
TigerSHARK: A Hardware Accelerated Ray-tracing Engine

Greg Humphreys
Princeton University

humper@cs.princeton.edu

C. Scott Ananian
Princeton University

cananian@ee.princeton.edu

Abstract The current state of the art in graphics rendering algo-
rithms and hardware is surveyed, and it is shown that ray-tracing,
despite larger computational requirements than conventional algo-
rithms, is more amenable to massive parallelism. The TigerSHARK
ray-tracing architecture is then presented as an extremely cost-effective
means to exploit this fundamental parallelism. A competing approach
is analyzed, and the TigerSHARK SIMD-variant architecture shown
superior due to its use of low-cost high-performance reprogrammable
computing elements and specialized architecture. Prototype hardware
is briefly described. The system produces extremely high-quality out-
put, efficiently using low-cost hardware to rival the rendering speeds of
systems three orders of magnitude more expensive.

INTRODUCTION

The success of the Disney/Pixar filmToy Story has catapulted pho-
torealistic computer graphics to the headlines, but the recent hype has,
for the most part, obscured the technical details of the feat. Despite the
farm of Sun workstations employed, the huge amounts of compute time
involved forced Pixar to use decade-old techniques that sacrifice image
realism and fidelity for the sake of speed. We propose a low-cost paral-
lel architecture for ray-traced graphics to help eliminate the processing
bottleneck. Ray-traced graphics produce much higher-quality output
than scan-converting renderers (the technology used forToy Story) but
are currently too slow for wide-spread commercial use. Most existing
hardware research has therefore concentrated on scan-converting ren-
derers, but fundamental algorithm and hardware limitations affect the
amount of parallelism obtainable. Ray-tracing, on the other hand, is
amenable to massive parallelism, given the proper architecture. We

propose a distributed DSP1-based architecture which promises scalabil-
ity to thousands of processors. Each DSP could process over half a mil-
lion ray-triangle intersections per second, and a PCI card hosting 16
DSPs would be capable of 8 million ray-triangle intersections per sec-
ond.

RENDERINGTECHNIQUES

The diverse applications of computer graphics allow a large variety
of different algorithms and techniques to be used. For example, the
proliferation of 3D game engines has given rise to new classes of high-
speed algorithms which sacrifice output resolution and quality for real-
time display. More demanding are CAD/CAM applications, which
relax the real-time constraints but require the ability to view and manip-
ulate complex environments easily. Computer graphics’ high end is
filled by entertainment industry companies like Pixar and Industrial
Light and Magic, who require extremely realistic output, regardless of
the cost in rendering time or computational power.

Ray Tracing

One of the first successful image synthesis methods was ray-tracing
[16]. Just as lensmakers would plot the path of light rays through a
lens, the computer was used to compute the paths of light rays entering
the eye. The light rays were followed backwards from the eye until
they hit an object in the scene: it was then known that the light ray must
have emanated from the object hit. The color of the ray entering the eye

1. Digital Signal Processor

could then be computed, based on the color of the object the ray had
been emitted from.

Although such ray-tracing systems are conceptually very simple,
they occupy the high end of computer graphics applications. The large
number of rays which must be traced backwards into the scene creates a
huge compute cost. Ray-tracing produces extremely realistic images
because it is based on a physical model: reflections, shadows, motion
blurs, and other effects are generated easily from the basic ray-tracing
technique. However, ray-tracing is prohibitively slow for production-
work.

Scan Conversion

Scan converting renderers, on the other hand, can be made to run
extremely quickly, at the cost of decreased realism. Instead of tracing
light rays through the scene until they hit the model, scan converting
renderers work directly with the model primitives. These primitives
(often polygons or triangles) are transformed first into 2D space and
then projected onto the viewing plane. Thus every primitive only has to
be considered a maximum of once, rather than many times as necessary
with iterative ray-tracing techniques.

Scan-converting renderers, although widely used for CAD/CAM
applications and in the film industry, cannot produce scenes as visually
appealing as can a ray-tracer. Most implementations of scan converting
renderers deal only with triangles or simple polygons because of the
difficulty of scan converting complex primitives. While it is possible to
decompose an arbitrarily complex primitive into component triangles,
this results in a huge increase in the number of primitives in the scene,
and makes accurate representation of curved surfaces difficult. Because
scan-conversion and ray-tracing are based on fundamentally different
algorithms, it is much easier to add complex primitives to a ray-tracer.

More fundamentally, scan conversion systems have no inherent
ability to represent reflection or refraction. Addition of such features
generally amounts to embedding a ray-tracing system into the scan con-
verter. This drawback is most obvious when trying to create accurate
shadows, vital for realistic imagery; such ‘simple’ effects spring natu-
rally from the ray-tracing algorithm, but are very difficult to synthesize
in a scan converting renderer.

One notable exception is the REYES2 system [1], which Pixar used
as part of PhotoRealistic RenderMan to createToy Story. REYES can
synthesize realistic scenes, but it does so at the expense of speed. It is
not unreasonable to expect a RenderMan scene to take days to render
on a modern workstation.

RENDERERACCELERATION

The large amount of parallelism inherent in rendering tasks makes
multi-processing a natural solution for graphics acceleration. However,
the type of parallelism and architectures best suited to exploit it are very
different for scan conversion systems and ray-tracers. Most extant
work in the field has focused on scan converters [2,7]. In scan conver-
sion, parallelism is, in general, achieved by distributing primitives to
different processors. Several different stages in the rendering pipeline
have been proposed as the appropriate place to do the communication
[3], but all suffer from very poor worst-case performance. In addition,
most existing parallel rendering systems require a shared memory or

2. Renders Everything You Ever Saw

message passing MIMD computer, which is an extremely expensive
investment. This paper proposes parallel ray-tracing as a means to
avoid the communications bottlenecks of scan conversion, and pro-
poses a new architecture tailored for ray-tracing.

Task Description

The computational task of a scan converter differs substantially
from that of a ray-tracer. The fundamental operation of a ray-tracer is
computing ray-primitive intersections. The basic task is to find the first
object that intersects each ray from the eyepoint. More intersections are
computed to create reflection, refraction, shadow, and other effects in
the image. Over 95% of the compute time of a ray-tracer is spent com-
puting ray-primitive intersections [4,16], therefore this is the task first
parallelized. Amdahl’s law states that the other 5% of the problem will
become increasingly important as the amount of parallelism utilized
increases; a hierarchical approach will be introduced later which allows
us to deal with this increase.

The basic task, then, is to simply intersect all primitives in a scene
with a set of rays, outputting the (small) set of intersecting primitives.
For a given ray projected into a scene, we can expect only about three to
five intersections to be found [14,16]. From the nearest intersecting
object, we will generate new rays to cast into the scene to compute
shadows, reflections, refractions, and other natural effects.

Existing Approaches

There are a number of software acceleration techniques which often
influence parallel implementations, primarily various partitioning meth-
ods. Partitioning allows us to reduce the number of ray-object intersec-
tion calculations by excluding various objects from consideration, sight
unseen. Lin [10] mentions two widely used techniques:hierarchical
bounding, which partitions a scene into a tree of enclosing volumes
[6,9], andspace subdivision, which divides the objects among a tree of
uniformly sized spatial cells [5]. Only objects within the cells or
bounding volumes through which a ray passes are tested against that
ray. Scherson and Caspary [14] analyze the performance of such algo-
rithmic improvements in depth; the performance gains realized are sig-
nificant.

Parallel ray tracing is done either asynchronously using MIMD1

architectures or synchronously using SIMD2 architectures. MIMD
computers are more general, and there is evidence that they are more
efficient for scan converting renderers (see, for example, [2,7]) and so
most research on parallel ray-tracing has focused on MIMD architec-
tures. We contend, however, that the hardware resources of MIMD
machines are not used efficiently for ray-tracing. SIMD architectures,
such as the one we propose, perform the task as effectively with much
less hardware cost and overhead.

SURVEY OF RAY TRACING ARCHITECTURES

MIMD Ray Tracing

Lin [10] describes two categories of MIMD parallel ray tracers:
those that use image-space partition algorithms and those that use
object-space partition algorithms. In image-space partitioning, the pix-
els in the output image are divided among the processors, with a single
processor responsible for the entire ray-tracing task for those pixels.
This obviously requires the entire image database to be accessible to all
processors. Lin claims that shared memory is essential to this
approach; however, multi-computers can implement this scheme
equally well without any kind of shared memory protocol if the image
primitives are simply broadcast to all nodes at initialization. The image
components can be reassembled at completion. For complex images,

1. Multiple Instruction stream, Multiple Data stream
2. Single Instruction stream, Multiple Data stream

such as those rendered forToy Story, the communication penalty will be

negligible.3 Instead, the chief disadvantage of this method is the large
hardware overhead. The distributed or shared memory used to store the
image database, disk storage, operating system overhead, etc., are need-
lessly replicated. However, this solution can be implemented off-the-
shelf with general-purpose hardware (as Pixar did forToy Story), which
is an advantage in commercial environments. Cost estimates forTIG-

ERSHARK, however, indicate that special purpose hardware of equiva-
lent performance should cost a fraction of the cost of the general
purpose multi-computer network. The hierarchy of parallel techniques
utilized in TIGERSHARK incorporates image-space partition as its top-
most level.

Object-space partitioning derives from the software spatial subdivi-
sion technique described earlier. Each processor is responsible for all
ray-tracing tasks within a spatial cell, and the object database is distrib-
uted among the processors according to that spatial division. All rays
entering the cell are tested against the objects residing in the cell. Rays
leaving the cell are passed off to the processor responsible for the cell it
will be entering. Although shared-memory and memory replication are
not issues, unbalanced loads, ray propagation overhead, and object
fragmentation caused by objects spanning more than one cell create
problems for this approach.

SIMD Ray Tracing

The graphics community has at times doubted the feasibility of
using SIMD processors for ray tracing [11], but it has been shown [10]
that SIMD approaches can be as efficient as MIMD designs. Most pub-
lished architectures, however, are unable to take advantage of the per-
formance benefits of the various partitioning schemes, and instead use a
‘brute-force’ approach, blindly comparing every ray against every
object [11,13]. Lin [10] gives the speed-up of existing brute-force
SIMD architectures using N processing elements as

wheren is the average number of objects tested against each ray by the
optimal sequential algorithm;m is the number of objects in the scene;f,
f<1, is the degradation caused by SIMD processing, andk is the over-
head due to space traversal, for those architectures which use it. Since
n approachesm asm decreases, this approach works well for simple
scenes, but fails for the complex scenes more common in practice,

wherem⁄n can be greater than 1,000.
Clearly, a practical SIMD approach needs to be able to use space-

partition methods to reduce the number of intersection calculations.
This is more difficult with SIMD processors: one would think that rays
could not be tested against different partitions of the object database
without multiple instruction streams. In fact, several methods for
accomplishing this are available. Lin describes a method using a par-
tially data-driven architecture in [10]. We propose another method,
using a hybrid architecture which takes advantage of spatial coherence.

THE TIGERSHARK ARCHITECTURE

Our goal in designing a parallel ray-tracing accelerator is to tune
the architecture to match the problem. SIMD designs for this task use
hardware more efficiently, and existing supercomputer architectures
[12] have demonstrated the performance benefits of using large num-
bers of very simple processors. We strive for very low cost-per-node,
eliminating excess generality, to facilitate the use of large numbers of
nodes.

3. For real-time processing of simple scenes, however, the bandwidth
required for this approach is excessive; a shared-memory system
(with higher inter-node bandwidth) will have to be used

N
1 k+() nf

m
------------------------ 

 

Overview

Our proposed hybrid architecture consists of a collection of syn-
chronous processing nodes connected to a single data memory, which
they access in lock-step. The processing nodes are more complicated
than the typical SIMD ALUs; in fact, they are full-featured digital sig-
nal processors, with a small amount of on-board memory and serial
communications ports.

All memory accesses must be performed together; each processor
reads the same memory location at the same time. Writes are disal-
lowed for all but one processor, termed the master. Rays are distributed
via the individual serial communications ports, daisy-chained together,
and object intersections are collected the same way. The single mem-
ory holds the object database.

Note that this is not a pure SIMD architecture. The DSPs can copy
their program information from the shared memory to their small inter-
nal memories, so that they do not require an external bus access for an
instruction fetch. They can then branch and loop independently from
the other processors, on the condition that the next external bus access
must again be synchronized. A hardware primitive is provided to per-
form the resynchronization.

In practice, the first operation performed by the DSPs is to copy
their programs to internal memory. They then use the daisy-chained
serial bus to determine unique node ids, designating node 0 the write-
privileged master. A host processor loads the shared memory with the
object database, and then sends rays down the serial bus. In the simple
case, each processor gets a different ray, and the rays are tested in paral-
lel against the entire object database. Objects are, of course, fetched
synchronously.

We saw above that such brute-force approaches (testing every ray
against every object) suffer very poor comparative performance on
complex scenes. This is avoided by utilizing the spatial coherence of
the input rays and a simple voting primitive. ‘Spatial coherence’ refers
to the fact that consecutive rays tested are extremely likely to be close
together, spatially. For example, consecutive rays might belong to an
adjacent pair of pixels in the output image. This spatial similarity
means that they will also have similar intersection properties: if the first
ray intersects a primitive or bounding volume, it is very likely the next
ray will, as well. Obviously, some forethought is required to ensure that
most of the spatial coherence present in the original task (adjacent pix-
els, etc.) is preserved in the ray ordering as seen by the DSPs.

If we can guarantee this spatial coherence, however, we can also
implement bounding-volume partitioning. Each ray is tested against a
boundary volume, and then tells its neighbors whether or not it inter-
sected. If none of the rays intersect the boundary volume then we need
not examine the objects inside it. Otherwise, all the processors con-
tinue to examine the objects inside the bounding volume, since one of
them may find an intersection. The degree of ray spatial coherence
determines how probable a unanimous vote is.

This architecture requires very little hardware to implement a paral-
lel system. Obviously, if the number of processors is greater than the
amount of spatial coherence present, efficiency is poor. Anti-aliasing
and stochastic sampling are two common techniques to improve image
quality which utilize multiple rays per pixel. High resolution images
(where the pixels are ‘smaller’ with respect to image variations) and
multiple rays per pixel both provide large amounts of spatial coherence
which can be utilized. Full implementation of the prototype system will
provide a definitive measure of the amount of spatial coherence which
can be exploited, but 16 to 32 processor systems should certainly be
possible without much performance degradation. We use a hierarchical
organization to obtain further parallelism.

Hierarchical Parallelism

The prototype system is implemented as a PCI card hosted in a per-
sonal computer. The second level of parallelism is to add multiple pro-
cessor ‘cards’ to the host. Each card contains a single object database
memory, and a number of DSP processing elements. To improve

latency times and reduce the amount of on-board memory required, we
split up the object database among the PCI cards in the system. We
then provide the same rays to each card (we need not waste any of our
potential spatial coherency here), reading and merging the intersections
found by the two cards. The limiting factor now is the host processor
power. As previously shown, that over 95% of the processing task is
ray-primitive intersections; the remaining part of the task falls on the
host processor. Obviously, as we continue to expand the system, we
will want to provide multiple host processors, to avoid a bottleneck.
The third level of parallelism is then to add multiple hosts, each with
multiple PCI cards holding multiple DSPs. The task is divided up
among the hosts using an image-space partition: each host gets a sec-
tion of the final output image and the entire object database, renders
independently of the other hosts, and assembles the final output image
when the hosts have all completed.

So the complete system contains three separate levels of parallel-
ism: ray-vector parallelism at the lowest level, followed by object data-
base distribution above it, and capped by an image-space partitioning
scheme.

TIGERSHARK SYSTEM HARDWARE

Design Process

The first design parameter we set was the target performance level.
We wanted to be able to render complex realistic scenes, on the scale of
those created forToy Story, at a better price-performance ratio than
available with multi-computer arrangements. Complex scenes meant
that we needed support for object database partitioning, and the recent
announcement of Advanced Rendering Technologies’ AR250-64 ray-
tracing system [15] set our performance goal: to be competitive, we

should be able to compute close to 109 ray-triangle intersections per
second. An initial estimate placed this as the compute power of a 512-
DSP array; subsequent architecture design thus called for scalability to
512 processors. As we will discuss, actual system performance is not
directly comparable on the ray-primitive level, since the AR250-64 sys-
tem andTIGERSHARK use different sets of primitives; instead, scal-
ability to 512 processors replaces raw compute speed as our
performance target.

Digital signal processors seemed a good match to the low compo-

nent-cost, high floating-point1 performance required. General-purpose
processors typically either required too much support hardware, cost
too much, or provided too little floating-point performance to be viable
options.

Various system bus options were then considered, starting with tra-
ditional shared-memory MIMD systems. The shared-memory hard-
ware overhead and SIMD/MIMD issues did not generally justify the
standard shared-memory architecture, but we examined a few varia-
tions on the architecture before discarding the idea. The Analog
Devices SHARC DSP was considered as a processing node: it provides
built in support for global-memory architectures, and includes substan-
tial on-chip local memory (reducing necessary shared-memory band-
width), but the high cost of this processor was a heavy disadvantage.
Dual bus systems, like the Motorola DSP96002 processor, were evalu-
ated as possible low-cost solutions to providing shared memory; how-
ever, the required support hardware and high processor cost prompted a
search for other options.

Once the SIMD architecture was decided upon, it was fairly easy to
select the Texas Instruments TMS320C32 60-MFLOP DSP on the basis
of its extremely low cost (less than $10 each in quantity [8]) and excel-
lent performance.

1. Investigation was also done into the applicability of fixed-
point processors: the results strongly favored floating-point;
the reasons are outside the scope of this paper.

Hardware Description

An array of TMS320C32 DSPs are supplied with identical clock
signals via a low-skew driver for synchronization. The model database
is stored in zero-wait state SRAM, and the ray data input and intersec-
tion data output are via a high-speed serial port on the TMS320C32.

Only one DSP is connected to the address lines of the memory,
since all DSPs are guaranteed to be driving the same address on any
given cycle. Output from the SRAM is via a high-speed buffer to
enable the SRAM to drive the data-bus inputs of a large number of
DSPs.

The DSP array is hosted on a PCI bus system; for the prototype,
this is a Pentium PC. The PCI interface is via the AMCC S5933
‘Matchmaker’ chip; the host processor can directly load object database
information into card SRAM, and a 32-word FIFO is used to buffer ray
and intersection data coming to and from the device. The PCI interface
is capable of bus mastering for added performance.

The TMS320C32 DSPs can execute 60 MFLOPS peak; estimated
ray-tracing performance is on the order of half a million ray-triangle
intersections per second (estimating worst-case 100 instructions per
ray-primitive intersection).

Cost/Performance Issues

In order to keep the architecture inexpensive and uncomplicated we
decided not to share the DSP bus with PCI. Originally, the model data-
base was double-buffered to enable the PCI interface to update the
model primitives without interrupting the DSPs. However, calculation
showed that typical performance loss due to database updating

remained under 1% for typical processor loadings,1 so in the interest of
reducing costs the double-buffering was eliminated. PCI access to the
SRAM now requires the DSPs to yield the bus, but system costs are

reduced almost 30% to 40%.2

Our calculations also verified that the bandwidth available on the
PCI bus was enough to sustain our target 512-processor system. Bus
mastering and burst writes were employed to utilize the full bus band-
width.

The size of the SRAM for model database storage was minimized
subject to bandwidth and performance constraints. An overly small
SRAM would create large amounts of paging traffic as parts of a bigger
database are paged into local memory, but large amounts of fast SRAM
are very expensive. It was found that 1Mb of SRAM was the smallest
practical size for the target 512-processor implementation. The serial
communication bandwidth turned out to be the limiting factor: a
smaller SRAM would finish iterating rays through the object database
before new rays could be transmitted to the DSPs.

PARALLELISM ISSUES

TheTIGERSHARK system can achieve near linear speedup on ray-
primitive intersections. However, processing the output intersections
must be done by the host processor. TIGERSHARK uses a hierarchical
structure to ensure that this processing will not become a bottleneck for
the system.

At the top level of the hierarchy is the image to be rendered. This is
split up among several host computers, in the way described for multi-
computer systems. Each host in turn distributes the model primitives
among the different PCI boards it contains; each PCI board has its own
shared memory. The task is further subdivided by the PCI board; each
DSP on the board tests the primitives against a single ray. Bottlenecks

1. 100,000 rays iterated through object database between
updates; 512-processor system

2. RAM typically accounts for 60% of the cost of an average work-
station [12]; the percentage is even higher for theTIGERSHARK
board, since the processor cost is so low. Eliminating double-buff-
ering allows us to use half as much RAM per board.

can be eliminated by changing the ratio of DSPs to PCI boards, or the
number of boards per host. Research will certainly be done on the pro-
totype system to identify the best ratios here.

SYSTEM EVALUATION AND COMPARISON

To evaluate the effectiveness of theTIGERSHARK architecture, the
system is compared against Advanced Rendering Technologies’

AR250-64.3 Advanced Rendering Technologies (ART) is a Cam-
bridge-based company that announced on 2 October 1995 its plans to
build a custom VLSI processor for ray-tracing applications. First sam-
ples are anticipated 4Q 1996. Although the goal of bothTIGERSHARK
and ART is to accelerate ray-tracing, the relevant architectures are very
different. It is unwise to make claims about the full 512-DSPTIGER-

SHARK system until scalability can be empirically verified, so instead
we will compare a singleTIGERSHARK PCI board to a single module
of ART’s AR250-64.

The AR250-64 is made up of 64 AR250 ray tracing engines. Each
AR250 is claimed to be able to perform 80,000,000 ray intersection
tests per second, “roughly 16 times the performance of the best graphics
workstations.” We compare this single AR250 with aTIGERSHARK
board containing 16 TMS320C32 DSPs.

ART’s AR250 clearly holds the lead in raw speed. The AR250’s
custom silicon allows it to perform almost 4 GFLOPS, about 4 times
more raw floating-point performance thatTIGERSHARK, and the
AR250 can perform an order of magnitude more ray-triangle intersec-
tions per second than canTIGERSHARK.

TIGERSHARK makes up the deficit in flexibility, however. ART’s
decision to go for custom silicon entails sacrificing some complexity: in
particular, the AR250 is only able to implement triangle primitives on-
chip. All other primitives must be decomposed into triangles before
they can be rendered.TIGERSHARK’s reprogrammable DSPs allow it
to perform any type of ray-primitive intersection, which allows a lot of
relative performance gain. For example, the AR250 must decompose a
sphere in the object database into hundreds of component triangles,
while TIGERSHARK can process the sphere in one operation, as a sin-
gle primitive. Moreover, for TIGERSHARK ray-sphere intersections are
actually easier to perform than ray-triangle intersections.TIGER-

SHARK is therefore an order of magnitudefaster than the AR250 on
this task. On the assumption that most interesting scenes are fairly
complex, with lots of non-flat surfaces that the AR250 will need to tri-
angulate, aTIGERSHARK board may very well equal or surpass the

AR250’s performance.4

In addition, TIGERSHARK has a much better price/performance
ratio. ART is using a low-volume custom ASIC, with the price penalty
that that entails.TIGERSHARK, on the other hand, uses high-volume
TI DSPs to achieve a very low node cost.

Overall, we are optimistic that theTIGERSHARK system will be
able to match the performance of ART’s custom silicon while maintain-
ing a much lower price. Neither system has been fully prototyped yet;
scalability is likely to be key to a comparison of operational systems.
The results are certainly positive enough to justify a closer look at
hybrid SIMD architectures for ray-tracing applications.

CONCLUSION

TIGERSHARK was designed to achieve the three goals most prized
by professional computer graphic artists: speed, cost, and quality. A
high-end Silicon Graphics machine is fast, at the expense of cost and
quality; a software ray-tracer can produce high quality output but ren-
ders extremely slowly; and hardware approaches to ray-tracing have

3. All data on Advanced Rendering Technologies’ products is
from their World Wide Web site [15].

4. Furthermore, it is not clear that ART has implemented or can
implement a partitioning scheme in its hardware to avoid
brute-forcing the object database.

thus far been extremely expensive due to their use of general-purpose
hardware.

TheTIGERSHARK system provides extremely high quality output,
scales well due to the task’s inherent parallelism, and uses low-cost
hardware extremely efficiently. We believe that a fully expandedTIG-

ERSHARK system would be able to rival the rendering speed of the
fastest graphics systems available, at approximately three orders of
magnitude less cost. Our hybrid architecture shows great promise for
ray-tracing applications, challenging even custom silicon. In addition,
the flexibility of the general purpose DSP chips enables us to add new
primitives and even procedural shading techniques to achieve rich,
complex, and realistic ray-traced scenes at speeds previously unattain-
able. We believe thatTIGERSHARK will set a new price/performance
benchmark for graphics systems, and will push ray-tracing towards the
realm of real-time realistic image synthesis.

Work is in progress on the construction of a 4-DSPTIGERSHARK
prototype to verify performance, feasibility, and scalability.

REFERENCES

[1] Robert L. Cook, Loren Carpenter, and Edwin Catmull, “The
Reyes image rendering architecture,” inComputer Graphics (SIG-
GRAPH ‘87 Proceedings), volume 21, pages 95--102, July 1987.

[2] Michael Cox,Algorithms for Parallel Rendering, PhD thesis,
Princeton University, 1995.

[3] Michael Cox, Steven Molnar, David Ellsworth, and Henry
Fuchs, “A sorting classification of parallel rendering,” inIEEE Com-
puter Graphics and Algorithms, pages 23--32, July 1994.

[4] Andrew Glassner, An Introduction to Ray Tracing, Academic
Press, 1989.

[5] Andrew Glassner, “Space subdivision for fast ray tracing,”
IEEE Computer Graphics and Applications, 4(10):15--22, 1984.

[6] J. Goldsmith and J. Salmon, “Automatic creation of object hier-
archies for ray tracing,”IEEE Computer Graphics and Applications,
7(5):14--20, 1984.

[7] Greg Humphreys,Parallel network objects and graphics, Junior
Independent Work, Princeton University, 1995.

[8] Texas Instruments Incorporated, New TI floating-point DSP
breaks cost barrier, Texas Instruments ON-BOARD, 1(2), Spring 1995.

[9] T. L. Kay and J.T. Kajiya, “Ray tracing complex scenes,”Com-
puter Graphics (SIGGRAPH ‘86 Proceedings), 20(4):269--278, 1986.

[10] T. T. Y. Lin and M. Slater. Stochastic ray tracing using SIMD
processor arrays,The Visual Computer, 7:187--199, July 1991.

[11] J. Owczarczyk, “Ray tracing: a challenge for parallel process-
ing,” in Proc Parallel Processing for Computer Vision and Display,
Leeds, 1988.

[12] David A. Patterson and John L. Hennessy. Computer Architec-
ture: A Quantitative Approach, Morgan Kaufmann, 1996.

[13] David J. Plunkett and Michael J. Bailey, “The vectorization of
a ray-tracing algorithm for improved execution speed,”IEEE Computer
Graphics and Applications, 5(8):52--60, August 1985.

[14] Isaac D. Scherson and Elisha Caspary, Data structures and the
time complexity of ray tracing, The Visual Computer, 3(4):201--213,
1987.

[15] Advanced Rendering Technologies, World Wide Web site:
http://www.art.co.uk.

[16] Turner Whitted, “An improved illumination model for shaded
display,” CACM, 23(6):343--349, June 1980.

