an evaluation function.
One can come up with a variety of characterizations based on
heuristics depending on genre, domain, user type, and so forth.
The applications that we have in mind are video summarization
and indexing for browsing. We will define some fairly general
functions that are based on considerations of image similarity,
importance, and precedence.

Naively, one could take the k images with highest dh(i) or dH(i)
and use these as the segment boundaries. For browsing and
summarization applications in which these k images are the access
points to the video, this does not produce a very good
segmentation because the most salient images may be similar to
each other (even if they are not similar to their immediate
neighbors) and too much repetition will occur in the result.

To take into consideration the relative differences among all the
selected images, we define similarity adjacency functions as
follows. Let Sk be a subset of k selected images in F', define

∑
∈

=
kSji

k jihjiSf

,

),(),()(α , (1)

0-7803-6536-4/00/$10.00 (C) 2000 IEEE

where α(i, j) is a function for weighting the histogram differences.

For example, one simple way to specify this function is to set α(i,
j) = 1. A slightly more interesting definition is to put less weight
on images that are farther apart by setting α(i, j) = 1 / | i − j |2 for
i ≠ j and 0 else.

Due to the large cardinality of k-subsets of a set, there is no
efficient standard algorithm to optimize (1) even for modest sized
sets. One reason for using genetic algorithms is to be able to
search this space effectively.

We can also apply information retrieval ideas by weighting each
element by its importance. One way to define importance is to
use a function that factors in the length of an element with its
commonality, as in Uchihashi and Foote[10], so that the longer
and less common elements have greater importance. Unlike their
algorithm, we do this without relying on a clustering of the
images. First, we define a set Ci to be those elements similar to i,

 }),(|'{ σ+<∈= dhjihFjCi ,

and let Wi = |Ci| / |F'| , then we define the importance based on
length and commonality by

())./1log()(log iWiδ

Departing from [10], we take the log of the length because δ(i)
can have large variations. In the videos we looked at, the lengths
of the elements of F' can differ by a factor of a hundred.

Furthermore, we extend this notion of importance by providing
another factor related to the precedence of a frame, so that earlier
appearing frames are more heavily weighted than later ones in the
same similarity class. There are several reasons for using
precedence as a criterion. For video, it has been noticed in video
playback usage studies (see [5]) that the earlier appearances of an
event are accessed more. For images of people or slides, the
earlier ones may introduce or define things that the later ones will
refer to. For video from surveillance or wearable personal video
cameras, the frames can be processed backwards (or invert our
precedence definition) to spotlight the most recent occurrences of
interesting events.

Let }|{ jiCjB ii ≤∈= , we define the precedence factor by

 Pi = |Bi| / |Ci|.

Putting together the factors for length, commonality, and
precedence, we obtain the importance

())./1log()(log iii WiPI δ=

We put this into the evaluation function (1) by weighting each
term with the average importance, i.e. in (1) we set

 α(i, j) = (Ii + I j) / | i − j |2 for i ≠ j and 0 else.

 The evaluation function now reads

2
,

||

)(
),()(

ji

II
jihSf

ji

ji
Sji

k

k
−

+
= ∑

≠
∈

 (2)

Qualitatively, the effect of this similarity adjacency function is
making more nearby images more dissimilar and permits a certain
amount of repetition in the overall summary to capture the rhythm
of the video.

Again, we emphasize that any well-defined evaluation function
may be used to characterize the desirable properties of
segmentations and will work with the mechanism of the genetic
algorithm.

3. GENETIC SEGMENTATION
ALGORITHM

First, we describe the input and output of our algorithm. The
input is a video and an integer k for the desired number of
segment boundaries. We used these boundary images as access
points for indexing and summarization. The output is a sequence
of k boundary images, plus their importance scores. A variation
with varying k is described below. The importance scores may be
used for layout purposes (e.g. see [10]).

Our Genetic Segmentation Algorithm (GSA) can be described by
specifying the encoding, fitness function, crossover and mutation
operations. For more details on the basics of genetic algorithms,
refer to Goldberg[4]. To run the algorithm, a population of
individuals is randomly generated, and the evolution process is
performed iteratively one generation at a time. In the end, the
individual with the highest fitness is decoded to obtain a sequence
of images for the segmentation.

3.1 Encoding

For the encoding, we take a string of 0's and 1's like a classical
GA as in [4]. This string is called a chromosome. The video data
stream structure lends itself to be divided into contiguous
segments, so a string is sufficient. In contrast, the Genetic
Grouping Algorithm (GGA) from Falkanauer[2] uses sets.

The bit position of a chromosome string is an index for an element
of the data stream, i.e. a video frame in F', read left to right. The
length of the string is the number of images |F'|. We use 1's to
denote the segment boundaries; e.g. 00100010010 breaks the
stream up into the segments 00 , 1000 , 100 , 10 . In terms of the
frames, the corresponding segments for F' = { i0, i1, ..., i10} are
{ i0, i1}, { i2, i3, i4, i5}, { i0, i0, i8}, { i9, i10}. The number of
segments or 1's is set to be a fixed constant; this is given by the
input specification of how many boundary images are desired.1

3.2 Fitness Function

For the fitness function, we take the similarity adjacency function
(2). Any well-defined evaluation function may also be used.

3.3 Crossover and Mutation

The genetic algorithm works by randomly selecting pairs of
individual chromosomes to reproduce for the next generation.
The probability of a chromosome being selected is proportional to
its fitness function value relative to the other chromosomes in the
same generation. To reproduce, a crossover procedure is defined.
In the classical GA, two chromosome strings reproduce by
selecting a random bit for the crossing site, the strings are sliced
at the site, and the two tail pieces are swapped and rejoined with

1 An alternative encoding is to set the leftmost bit to 1 for all
segments.

0-7803-6536-4/00/$10.00 (C) 2000 IEEE

the head pieces to produce two progenies. On the other hand,
with GGA[2] the chromosomes are not strings but subsets, and
randomly selected subsets are recombined.

The stream structure allows our GSA to use a string structure like
the classical GA, but instead of crossing at any bit, we cross only
at segment boundaries; this is not unlike how groups are crossed
in the GGA. What we do is to randomly select a segment, i.e. an
index i∈ Sk , with equal probability for each index. This index is
used as the crossing site. The chromosome strings are crossed
like the classical GA, plus an additional step to alter the resulting
strings so that they have exactly k 1's in order to maintain the
fixed number of segments.

Reducing the number of segments in a string is easy. We merge
the partial piece sliced by the crossover procedure with an
adjacent segment; this way, the segment boundaries coming from
the earlier generation are preserved. Adjacent segments are then
merged together until k 1's remain.

Increasing the number of segments in a string requires introducing
new boundaries not inherited from earlier generations. One way
to do this is to pick a segment near the crossing site and split it at
its weakest point, say the point with smallest dH. Alternatively,
to reduce the amount of computation, we can use a mutation
process to split the segments, which means randomly selecting a
place to split. We use the latter for the work described in this
paper.

Generally, mutation by random flipping of bits in the string is not
a good idea for doing segmentation because it makes the
segments rather unstable. Hence, for the basic version of GSA we
do not do additional mutation beyond its use for increasing the
number of segments in the crossover procedure.

We provide an example to illustrate. The following strings have 4
segments with segment boundaries on the left of the 1's:

00010010010
01000100100

Crossing at the point after the second segment of the first string,
at site 6, we obtain

 000100 | 00100
 010001 | 10010

In the first string, a random bit (i = 2) is mutated to 1, increase
the number of segments to 4. In the second string, the third 1 is
flipped to decrease the number of segments to 4. The final results
are:

 00110000100
 01000100010

Having described the encoding, fitness function, crossover and
mutation (as part of crossover) operations, the genetic
segmentation algorithm is specified.

4. VARIATIONS

4.1 Incremental Segmentation

Because the algorithm is evolutionary, it is highly suitable for
incremental segmentation. Streaming video and databases of
accumulating video collections are examples where incremental

segmentation and summarization can be useful. Basically, the
system maintains a population of segmentations and lets it evolve
as new video images are added. The good image segment
boundaries that have been found are more likely to survive. For
each generation, the individual with the highest fitness is used to
determine the segmentation.

Between generations, new images are added. First, they are
preprocessed as in Section 2.1 by keeping a running average of
dH. To keep the chromosome length bounded when new images
are added, old ones can be removed by throwing out the ones
with low importance or low dH. This works because in equation
(2), epistasis (how the bit positions combine to affect the fitness
function) is well behaved. It is clear by looking at the equation
that dropping lowly rated images has little effect on the fitness.
To keep k fixed, if a chromosome loses a bit position marked by a
1, one of the new bit positions is randomly set to 1. Most of the
new bit positions are set to 0, but occasionally (say with
probability one over the length of the chromosome) a bit position
is set to 1, and a random segment is merged to keep k fixed.

4.2 Varying k

We now describe a way to vary k, the number of segment
boundary images. We do this by normalizing the evaluation
function (2) to a prescribed target k0:

|),|1/()()(0kkSfSg kk −+=

and simplifying the crossover so as not to keep k constant. This
way, the number of images will not be exactly k0, but some
number around k0 that provides a potentially better segmentation.

4.3 Adapting to User Access Patterns

The segmentation can be dynamically updated to reflect user
access patterns. The most frequently accessed images by users
are weighted more heavily in the importance term of equation (2),
and the segmentation is incrementally updated. The update
schedule may be daily, weekly, or longer.

Let ai be the number of times an image i has been accessed or
viewed by users, then we define the access frequency factor by
Ai = 1 + log (1 + ai). The following is then used for the
importance in equation (2):

())./1log()(log iiii WiPAI δ=

5. AN EXAMPLE
We illustrate with an example of summarizing an hour-long
seminar video segmented with GSA. This example was computed
after the algorithm had been developedthe algorithm was not
tuned to it. The GSA is applied to the video with k = 5 and
population size of 2000 run over 100 generations. For images
used in the summary, we take the boundary images plus the first
frame of the first segment. The result is shown in Figure 1.

The three topics of the seminar talk were "Active Messenger,"
"comMotion," and "Nomadic Radio," and the video images of the
three slides introducing these topics were selected along with two
pictures of the speaker and a picture of the room. The result is

0-7803-6536-4/00/$10.00 (C) 2000 IEEE

remarkably good and it would be difficult for a person to select a
much better set of representative images for a summary.

For k = 5, GSA found the global maximum, which we checked by
brute force computation. For moderately larger values of k (e.g. k
= 12 or 24 is nice for browsing), the combinatorial explosion in
(2) makes brute force infeasible. While it may be possible to
come up with a tractable algorithm to optimize this specific
function, the advantage with genetic algorithms is that the
evaluation function can be tailored to focus on whichever features
are desirable.

We have used a fairly simple implementation of the algorithm and
fitness function in this example to demonstrate that it works on
real data and that it is a promising technique. More extensive
testing on a large corpus of data would be required to establish
the efficacy of the GSA.

6. RELATED WORK
We have done some experiments with a classical GA (as
described in Goldberg[4]), with crossover at random bit positions
as opposed to segment boundaries, to optimize similarity
adjacency functions and they failed to converge. We have not
tried using Falkanauer's Genetic Grouping Algorithm (see [2]),
but since it operates on sets rather than string segments, it is less
natural than the GSA for the structure of data streams.

Other work using genetic algorithms/programming for image
analysis has been done (e.g. [8], [9]), but these mainly analyze the
features of a fixed image and are not aimed at segmentation of an
image data stream or video.

The GSA is fundamentally different from other video
segmentation and summarization methods because it makes use of
random processes. Other methods include uniform sampling, and
clustering (e.g. see [1], [3], [7], [10], [11], [12]). Uniform
sampling is simplest but suffers from undesirable repetition and
poor access points for browsing. Clustering can produce good
results but does not work with the wide range of characterizations
that the GSA gets through evaluation functions, and does not
support incremental segmentation.

7. REFERENCES
[1] Boreczky, J.S. and Rowe, L.A. Comparison of video shot

boundary detection techniques. Storage and Retrieval for
Still Images and Video Databases IV, Proc. of SPIE 2670,
pp. 170-179, 1996.

[2] Falkanauer, E. Genetic Algorithms and Grouping Problems.
Wiley, 1998.

[3] Girgensohn, A., and Boreczky, J. Time-constrained
keyframe selection technique. Proc. of the 1999 IEEE Intl.
Conference on Multimedia Computing and Systems. IEEE
Computer Society, vol. 1, pp. 756-761.

[4] Goldberg, D.E. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, 1989.

[5] He, L., Sanocki, E., Gupta, A., Grudin, J. Auto-
summarization of audio-video presentations. Proceedings of
ACM Multimedia '99. ACM Press, pp. 489-498.

[6] Mann, S. 'Smart Clothing': Wearable multimedia computing
and 'personal imaging' to restore the technological balance
between people and their environments. Proceedings of
ACM Multimedia '96. ACM Press, pp. 163-174.

[7] Mills, M., Cohen, J., and Wong, Y.Y. A magnifier tool for
video data. Proceedings of CHI '92. ACM Press, pp. 93-98.

[8] Poli, R. Genetic programming for image analysis. Proc.
Genetic Programming 1996. MIT Press, pp. 363-368.

[9] Tackett, W.A. Genetic programming for feature discovery
and image discrimination. Proc. of the 5th Intl. Conference
on Genetic Algorithms, 1993, pp. 303-309.

[10] Uchihashi, S. and Foote, J. Summarizing video using a shot
importance measure and frame-packing algorithm.
Proceedings of ICASSP'99, vol. 6, pp. 3041-3044.

[11] Yeung, M.M. and Yeo, B-L. Video visualization for
compact presentation and fast browsing of pictorial content.
IEEE Trans. Circuits and Systems for Video Technology,
vol. 7, no. 5, pp. 771-785.

[12] Zhang, H.J., Low, C.Y., Smoliar, S.W., and Wu, J.H. Video
parsing, retrieval and browsing: An integrated and content-
based solution. Proceedings of ACM Multimedia '95. ACM
Press, pp. 15-24.

Figure 1. Video of a seminar segmented and summarized by GSA with k = 5.

0-7803-6536-4/00/$10.00 (C) 2000 IEEE

	HTML Paper:

