TigerSHARK: A Hardware Accelerated Ray-tracing Engine

Greg Humphreys C. Scott Ananian
Princeton University Princeton University
humper@cs.princeton.edu cananian@ee.princeton.edu

Abstract — The current state of the art in graphics rendering algo-could then be computed, based on the color of the object the ray had
rithms and hardware is surveyed, and it is shown that ray-tracingheen emitted from.
despite lager computational requirements than conventional algo- Although such ray-tracing systems are conceptually very simple,
rithms, is more amenable to massive parallelism. TigerSHARK they occupy the high end of computer graphics applications. Tde lar
ray-tracing architecture is then presented as an extremely texdivef number of rays which must be traced backwards into the scene creates a
means to exploit this fundamental parallelism. A competing approacthuge compute cost. Ray-tracing produces extremely realistic images
is analyzed, and theigerSHARK SIMD-variant architecture shown because it is based on a physical model: reflections, shadows, motion
superior due to its use of low-cost high-performance reprogrammablédlurs, and other &fcts are generated easily from the basic ray-tracing
computing elements and specialized architecture. Prototype hardwarechnique. Howeveray-tracing is prohibitively slow for production-
is briefly described. The system produces extremely high-quality outwork.
put, eficiently using low-cost hardware to rival the rendering speeds of
systems three orders of magnitude more expensive. Scan Conversion

INTRODUCTION Scan converting renderers, on the other hand, can be made to run
extremely quickly at the cost of decreased realism. Instead of tracing
The success of the Disney/Pixar fillmy Sory has catapulted pho- light rays through the scene until they hit the model, scan converting
torealistic computer graphics to the headlines, but the recent hype hasgnderers work directly with the model primitives. These primitives
for the most part, obscured the technical details of the feat. Despite th@ften polygons or triangles) are transformed first into 2D space and
farm of Sun workstations employed, the huge amounts of compute timéhen projected onto the viewing plane. Thus every primitive only has to
involved forced Pixar to use decade-old techniques that sacrifice imagbe considered a maximum of once, rather than many times as necessary
realism and fidelity for the sake of speede [iWopose a low-cost paral- with iterative ray-tracing techniques.
lel architecture for ray-traced graphics to help eliminate the processing Scan-converting renderers, although widely used for CAD/CAM
bottleneck. Ray-traced graphics produce much higbelity output applications and in the film industryannot produce scenes as visually
than scan-converting renderers (the technology usetbjosory) but appealing as can a ray-tracédost implementations of scan converting
are currently too slow for wide-spread commercial use. Most existingrenderers deal only with triangles or simple polygons because of the
hardware research has therefore concentrated on scan-converting redifficulty of scan converting complex primitives. While it is possible to
derers, but fundamental algorithm and hardware limitatiofectathe decompose an arbitrarily complex primitive into component triangles,
amount of parallelism obtainable. Ray-tracing, on the other hand, ighis results in a huge increase in the number of primitives in the scene,
amenable to massive parallelism, given the proper architectue. Wand makes accurate representation of curved surfaéiesltlifBecause

propose a distributed D$@ased architecture which promises scalabil- Scan-conversion and ray-tracing are based on fundamentdéyedif

ity to thousands of processors. Each DSP could process over half a mfgorithms, it is much easier to add complex primitives to a ray-tracer
lion ray-triangle intersections per second, and a PCI card hosting 16 More fundamentallyscan conversion systems have no inherent
DSPs would be Capab|e of 8 million ray_triang|e intersections per sec.ablllty to represent reflection or refraction. Addition of such features

ond. generally amounts to embedding a ray-tracing system into the scan con-
verter This drawback is most obvious when trying to create accurate
RENDERING TECHNIQUES shadows, vital for realistic imagery; such ‘simplefeets spring natu-
rally from the ray-tracing algorithm, but are veryfidiflt to synthesize
The diverse applications of computer graphics allowgelagariety in a scan converting renderer

of different algorithms and techniques to be used. For example, the One notable exception is the REYgEﬁstem [1], which Pixar used

proliferation of 3D game engines has given rise to new classes of highas part of PhotoRealistic RenderMan to crdateSory. REYES can

speed algorithms which sacrifice output resolution and quality for real-synthesize realistic scenes, but it does so at the expense of speed. Itis

time display More demanding are CAD/CAM applications, which not unreasonable to expect a RenderMan scene to take days to render

relax the real-time constraints but require the ability to view and manip-on a modern workstation.

ulate complex environments easilyComputer graphics’ high end is

filled by entertainment industry companies like Pixar and Industrial RENDERERACCELERATION

Light and Magic, who require extremely realistic output, regardless of

the cost in rendering time or computational power The lage amount of parallelism inherent in rendering tasks makes
multi-processing a natural solution for graphics acceleration. However

Ray Tracing the type of parallelism and architectures best suited to exploit it are very
different for scan conversion systems and ray-tracers. Most extant

One of the first successful image synthesis methods was ray-tracingiork in the field has focused on scan converters [2,7]. In scan conver-

[16]. Just as lensmakers would plot the path of light rays through asion, parallelism is, in general, achieved by distributing primitives to

lens, the computer was used to compute the paths of light rays enterimdjfferent processors. Severalfditnt stages in the rendering pipeline

the eye. The light rays were followed backwards from the eye untilhave been proposed as the appropriate place to do the communication

they hit an object in the scene: it was then known that the light ray musf3], but all sufer from very poor worst-case performance. In addition,

have emanated from the object hit. The color of the ray entering the eymost existing parallel rendering systems require a shared memory or

1. Digital Signal Processor 2. Renders Everythingot Ever Saw

message passing MIMD compuytevhich is an extremely expensive such as those rendered Toy Storythe communication penalty will be

investment. This paper proposes parallel ray-tracing as a means igegligible? Instead, the chief disadvantage of this method is tge lar
avoid the communications bottlenecks of scan conversion, and pronardware overhead. The distributed or shared memory used to store the

poses a new architecture tailored for ray-tracing. image database, disk storage, operating system overhead, etc., are need-
o lessly replicated. Howevethis solution can be implemented-tife-
Task Description shelf with general-purpose hardware (as Pixar diddgrStory, which

is an advantage in commercial environments. Cost estimatéscfor

The computational task of a scan convertefersf substantially ~ grSHARK, howeverindicate that special purpose hardware of equiva-
from that of a ray-tracerThe fundamental operation of a ray-tracer is |ent performance should cost a fraction of the cost of the general
computing ray-primitive intersections. The basic task is to find the ﬁrStpurpose multi-computer network. The hierarchy of parallel techniques
object that intersects each ray from the eyepoint. More intersections argtjlized in TIGERSHARK incorporates image-space partition as its top-
computed to create reflection, refraction, shadawd other éécts in most level.
the image. Over 95% of the compute time of a ray-tracer is spent com- Opject-space partitioning derives from the software spatial subdivi-
puting ray-primitive intersections [4,16], therefore this is the task first 5ion technique described earligEach processor is responsible for all
parallelized. Amdah¥ law states that the other 5% of the problem will ray.-tracing tasks within a spatial cell, and the object database is distrib-
become increasingly important as the amount of parallelism utilizedyted among the processors according to that spatial division. All rays
increases; a hierarchical approach will be introduced later which a||0W~°entering the cell are tested against the objects residing in the cell. Rays
us to deal with this increase. leaving the cell are passed tf the processor responsible for the cell it

The basic task, then, is to simply intersect all primitives in a sceneyjj|| be entering. Although shared-memory and memory replication are
with a set of rays, outputting the (small) set of intersecting primitives.not issues, unbalanced loads, ray propagation overhead, and object

For a given ray projected into a scene, we can expect only about three feagmentation caused by objects spanning more than one cell create
five intersections to be found [14,16]. From the nearest intersectingyroblems for this approach.

object, we will generate new rays to cast into the scene to compute
shadows, reflections, refractions, and other natufedtst SIMD Ray Tacing

Existing Appoaches The graphics community has at times doubted the feasibility of
_ _ _ using SIMD processors for ray tracind.[1but it has been shown [10]
There are a number of software acceleration techniques which ofteghat SIMD approaches can be aficigint as MIMD designs. Most pub-
influence _p_ara_IIeI implementations, primarily various partitiqning meth- lished architectures, howeyare unable to take advantage of the per-
ods. Partitioning allows us to reduce the number of ray-object intersectormance benefits of the various partitioning schemes, and instead use a
tion calculations by excluding various objects from consideration, sightpryte-force’ approach, blindly comparing every ray against every

unseen. Lin [10] mentions two widely used technigierarchical opject [11,13]. Lin [10] gives the speed-up of existing brute-force
bounding which partitions a scene into a tree of enclosing volumessvD architectures using N processing elements as

[6,9], andspace subdivisigrwhich divides the objects among a tree of
uniformly sized spatial cells [5]. Only objects within the cells or N%w%
bounding volumes through which a ray passes are tested against that m

ray. Scherson and Caspary [14] analyze the performance of such algQyheren is the average number of objects tested against each ray by the
rithmic improvements in depth; the performance gains realized are sigpptimal sequential algorithm is the number of objects in the scefe;
nificant. f<1, is the degradation caused by SIMD processingkaadhe over-
Parallel ray tracing is done either asynchronously using MIMD head due to space traversal, for those architectures which use it. Since
architectures or synchronously using SIfBrchitectures. MIMD N approachesn asm decreases, this approach works well for simple
computers are more general, and there is evidence that they are moseenes, but fails for the complex scenes more common in practice,
efficient for scan converting renderers (see, for example, [2,7]) and savhere",, can be greater than 1,000.
most research on parallel ray-tracing has focused on MIMD architec- Clearly a practical SIMD approach needs to be able to use space-
tures. V¢ contend, howevethat the hardware resources of MIMD partition methods to reduce the number of intersection calculations.
machines are not usedieiently for ray-tracing. SIMD architectures, This is more dficult with SIMD processors: one would think that rays
such as the one we propose, perform the taskietieély with much could not be tested againstfdifent partitions of the object database

less hardware cost and overhead. without multiple instruction streams. In fact, several methods for
accomplishing this are available. Lin describes a method using a par-
SURVEY OF RAY TRACING ARCHITECTURES tially data-driven architecture in [10]. é&\propose another method,

using a hybrid architecture which takes advantage of spatial coherence.
MIMD Ray Tacing

THE TIGERSHARK ARCHITECTURE
Lin [10] describes two categories of MIMD parallel ray tracers:
those that usemage-space partition algorithmand those that use Our goal in designing a parallel ray-tracing accelerator is to tune
object-space partition algorithmdn image-space partitioning, the pix- the architecture to match the problem. SIMD designs for this task use
els in the output image are divided among the processors, with a singlgardware more &tiently, and existing supercomputer architectures
processor responsible for the entire ray-tracing task for those pixel§12] have demonstrated the performance benefits of usigg farm-
This obviously requires the entire image database to be accessible to @krs of very simple processors.e\atrive for very low cost-parode,

processors. Lin claims that shared memory is essential to thigliminating excess generalitio facilitate the use of lge numbers of
approach; howevermulti-computers can implement this scheme podes.

equally well without any kind of shared memory protocol if the image
primitives are simply broadcast to all nodes at initialization. The image
components can be reassembled at completion. For complex images,

3. For real-time processing of simple scenes, howdiretbandwidth
1. Multiple Instruction stream, Multiple Data stream required for this approach is excessive; a shared-memory system
2. Single Instruction stream, Multiple Data stream (with higher internode bandwidth) will have to be used

Overview latency times and reduce the amount of on-board memory required, we
split up the object database among the PCI cards in the system. W
Our proposed hybrid architecture consists of a collection of syn- then provide the same rays to each card (we need not waste any of our
chronous processing nodes connected to a single data mevhack potential spatial coherency here), reading andymegrthe intersections
they access in lock-step. The processing nodes are more complicatetbund by the two cards. The limiting factor now is the host processor
than the typical SIMD ALUs; in fact, they are full-featured digital sig- power As previously shown, that over 95% of the processing task is
nal processors, with a small amount of on-board memory and serialray-primitive intersections; the remaining part of the task falls on the

communications ports. host processor Obviously as we continue to expand the system, we
All memory accesses must be performed together; each processowill want to provide multiple host processors, to avoid a bottleneck.
reads the same memory location at the same timateshare disal- The third level of parallelism is then to add multiple hosts, each with

lowed for all but one processeermed the masteRays are distributed multiple PCI cards holding multiple DSPs. The task is divided up
via the individual serial communications ports, daisy-chained together among the hosts using an image-space partition: each host gets a sec-
and object intersections are collected the same Wag single mem- tion of the final output image and the entire object database, renders
ory holds the object database. independently of the other hosts, and assembles the final output image
Note that this is not a pure SIMD architecture. The DSPs can copywhen the hosts have all completed.
their program information from the shared memory to their small inter- So the complete system contains three separate levels of parallel-
nal memories, so that they do not require an external bus access for aism: ray-vector parallelism at the lowest level, followed by object data-
instruction fetch. They can then branch and loop independently frombase distribution above it, and capped by an image-space partitioning
the other processors, on the condition that the next external bus accesscheme.
must again be synchronized. A hardware primitive is provided to per-
form the resynchronization. TIGERSHARK SYSTEM HARDWARE
In practice, the first operation performed by the DSPs is to copy
their programs to internal memoryThey then use the daisy-chained Design Process
serial bus to determine unique node ids, designating node O the write-
privileged master A host processor loads the shared memory with the The first design parameter we set was thgetgperformance level.
object database, and then sends rays down the serial bus. In the simpl&/e wanted to be able to render complex realistic scenes, on the scale of
case, each processor gets &edint ray and the rays are tested in paral- those created fofoy Story, at a better price-performance ratio than
lel against the entire object database. Objects are, of course, fetchedvailable with multi-computer arrangements. Complex scenes meant
synchronously that we needed support for object database partitioning, and the recent
We saw above that such brute-force approaches (testing every raypnnouncement of Advanced Renderirgciinologies’ AR250-64 ray-
against every object) def very poor comparative performance on tracing system [15] set our performance goal: to be competitive, we

complex scenes. This is avoided by utilizing the spatial coherence ofshould be able to compute close td 1@y-triangle intersections per

the input rays and a simple voting primitive. ‘Spatial coherence’ refers second. An initial estimate placed this as the compute power of a 512-
to the fact that consecutive rays tested are extremely likely to be closepsp array; subsequent architecture design thus called for scalability to
together spatially For example, consecutive rays might belong to an 512 processors. As we will discuss, actual system performance is not
adjacent pair of pixels in the output image. This spatial similarity girectly comparable on the ray-primitive level, since the AR250-64 sys-
means that they will also have similar intersection properties: if the first tem andTIGERSHARK use diferent sets of primitives; instead, scal-
ray intersects a primitive or bounding volume, it is very likely the next ability to 512 processors replaces raw compute speed as our
ray will, as well. Obviouslysome forethought is required to ensure that performance taet.

most of the spatial coherence present in the original task (adjacent pix- pigital signal processors seemed a good match to the low compo-

els, etc.) is preserved in the ray ordering as seen by the DSPs. nent-cost, high floating-poihperformance required. General-purpose

. llf we (t:%n guda}rante(? this sp?_ttlgl g:ohergnCﬁ, howe\{erfag aIS(.) i processors typically either required too much support hardware, cost
implement bounding-volume partitioning. Lach ray Is lested against a,, , much, or provided too little floating-point performance to be viable

boundary volume, and then tells its neighbors whether or not it inter'gptions

sected. If. none of the rays mtergect the bOL_Jndary volume then we nee Various system bus options were then considered, starting with tra-
not examine the objects inside it. Otherwise, all the processors con-

i) ine the obiects inside the boundin lume. si fditional shared-memory MIMD systems. The shared-memory hard-
Inue to examine the objects Inside the bounding VOIUME, SINCE ON€ Ol ., oyerhead and SIMD/MIMD issues did not generally justify the

them "?ay find an intersection. _The degreg of ray spatial COherencestandard shared-memory architecture, but we examined a few varia-
determines how probable a unanimous vote is.

This architecture requires very little hardware to implement a paral- tions on the architecture before discarding the idea. The Analog
) = y Imp P Devices SHARC DSP was considered as a processing node: it provides
lel system. Obvioushif the number of processors is greater than the

amount of spatial coherence preserficisincy is poar Anti-aliasin built in support for global-memory architectures, and includes substan-
u P P cency 1s p 9 tial on-chip local memory (reducing necessary shared-memory band-

and .StOCh‘?lStiC ;a}mpling are two common techr_1iques to imprqve imageilvidth) but the high cost of this processor was a heavy disadvantage.
quality Wh'Ch. utilize multiple rays per pixel. ngh resol_utlpn 'Mages pual bus systems, like the Motorola DSP96002 processae evalu-
(where the pixels are ‘smallewith respect to image variations) and ated as possible low-cost solutions to providing shared memory; how-

mﬁ.lé'ﬁ Ifa?fé pf.:. pé)((jel |k:)0|t|h-rﬁrﬁzgzgta(;?]o(;%se()f;?;“alecgh;;enrq]ce-|| ever the required support hardware and high processor cost prompted a
whi utilized. Fullimp : P ype sy WIT search for other options.

provide a definitive measure of the amount of spatial coherence which Once the SIMD architecture was decided upon, it was fairly easy to

can l_Je exploited, but 16 to 32 processor sy_stems shou_ld cert_ainly beselect the &xas Instruments TMS320C32 60-MFLOP DSP on the basis
possnt_)le \.N'thOUt mu_ch performance (_jegradatlore uék a hierarchical of its extremely low cost (less than $10 each in quantity [8]) and excel-
organization to obtain further parallelism. lent performance

Hierarchical Parallelism

The prototype system is implemented as a PCI card hosted in a per-
sonal computer The second level of parallelism is to add multiple pro- 1. Investigation was also done into the applicability of fixed-
cessor ‘cards’ to the host. Each card contains a single object database Point processors: the results strongly favored floating-point;
memory and a number of DSP processing elements. inffprove the reasons are outside the scope of this paper

Hardware Description can be eliminated by changing the ratio of DSPs to PCI boards, or the
number of boards per host. Research will certainly be done on the pro-
An array of TMS320C32 DSPs are supplied with identical clock totype system to identify the best ratios here.
signals via a low-skew driver for synchronization. The model database
is stored in zero-wait state SRAM, and the ray data input and intersec- SYSTEM EVALUATION AND COMPARISON
tion data output are via a high-speed serial port on the TMS320C32.
Only one DSP is connected to the address lines of the memory To evaluate the &dctiveness of th&IGERSHARK architecture, the
since all DSPs are guaranteed to be driving the same address on argystem is compared against Advanced Renderieghiologies’

given cycle. Output from the SRAM is via a high-speedéoufo AR250-643 Advanced Rendering eEhnologies (AR) is a Cam-

enable the SRAM to drive the data-bus inputs of gelatumber of prigge-based company that announced on 2 October 1995 its plans to

DSPs. build a custom VLSI processor for ray-tracing applications. First sam-
The DSP array is hosted on a PCI bus system; for the prototype,ples are anticipated 4Q 1996. Although the goal of BatERSHARK

this is a Pentium PC. The PCI interface is via the AMCC S5933 and ART is to accelerate ray-tracing, the relevant architectures are very
‘Matchmaket chip; the host processor can directly load object database gitferent. It is unwise to make claims about the full 512-0TRFER-

information into card SRAM, and a 32-word FIFQ is used téebugy SHARK system until scalability can be empirically verified, so instead
and intersection data coming to and from the device. The PCl interfaceye will compare a singl&GERSHARK PCI board to a single module
is capable of bus mastering for added performance. of ART's AR250-64.

The TMS320C32 DSPs can execute 60 MFLOPS peak; estimated The AR250-64 is made up of 64 AR250 ray tracing engines. Each

ray-tracing performance is on the order of half a million ray-triangle AR250 is claimed to be able to perform 80,000,000 ray intersection
intersections per second (estimating worst-case 100 instructions petests per second, “roughly 16 times the performance of the best graphics

ray-primitive intersection). workstations.” V& compare this single AR250 withTaGERSHARK
board containing 16 TMS320C32 DSPs.
Cost/Performance I ssues ART’s AR250 clearly holds the lead in raw speed. The AR250’

_ _ _ _ custom silicon allows it to perform almost 4 GFLOPS, about 4 times
In order to keep the architecture inexpensive and uncomplicated Wemore raw floating-point performance th&GERSHARK, and the

decided not to share the DSP bus with PCI. Origindilly model data- ~ AR250 can perform an order of magnitude more ray-triangle intersec-
base was double-tfefed to enable the PCI interface to update the tions per second than caIGERSHARK.
model primitives without interrupting the DSPs. Howewaidculation TIGERSHARK makes up the deficit in flexibiliynowever ART’s

showed that typical performance loss due to database updatingjecision to go for custom silicon entails sacrificing some complexity: in
remained under 1% for typical processor loadihgs,in the interest of particular the AR250 is only able to implement triangle primitives on-
reducing costs the double-fierfing was eliminated. PCI access to the chip. All other primitives must be decomposed into triangles before
SRAM now requires the DSPs to yield the bus, but system costs arethey can be renderedliIGERSHARK's reprogrammable DSPs allow it
reduced almost 30% to 40%. to perform any type of ray-primitive intersection, which allows a lot of

Our calculations also verified that the bandwidth available on the relative performance gain. For example, the AR250 must decompose a
PCI bus was enough to sustain ougear512-processor system. Bus SPhere in the object database into hundreds of component triangles,
mastering and burst writes were employed to utilize the full bus band-While TIGERSHARK can process the sphere in one operation, as a sin-
width. gle primitive. Moreoverfor TIGERSHARK ray-sphere intersections are

The size of the SRAM for model database storage was minimized actually easier to perform than ray-triangle intersectionBGER-
subject to bandwidth and performance constraints. An overly small SHARK is therefore an order of magnitutister than the AR250 on
SRAM would create lge amounts of paging tfaf as parts of a bigger this task. On the assumption that most interesting scenes are fairly
database are paged into local membunt lage amounts of fast SRAM complex, with lots of non-flat surfaces that the AR250 will need to tri-
are very expensive. It was found that 1Mb of SRAM was the smallest @ngulate, aliGERSHARK board may very well equal or surpass the
practical size for the tget 512-processor implementation. The serial AR250’s performancé.

communication bandwidth turned out to be the limiting factor: a In addition, TIGERSHARK has a much better price/performance
smaller SRAM would finish iterating rays through the object database ratio. ART is using a low-volume custom ASIC, with the price penalty
before new rays could be transmitted to the DSPs. that that entails. TIGERSHARK, on the other hand, uses high-volume
T1 DSPs to achieve a very low node cost.
PARALLELISM ISSUES Overall, we are optimistic that tHBGERSHARK system will be

able to match the performance of BR custom silicon while maintain-

The TIGERSHARK system can achieve near linear speedup on ray- ing a much lower price. Neither system has been fully prototyped yet;
primitive intersections. Howeveprocessing the output intersections scalability is likely to be key to a comparison of operational systems.
must be done by the host processBIGERSHARK uses a hierarchical The results are certainly positive enough to justify a closer look at
structure to ensure that this processing will not become a bottleneck forybrid SIMD architectures for ray-tracing applications.
the system.

At the top level of the hierarchy is the image to be rendered. This is CONCLUSION
split up among several host computers, in the way described for multi-
computer systems. Each host in turn distributes the model primitives TIGERSHARK was designed to achieve the three goals most prized
among the dferent PCI boards it contains; each PCI board has its own by professional computer graphic artists: speed, cost, and quality
shared memoryThe task is further subdivided by the PCI board; each high-end Silicon Graphics machine is fast, at the expense of cost and
DSP on the board tests the primitives against a singleBattlenecks quality; a software ray-tracer can produce high quality output but ren-
ders extremely slowly; and hardware approaches to ray-tracing have

1. 100,000 rays iterated through object database between

updates; 512-processor system 3. All data on Advanced Renderingdhnologies’ products is
2. RAM typically accounts for 60% of the cost of an average work- from their V\br!d.V\/ide Web site [15]. _

station [12]; the percentage is even higher forft@ERSHARK 4. Furthermore, it is not clear that Afhas implemented or can

board, since the processor cost is sa I&NWminating double-buf implement a partitioning scheme in its hardware to avoid

ering allows us to use half as much RAM per board. brute-forcing the object database.

thus far been extremely expensive due to their use of general-purpose
hardware.

The TIGERSHARK system provides extremely high quality output,
scales well due to the taskinherent parallelism, and uses low-cost
hardware extremely ffiently. We believe that a fully expandédc-
ERSHARK system would be able to rival the rendering speed of the
fastest graphics systems available, at approximately three orders of
magnitude less cost. Our hybrid architecture shows great promise for
ray-tracing applications, challenging even custom silicon. In addition,
the flexibility of the general purpose DSP chips enables us to add new
primitives and even procedural shading techniques to achieve rich,
complex, and realistic ray-traced scenes at speeds previously unattain-
able. V¢ believe thaTIGERSHARK will set a new price/performance
benchmark for graphics systems, and will push ray-tracing towards the
realm of real-time realistic image synthesis.

Work is in progress on the construction of a 4-O8fRSHARK
prototype to verify performance, feasibilignd scalability

REFERENCES

[1] Robert L. Cook, Loren Carpenteaind Edwin Catmull, “The
Reyes image rendering architecture,” @omputer Graphics (SIG-
GRAPH ‘87 Poceedings)volume 21, pages 95--102, July 1987.

[2] Michael Cox,Algorithms for Parallel RenderingPhD thesis,
Princeton Universityl1995.

[3] Michael Cox, Steven MolnarDavid Ellsworth, and Henry
Fuchs, “A sorting classification of parallel rendering,”IHEE Com-
puter Graphics and Algorithmpages 23--32, July 1994.

[4] Andrew GlassnerAn Introduction to Ray facing, Academic
Press, 1989.

[5] Andrew Glassner“Space subdivision for fast ray tracing,”
IEEE Computer Graphics and Applicatiorg10):15--22, 1984.

[6] J. Goldsmith and J. Salmon, “Automatic creation of object hier-
archies for ray tracing,JEEE Computer Graphics and Applications
7(5):14--20, 1984.

[7] Greg HumphreysParallel network objects and graphiciunior
Independent \&tk, Princeton Universityl995.

[8] Texas Instruments IncorporateNew TI floating-point DSP
breaks cost barrierTexas Instruments ON-BOARD, 1(2), Spring 1995.
[9] T. L. Kay and J.TKajiya, “Ray tracing complex scene§bm-

puter Graphics (SIGGRAPH ‘86 &teedings)20(4):269--278, 1986.

[10] T. T. V. Lin and M. SlaterStochastic ray tracing using SIMD
processor arrayg he Msual Computer7:187--199, July 1991.

[11] J. Owczarczyk, “Ray tracing: a challenge for parallel process-
ing,” in Proc Parallel Pocessing for Computeridion and Display
Leeds, 1988.

[12] David A. Patterson and John L. Henneg€xymputer Achitec-
ture: A Quantitative Apgrach Morgan Kaufmann, 1996.

[13] David J. Plunkett and Michael J. Bailéyhe vectorization of
a ray-tracing algorithm for improved execution spe#&EE Computer
Graphics and Application$(8):52--60, August 1985.

[14] Isaac D. Scherson and Elisha Caspaata structues and the
time complexity of ray tracingrhe Msual Computer3(4):201--213,
1987.

[15] Advanced Renderingethnologies, WWid Wide Web site:
http://ww. art. co. uk.

[16] Turner Whitted, “An improved illumination model for shaded
display” CACM 23(6):343--349, June 1980.

