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ABSTRACT 
We describe a genetic segmentation algorithm for video.  This 
algorithm operates on segments of a string representation.  It is 
similar to both classical genetic algorithms that operate on bits of 
a string and genetic grouping algorithms that operate on subsets 
of a set. For evaluating segmentations, we define similarity 
adjacency functions, which are extremely expensive to optimize 
with traditional methods.  The evolutionary nature of genetic 
algorithms offers a further advantage by enabling incremental 
segmentation.  Applications include video summarization and 
indexing for browsing, plus adapting to user access patterns. 

1. INTRODUCTION 

Segmenting multimedia data streams is a fundamental problem 
with many applications.  Properly segmented streams can be 
better organized and reused.  They provide points of access that 
facilitate browsing and retrieval.  As more and more multimedia 
data are created and made available, segmentation algorithms can 
serve the important function of helping summarize this mass of 
material. 

There are several advantages of genetic algorithms over current 
methods for segmentation such as clustering (e.g. see [3], [11], 
[12]). First, the genetic mechanism is independent of the 
prescribed evaluation function and can be tailored to support a 
variety of characterizations based on heuristics depending on 
genre, domain, user type, etc. Second, evolutionary algorithms 
are naturally suited for doing incremental segmentation that can 
be applied to streaming media (e.g. video over the Web). Third, it 
can support dynamically updated segmentation that adapts to 
usage patterns, like adaptively increasing the likelihood that 
frequently accessed points will appear as segment boundaries. 

In this paper, we will focus on video. This may be produced video 
or raw video.  Examples of produced video are news, movies, and 
training videos.  Examples of raw video are video of meetings, 
surveillance records, and wearable personal video cameras[6].  

The method that we describe in this paper can be applied to non-
image data streams.  The genetic segmentation algorithm remains 
the same; what is required are different fitness functions that take 
into account the appropriate characteristics of that medium and 
software for processing that medium. 

2. EVALUATING SEGMENTATIONS 
When characterizing and evaluating segmentations of video, the 
specific applications must be kept in mind.  For the purposes of 
browsing and summarization, we define similarity adjacency 
functions with varying degrees of sophistication. In the simplest 

form, these functions only take into account image differences.  In 
the more complex forms, information retrieval ideas are used. 

2.1 Preprocessing 

A video can have many thousands of frames, and a large number 
of adjacent ones are likely to be similar. We reduce the size of the 
set of images by only looking at those that are not too similar. For 
a video recorded at 30 frames per second, we first subsample at a 
lower rate (one frame per half second is reasonable to capture the 
action in most domains), and call this set of images F.  From this 
set, we pick out the least similar images by measuring their 
differences with the standard technique of color histograms (e.g. 
see [1]). For any two images i and j we define  

h(i, j)  =  histogram difference between i and j, 
dh(i)  =  h(i −1, i)  with  dh(0)  =  h(1, 0). 

The number of elements is reduced by taking only those with dh 
greater than one standard deviation from the mean: 

})(|{' σ+>∈= dhjdhFjF .  

On this reduced set F', define the length of an element i 

δ(i)  =  number of frames in F from i  
            to the next element in F'.  

On F', define dH(i) as we did dh(i) 

dH(i) = histogram difference between  
             the (i −1)-th and i-th elements of F'. 

2.2 Evaluation Functions 

There are a multitude of possibilities for an evaluation function. 
One can come up with a variety of characterizations based on 
heuristics depending on genre, domain, user type, and so forth.  
The applications that we have in mind are video summarization 
and indexing for browsing.  We will define some fairly general 
functions that are based on considerations of image similarity, 
importance, and precedence.   

Naively, one could take the k images with highest dh(i) or dH(i) 
and use these as the segment boundaries.  For browsing and 
summarization applications in which these k images are the access 
points to the video, this does not produce a very good 
segmentation because the most salient images may be similar to 
each other (even if they are not similar to their immediate 
neighbors) and too much repetition will occur in the result.   

To take into consideration the relative differences among all the 
selected images, we define similarity adjacency functions as 
follows. Let Sk be a subset of k selected images in F', define 
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where α(i, j) is a function for weighting the histogram differences. 

For example, one simple way to specify this function is to set α(i, 
j) = 1.  A slightly more interesting definition is to put less weight 
on images that are farther apart by setting α(i, j) = 1 / | i − j |2 for 
i ≠ j and 0 else. 

Due to the large cardinality of k-subsets of a set, there is no 
efficient standard algorithm to optimize (1) even for modest sized 
sets.  One reason for using genetic algorithms is to be able to 
search this space effectively. 

We can also apply information retrieval ideas by weighting each 
element by its importance.  One way to define importance is to 
use a function that factors in the length of an element with its 
commonality, as in Uchihashi and Foote[10], so that the longer 
and less common elements have greater importance. Unlike their 
algorithm, we do this without relying on a clustering of the 
images.  First, we define a set Ci to be those elements similar to i, 

 }),(|'{ σ+<∈= dhjihFjCi , 

and let  Wi = |Ci| / |F'| , then we define the importance based on 
length and commonality by 

( ) )./1log()(log iWiδ     

Departing from [10], we take the log of the length because δ(i) 
can have large variations.  In the videos we looked at, the lengths 
of the elements of F' can differ by a factor of a hundred. 

Furthermore, we extend this notion of importance by providing 
another factor related to the precedence of a frame, so that earlier 
appearing frames are more heavily weighted than later ones in the 
same similarity class.  There are several reasons for using 
precedence as a criterion.  For video, it has been noticed in video 
playback usage studies (see [5]) that the earlier appearances of an 
event are accessed more.  For images of people or slides, the 
earlier ones may introduce or define things that the later ones will 
refer to.  For video from surveillance or wearable personal video 
cameras, the frames can be processed backwards (or invert our 
precedence definition) to spotlight the most recent occurrences of 
interesting events.   

Let }|{ jiCjB ii ≤∈= , we define the precedence factor by 

 Pi = |Bi| / |Ci|.     

Putting together the factors for length, commonality, and 
precedence, we obtain the importance 

( ) )./1log()(log iii WiPI δ=  

We put this into the evaluation function (1) by weighting each 
term with the average importance, i.e. in (1) we set 

 α(i, j) = (Ii + I j) / | i − j |2 for i ≠ j and 0 else. 

 The evaluation function now reads 
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Qualitatively, the effect of this similarity adjacency function is 
making more nearby images more dissimilar and permits a certain 
amount of repetition in the overall summary to capture the rhythm 
of the video.  

Again, we emphasize that any well-defined evaluation function 
may be used to characterize the desirable properties of 
segmentations and will work with the mechanism of the genetic 
algorithm. 

3. GENETIC SEGMENTATION 
ALGORITHM 

First, we describe the input and output of our algorithm.  The 
input is a video and an integer k for the desired number of 
segment boundaries.  We used these boundary images as access 
points for indexing and summarization. The output is a sequence 
of k boundary images, plus their importance scores.  A variation 
with varying k is described below. The importance scores may be 
used for layout purposes (e.g. see [10]). 

Our Genetic Segmentation Algorithm (GSA) can be described by 
specifying the encoding, fitness function, crossover and mutation 
operations. For more details on the basics of genetic algorithms, 
refer to Goldberg[4]. To run the algorithm, a population of 
individuals is randomly generated, and the evolution process is 
performed iteratively one generation at a time.  In the end, the 
individual with the highest fitness is decoded to obtain a sequence 
of images for the segmentation. 

3.1 Encoding 

For the encoding, we take a string of 0's and 1's like a classical 
GA as in [4].  This string is called a chromosome.  The video data 
stream structure lends itself to be divided into contiguous 
segments, so a string is sufficient.  In contrast, the Genetic 
Grouping Algorithm (GGA) from Falkanauer[2] uses sets.   

The bit position of a chromosome string is an index for an element 
of the data stream, i.e. a video frame in F', read left to right. The 
length of the string is the number of images |F'|. We use 1's to 
denote the segment boundaries; e.g. 00100010010  breaks the 
stream up into the segments 00 , 1000 , 100 , 10 .  In terms of the 
frames, the corresponding segments for F' = { i0, i1, ..., i10} are 
{ i0, i1},  { i2, i3, i4, i5}, {  i0, i0, i8}, {  i9, i10}.  The number of 
segments or 1's is set to be a fixed constant; this is given by the 
input specification of how many boundary images are desired.1 

3.2 Fitness Function 

For the fitness function, we take the similarity adjacency function 
(2). Any well-defined evaluation function may also be used.  

3.3 Crossover and Mutation 

The genetic algorithm works by randomly selecting pairs of 
individual chromosomes to reproduce for the next generation.  
The probability of a chromosome being selected is proportional to 
its fitness function value relative to the other chromosomes in the 
same generation.  To reproduce, a crossover procedure is defined. 
In the classical GA, two chromosome strings reproduce by 
selecting a random bit for the crossing site, the strings are sliced 
at the site, and the two tail pieces are swapped and rejoined with 

                                                           
1 An alternative encoding is to set the leftmost bit to 1 for all 
segments. 
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the head pieces to produce two progenies.  On the other hand, 
with GGA[2] the chromosomes are not strings but subsets, and 
randomly selected subsets are recombined. 

The stream structure allows our GSA to use a string structure like 
the classical GA, but instead of crossing at any bit, we cross only 
at segment boundaries; this is not unlike how groups are crossed 
in the GGA.  What we do is to randomly select a segment, i.e. an 
index i∈ Sk , with equal probability for each index.  This index is 
used as the crossing site.  The chromosome strings are crossed 
like the classical GA, plus an additional step to alter the resulting 
strings so that they have exactly k 1's in order to maintain the 
fixed number of segments.   

Reducing the number of segments in a string is easy.  We merge 
the partial piece sliced by the crossover procedure with an 
adjacent segment; this way, the segment boundaries coming from 
the earlier generation are preserved.  Adjacent segments are then 
merged together until k 1's remain.   

Increasing the number of segments in a string requires introducing 
new boundaries not inherited from earlier generations.  One way 
to do this is to pick a segment near the crossing site and split it at 
its weakest point, say the point with smallest dH.  Alternatively, 
to reduce the amount of computation, we can use a mutation 
process to split the segments, which means randomly selecting a 
place to split.  We use the latter for the work described in this 
paper. 

Generally, mutation by random flipping of bits in the string is not 
a good idea for doing segmentation because it makes the 
segments rather unstable. Hence, for the basic version of GSA we 
do not do additional mutation beyond its use for increasing the 
number of segments in the crossover procedure. 

We provide an example to illustrate. The following strings have 4 
segments with segment boundaries on the left of the 1's: 

00010010010 
01000100100 

Crossing at the point after the second segment of the first string, 
at site 6, we obtain 

 000100 | 00100 
 010001 | 10010 

In the first string, a random bit (i = 2) is mutated to 1,  increase 
the number of segments to 4. In the second string, the third 1 is 
flipped to decrease the number of segments to 4.  The final results 
are: 

 00110000100 
 01000100010 

Having described the encoding, fitness function, crossover and 
mutation (as part of crossover) operations, the genetic 
segmentation algorithm is specified. 

4. VARIATIONS 

4.1 Incremental Segmentation 

Because the algorithm is evolutionary, it is highly suitable for 
incremental segmentation.  Streaming video and databases of 
accumulating video collections are examples where incremental 

segmentation and summarization can be useful. Basically, the 
system maintains a population of segmentations and lets it evolve 
as new video images are added.  The good image segment 
boundaries that have been found are more likely to survive. For 
each generation, the individual with the highest fitness is used to 
determine the segmentation. 

Between generations, new images are added.  First, they are 
preprocessed as in Section 2.1 by keeping a running average of 
dH. To keep the chromosome length bounded when new images 
are added, old ones can be removed by throwing out the ones 
with low importance or low dH.  This works because in equation 
(2), epistasis (how the bit positions combine to affect the fitness 
function) is well behaved.  It is clear by looking at the equation 
that dropping lowly rated images has little effect on the fitness.  
To keep k fixed, if a chromosome loses a bit position marked by a 
1, one of the new bit positions is randomly set to 1.  Most of the 
new bit positions are set to 0, but occasionally (say with 
probability one over the length of the chromosome) a bit position 
is set to 1, and a random segment is merged to keep k fixed.  

4.2 Varying k 

We now describe a way to vary k, the number of segment 
boundary images.  We do this by normalizing the evaluation 
function (2) to a prescribed target k0: 

|),|1/()()( 0kkSfSg kk −+=  

and simplifying the crossover so as not to keep k constant.  This 
way, the number of images will not be exactly k0, but some 
number around k0 that provides a potentially better segmentation. 

4.3 Adapting to User Access Patterns 

The segmentation can be dynamically updated to reflect user 
access patterns.  The most frequently accessed images by users 
are weighted more heavily in the importance term of equation (2), 
and the segmentation is incrementally updated.  The update 
schedule may be daily, weekly, or longer. 

Let ai be the number of times an image i has been accessed or 
viewed by users, then we define the access frequency factor by   
Ai = 1 +  log (1 + ai).   The following is then used for the 
importance in equation (2): 

( ) )./1log()(log iiii WiPAI δ=  

5. AN EXAMPLE 
We illustrate with an example of summarizing an hour-long 
seminar video segmented with GSA. This example was computed 
after the algorithm had been developedthe algorithm was not 
tuned to it. The GSA is applied to the video with k = 5 and 
population size of 2000 run over 100 generations. For images 
used in the summary, we take the boundary images plus the first 
frame of the first segment.  The result is shown in Figure 1. 

The three topics of the seminar talk were "Active Messenger," 
"comMotion," and "Nomadic Radio," and the video images of the 
three slides introducing these topics were selected along with two 
pictures of the speaker and a picture of the room.  The result is 
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remarkably good and it would be difficult for a person to select a 
much better set of representative images for a summary. 

For k = 5, GSA found the global maximum, which we checked by 
brute force computation.  For moderately larger values of k (e.g. k 
= 12 or 24 is nice for browsing), the combinatorial explosion in 
(2) makes brute force infeasible.  While it may be possible to 
come up with a tractable algorithm to optimize this specific 
function, the advantage with genetic algorithms is that the 
evaluation function can be tailored to focus on whichever features 
are desirable. 

We have used a fairly simple implementation of the algorithm and 
fitness function in this example to demonstrate that it works on 
real data and that it is a promising technique. More extensive 
testing on a large corpus of data would be required to establish 
the efficacy of the GSA. 

6. RELATED WORK 
We have done some experiments with a classical GA (as 
described in Goldberg[4]), with crossover at random bit positions 
as opposed to segment boundaries, to optimize similarity 
adjacency functions and they failed to converge.  We have not 
tried using Falkanauer's Genetic Grouping Algorithm (see [2]), 
but since it operates on sets rather than string segments, it is less 
natural than the GSA for the structure of data streams. 

Other work using genetic algorithms/programming for image 
analysis has been done (e.g. [8], [9]), but these mainly analyze the 
features of a fixed image and are not aimed at segmentation of an 
image data stream or video. 

The GSA is fundamentally different from other video 
segmentation and summarization methods because it makes use of 
random processes.  Other methods include uniform sampling, and 
clustering (e.g. see [1], [3], [7], [10], [11], [12]).  Uniform 
sampling is simplest but suffers from undesirable repetition and 
poor access points for browsing. Clustering can produce good 
results but does not work with the wide range of characterizations 
that the GSA gets through evaluation functions, and does not 
support incremental segmentation. 
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Figure 1. Video of a seminar segmented and summarized by GSA with k = 5. 
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