
Topological Grayscale Watershed Transformation

Michel Couprie and Gilles Bertrand

Laboratoire PSI, Groupe ESIEE

Cité Descartes, BP 99

93162 Noisy-le-Grand Cedex FRANCE

Reference: SPIE Vision Geometry VI Proceedings, Vol. 3168, pp. 136-146, 1997.

Revised: october 2003.

ABSTRACT

We propose an original approach to the watershed problem, based on topology. We introduce a “one-dimensional”
topology for grayscale images, and more generally for weighted graphs. This topology allows us to precisely define
a topological grayscale transformation that generalizes the action of a watershed transformation. Furthermore, we
propose an efficient algorithm to compute this topological grayscale transformation, and we give an example of
application to image segmentation.

Keywords: discrete topology, mathematical morphology, cross-section topology, watershed, connected operator,
component tree, segmentation

1. INTRODUCTION

The watershed transformation was introduced as a tool for segmenting grayscale images by S. Beucher and C.
Lantuéjoul1 in the late 70’s, and is now used as a fundamental step in many powerful segmentation procedures.
Efficient watershed algorithms based on immersion simulations were proposed by L. Vincent2 and F. Meyer3,4 in the
early 90’s.

Let us consider a grayscale image as a topographical relief: the gray level of a pixel becomes the elevation of
a point, the basins and valleys of the relief correspond to the dark areas, whereas the mountains and crest lines
correspond to the light areas. The watershed line may be intuitively introduced as the set of points where a drop of
water, falling there, may flow down towards several catchment basins of the relief.

In a recent paper5, we introduced some basic topological notions for 2D grayscale images, which extend the
classical topology of 2D binary images by considering the different cross-sections (thresholds) of the relief that
corresponds to the image. The notion of kernel was also introduced, it corresponds to an ultimate simplification of
an image which preserves its topology.

In this paper, we propose an original approach to the watershed problem, based on topological notions. We
introduce a “one-dimensional” topology for grayscale images, and more generally for weighted graphs. A kernel
of an image for this topology keeps the topological characteristics of a watershed transformation. A comparison
with existing watershed algorithms is done. We also indicate how to build an efficient algorithm to perform this
transformation, based on a tree structure that has been shown to be of general interest for image analysis6. Finally,
we present an example of a segmentation scheme that takes advantage of this tree structure to efficiently implement
both the “filtering step” and the watershed step: some powerful filters called connected operators, from the field of
Mathematical Morphology, are used in order to select the “significant components” before applying the watershed
transformation.

Further author information -
M.C: Email: coupriem@esiee.fr; WWW: http://www.esiee.fr/∼coupriem
G.B: Email: bertrand@esiee.fr



0 0 0 0 0 0 0

0 1 0 1 0 1 0

0 1 0 1 0 1 0

0 1 1 1 0 0 0

0 0 0 0 0 0 0

Figure 1. A set X (1) and its complement X (0). The simple points are underlined

2. TOPOLOGICAL NOTIONS FOR WEIGHTED GRAPHS

Let G = (E,Γ) be a (symmetric) graph, where E is a set of vertices (or points), and Γ is a mapping from E into P(E),
where P(E) denotes the set of all subsets of E, which associates to each point x of E, the set Γ(x) of points adjacent
to x.

For applications to digital image processing, assume that E = Zn(n = 2, 3). A subset X ⊆ E represents the
“object”, and Γ corresponds to an adjacency relation between points of E. In Z2, Γ may be one of the usual adjacency
relations, for example the 4-adjacency or the 8-adjacency in the square grid. Note that we do not take into account
the complement of X : in that sense, the topology that we will develop is “one-dimensional”.

We are interested in graph transformations that preserve the number of connected components of X . We recall
briefly the usual notions of path and connected component in graphs:

Definition 1: Let X ⊆ E, and let x0, xn ∈ X .
A path from x0 to xn in X is an ordered family (x0, x1, . . . , xn) of points of X such that xi+1 ∈ Γ(xi), with
i = 0 . . . n− 1.
Let x, y ∈ X , we say that x is connected to y if there exists a path from x to y in X . The relation “is connected to”
is an equivalence relation.
A connected component of X is an equivalence class for the relation “is connected to”.
A subset X of E is connected if it is made of exactly one connected component.

We will now introduce the notion of “simple point” in a graph. Intuitively, a point of X is “simple” if it may be
added to X while preserving the number of connected components of X (X denotes the complement of X). This
corresponds to the preservation of a “one-dimensional” topology. It is important to note that the usual definition of
a simple point in Z2 corresponds to the preservation of a “two-dimensional” topology7, that is to say, not only the
number of connected components of X is preserved, but also the number of connected components of X.

Definition 2: Let G = (E,Γ) be a graph, and let X ⊂ E.
The point x ∈ X is simple (for X) if the number of connected components of X∪{x} equals the number of connected
components of X .
In other words, x is simple (for X) if x is adjacent to exactly one connected component of X .

In Fig. 1, the points of the set X are represented by “1”s, and the 4-adjacency is assumed. In X, simple points
are underlined. It may be easily seen that one cannot locally decide whether a point is simple or not.

We will now extend this notion to a weighted graph (E,Γ, F ), where F is a function from E to Z, in order to
use it for digital grayscale images. For any point x ∈ E, F (x) represents the gray level of x.

Definition 3: We denote F(E) the set composed of all functions from E to Z. Let F ∈ F(E).
We denote Fk = {x ∈ E;F (x) ≥ k} with k ∈ Z; Fk is called a (cross-)section of F .
A connected component of a section Fk is called a (level k) component of F .
A component of F that has only strictly lower neighbors is called a (regional) maximum of F .

Fig. 2 shows a grayscale image F and three cross-sections of F . If we use the 4-adjacency, F3 is made of two
components, whereas F2 and F4 are made of one component. The set F4 is a regional maximum of F .



2 2 2 2 2 2 2
2 4 4 4 4 4 2
2 4 4 2 4 4 2
2 3 2 3 1 4 2
2 4 4 1 4 4 2
2 4 4 4 4 4 2
2 2 2 2 2 2 2

F

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 0 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

F2

0 0 0 0 0 0 0
0 1 1 1 1 1 0
0 1 1 0 1 1 0
0 1 0 1 0 1 0
0 1 1 0 1 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0

F3

0 0 0 0 0 0 0
0 1 1 1 1 1 0
0 1 1 0 1 1 0
0 0 0 0 0 1 0
0 1 1 0 1 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0

F4

Figure 2. A grayscale image F and some of its cross-sections

20 20 20 20 20 20 20

20 20 20 5 20 20 20

20 20 8 13 6 20 20

20 9 14 16 13 7 20

20 9 13 18 17 9 20

20 9 15 17 15 9 20

20 20 9 15 9 20 20

20 20 13 9 12 20 20

20 20 14 9 13 20 20

20 20 15 9 12 20 20

20 20 13 9 12 20 20

20 20 9 15 9 20 20

20 9 15 17 15 9 20

20 9 13 19 17 9 20

20 9 14 16 13 7 20

20 20 8 13 6 20 20

20 20 20 5 20 20 20

20 20 20 20 20 20 20
(a)

20 20 20 20 20 20 20

20 20 20 9 20 20 20

20 20 9 18 9 20 20

20 9 18 18 18 9 20

20 9 18 18 18 9 20

20 9 18 18 18 9 20

20 20 9 18 9 20 20

20 20 20 9 20 20 20

20 20 20 20 20 20 20

20 20 20 20 20 20 20

20 20 20 9 20 20 20

20 20 9 19 9 20 20

20 9 19 19 19 9 20

20 9 19 19 19 9 20

20 9 19 19 19 9 20

20 20 9 19 9 20 20

20 20 20 9 20 20 20

20 20 20 20 20 20 20
(b)

0 0 0 0 0 0 0

0 0 0 15 0 0 0

0 0 12 7 14 0 0

0 11 6 4 7 13 0

0 11 7 2 3 11 0

0 11 5 3 5 11 0

0 0 11 5 11 0 0

0 0 7 11 8 0 0

0 0 6 11 7 0 0

0 0 5 11 8 0 0

0 0 7 11 8 0 0

0 0 11 5 11 0 0

0 11 5 3 5 11 0

0 11 7 1 3 11 0

0 11 6 4 7 13 0

0 0 12 7 14 0 0

0 0 0 15 0 0 0

0 0 0 0 0 0 0
(c)

0 0 0 0 0 0 0

0 0 0 11 0 0 0

0 0 11 2 11 0 0

0 11 2 2 2 11 0

0 11 2 2 2 11 0

0 11 2 2 2 11 0

0 0 11 2 11 0 0

0 0 0 11 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 11 0 0 0

0 0 11 1 11 0 0

0 11 1 1 1 11 0

0 11 1 1 1 11 0

0 11 1 1 1 11 0

0 0 11 1 11 0 0

0 0 0 11 0 0 0

0 0 0 0 0 0 0
(d)

Figure 3. (a): original image, (b): upper-homotopic kernel of (a), (c): inverse of (a), (d): inverse of (b)

Definition 4: Let F ∈ F(E), x ∈ E, and k = F (x).
The point x is constructible (for F ) if x is simple for Fk+1.
In other words, each neighbor y of x, such that F (y) > k, belongs to the same level k + 1 component of F .
Furthermore, if we consider F ′ ∈ F(E) such that ∀y 6= x;F ′(y) = F (y) and F ′(x) = F (x) + 1, it may be easily
seen that ∀k ∈ Z, the number of connected components of F ′

k equals the number of connected components of Fk.
That is to say, the value of a constructible point may be raised by one without changing the number of connected
components of each cross-section of F .

Definition 5: Let F ∈ F(E). We say that G ∈ F(E) is upper-homotopic to F if G may be derived from F by
the iterative raising of constructible points.
We say that K ∈ F(E) is an upper-homotopic kernel of F if K is upper-homotopic to F and K is maximal for this
property, that is, all points of E are non-constructible for K.

In Fig. 3, we present an image 3a and its upper-homotopic kernel 3b. Note that in 3b, the maxima of 3a have
been spread and are now separated from each other by a “thin line”; nevertheless, their number and values have
been preserved. Fig. 3c and 3d are inverse images (with ∀x ∈ E,F (x) = 20 − F (x)) of 3a and 3b, respectively. We
can see that the set of points that are not in a minimum of 3d correspond to the watershed line of 3c. A deeper
comparison between the upper-homotopic kernel and the watershed transformation follows in section 5..



Figure 4. 1-D function and its component tree

3. COMPONENT TREE

In this section, we define the component tree structure that will allow us to propose an efficient algorithm for the
upper-homotopic kernel transformation.

The use of this tree in order to represent the “meaningful” information contained in a numerical function is not
new. In particular, P. Hanusse and P. Guillataud6 claim that this tree can play a central role in image segmentation,
and propose an efficient way to compute it, based on an immersion simulation. C. Vachier8 suggests that it should
be used to efficiently implement some morphological operators called “extinction functions”.

Our main goal in this paper is to define an upper-homotopic kernel operator, and to propose an efficient algorithm
for this operator. Basically, this algorithm will have to repeat the following actions until stability: a) select a
constructible point, b) raise its value. By the very definition of a constructible point, we may raise the value of a
constructible point by one. In fact, in many cases, it is possible to raise the value of a constructible point by more
than one, without changing the number of level k components of F , ∀k ∈ Z. It should be pointed out that checking
whether a point is constructible or not cannot be done locally if the only available information is the mesh (E,Γ)
and the function F . The component tree will allow to answer this question in constant time.

First, we establish a classification of the components of a function:

Definition 6: Let F ∈ F(E), a level k component of F may include either zero, one, or striclty more than one
level k + 1 components. We call:
• a leaf component, a component that includes no level k + 1 component (that is, a regional maximum);
• a branch component, a component that includes exactly one level k + 1 component;
• a node component, a component that includes strictly more than one level k + 1 components.

We remark that the branch components are not essential to characterize the topology of F . Thus, we discard
them and keep only the node and leaf components, which represent the topological discontinuities of the function F .
These non-branch components, thanks to the inclusion relation, may be organized in a tree structure (see Fig. 4):

Definition 7: Let F ∈ F(E), we denote C(F ) the set of all non-branch components of F . We define the
component tree T (F ) as a directed tree such that:
• C(F ) is the set of vertices of the component tree;
• there is an edge from C1 ∈ C(F ) to C2 ∈ C(F ) if C2 ⊂ C1 and for each component c of F such that C2 ⊂ c ⊂ C1,
c is a branch component (where ⊂ denotes the strict inclusion relation). We denote C1 = father(C2).

The next definition introduces the component mapping which associates, to each point of E, a component in C(F ).

Let F ∈ F(E), x ∈ E, k = F (x), we denote cx the level k component of F (either branch or non-branch) that
contains x.

Definition 8: Let F ∈ F(E), to each non-branch component c ∈ C(F ), we associate a subset I(c) of E called
the influence area of c (see Fig. 5), and defined as I(c) = {x ∈ E, c ⊆ cx ⊂ father(c)}.



C2

C1

I(C1) I(C2) I(C3)

C3

Figure 5. Some components and their influence area

Conversely, to each point x of E, we associate the highest level non-branch component M(x) such that x ∈ I(M(x)).
The mapping M , from E to C(F ), is called the component mapping of F .

Note that I(c) may be defined equivalently as the level f + 1 component of F that includes c, f being the level
of father(c).

The couple: (tree T , mapping M) allows us to test whether a point belongs to a given component or not, since
a point x belongs to a component c if and only if there exists a path from c to M(x) in T , in other words, if c is an
ancestor of M(x) in T .

Furthermore, the next two properties give us an efficient way to characterize constructible points from the
component tree T and the component mapping M .

Property 1: Let F ∈ F(E), let x, y ∈ E. The nearest common ancestor of M(x) and M(y) in the component
tree T (F ) is the highest level non-branch component that contains both M(x) and M(y).
Furthermore, the points x and y belong to the influence zone of the same level k component if and only if the nearest
common ancestor of M(x) and M(y) in the component tree T (F ) has a level k′ ≥ k.

Property 1 may be easily generalized to any number of points of E.

Property 2: Let F ∈ F(E), x ∈ E, k = F (x), and let Γ+(x) = {y ∈ Γ(x), F (y) > F (x)}, the set of neighbors
of x “strictly higher” than x. We denote M(x) = {M(y), y ∈ Γ+(x)}.
The point x is constructible (for F ) if and only if the nearest common ancestor of all the components in M(x) in
the component tree T (F ) has a level k′ ≥ k + 1.

The problem of finding the nearest common ancestor of a set of nodes in a directed tree has been well studied,
and efficient algorithms exist: D. Harel and R.E. Tarjan9 showed that one can build in linear time a representation
of a tree, which allows to find the nearest common ancestors of a set of nodes in constant time.

4. ALGORITHM FOR AN UPPER-HOMOTOPIC KERNEL

Our algorithm to get an upper-homotopic kernel from an image consists in two steps:

Upper-homotopic kernel algorithm:

1) construct the component tree T and the mapping M from the original image F .
2) iteratively select a constructible point and raise it, thanks to the informations in (T , M) and using Property 2,
then update the mapping M . This step must be repeated until stability is reached.



By using an “immersion-like” strategy, and a hierarchical queue structure6,3,4, the complexity of the construction
of the component tree (step 1) may be reduced to the complexity of the union-find algorithm that was analysed by
R.E. Tarjan10. This complexity is almost-linear. Step 2 may be efficiently implemented by using a “breadth-first”
strategy.

A topological grayscale watershed of an image F may be obtained by taking the inverse of an upper-homotopic
kernel computed from the inverse of F (see Fig. 3).

An important feature of the watershed algorithms is to allow the use of a set of “markers” that identify the
“significant basins” of the relief. When using such markers, the minima and basins that are not marked may be seen
as “filled in”.

In our approach, some components of the component tree may also be marked, and other ones eliminated, before
performing the step 2 of the upper-homotopic kernel algorithm. Furthermore, the component tree may be used to
efficiently implement connected operators, which are powerful tools that allow to find out markers. This last point
is developped in Section 6..

5. COMPARISON WITH MEYER’S WATERSHED ALGORITHM

The watershed line is often depicted in an intuitive manner as the set of points such that a drop of water, falling
there, may flow down to several different minima of the relief.

Despite its name, the watershed line is not always a “thin” set. Consider a plateau between two basins: every
point of the plateau is a watershed point, according to the latter point of view. Such non-thin watershed sets are
undesirable for the purpose of segmenting images, this is why all the proposed watershed algorithms manage to get
a thin watershed line in a plateau. In order to precisely define the location of the watershed line in such cases, a
distance criterion has been introduced11,12. It should be noted that such a distance criterion may be also easily used
in our algorithm.

Nevertheless, this last enhancement does not eliminate all thick parts of the watershed set. Some configurations
may occur, either in the continuous case or in the discrete case, where one cannot decide towards which basin a
drop of water will flow down. Fig. 6a shows such a configuration, and similar ones may be encountered in some real
images. L. Vincent2 claims that a non-thin watershed set is the correct answer for such configurations. Nevertheless,
classical watershed algorithms such as Meyer’s3 manage to get a thin set even in such cases. We recall the principle
of Meyer’s algorithm:

Meyer’s watershed algorithm:

Starting from a grayscale image F and a set of markers with different labels,
1) insert every neighbor x of every marked area in a hierarchical queue, with a priority level corresponding to the
gray level F (x). Note that a point cannot be inserted twice in the queue;
2) extract a point x from the hierarchical queue, at the highest priority level, that is, the lowest gray level. If Γ(x)
contains only points with the same label, then x is marked with this label, and its neighbors that are not yet marked
are put into the hierarchical queue;
Step 2 must be repeated until the hierarchical queue is empty.
The result W is the complement of the set of labeled points.

Let M be the set of the minima of the original image F . Meyer’s algorithm expands as much as possible the set
M , while preserving the number of connected components of M . Thus, W is a kernel of M for the one-dimensional
topology we introduced on graphs. Furthermore, thanks to the immersion strategy, the points of W are located in
such a way that they have the highest possible value in the image F .

It is important to note that the result W of this algorithm is a set, whereas a topological grayscale watershed is
a function. In order to compare the effects of both operators, let us consider the set S of points that do not belong
to a minimum of a topological grayscale watershed.

It may easily be seen that the sets W and S are equivalent up to a topological transformation. Furthermore, in
most cases, the sets W and S are very close to each other, as illustrated in Fig. 7.

Nevertheless, in some configurations, there is a significative difference between W and S. An example of such a
configuration is depicted Fig. 6a. In this configuration, a plateau P is composed of points at the level 10. Intuitively,



30 30 30 30 30 30 30 30 30

30 2 2 2 2 2 2 2 30

30 2 20 20 20 20 20 2 30

30 2 20 10 10 10 20 2 30

30 30 30 10 10 10 30 30 30

30 1 30 10 10 10 30 0 30

30 1 30 30 10 30 30 0 30

30 1 1 1 10 0 0 0 30

30 30 30 30 30 30 30 30 30
(a)

1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 1 1

1 0 1 0 0 0 1 0 1

1 0 0 1 0 1 0 0 1

1 0 0 0 1 0 0 0 1

1 1 1 1 1 1 1 1 1
(b)

30 30 30 30 30 30 30 30 30

30 2 2 2 2 2 2 2 30

30 2 2 20 20 20 2 2 30

30 2 20 1 1 1 20 2 30

30 20 1 1 1 1 1 20 30

30 1 1 1 1 1 10 0 30

30 1 1 1 1 10 0 0 30

30 1 1 1 10 0 0 0 30

30 30 30 30 30 30 30 30 30
(c)

1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1

1 0 0 1 1 1 0 0 1

1 0 1 0 0 0 1 0 1

1 1 0 0 0 0 0 1 1

1 0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 0 1

1 0 0 0 1 0 0 0 1

1 1 1 1 1 1 1 1 1
(d)

Figure 6. (a): original image, (b): Meyer’s watershed line, (c): topological grayscale watershed, (d): non-minima of
the topological grayscale watershed

(a) (b) (c) (d)

Figure 7. (a): original image, (b): minima of (a), (c): Meyer’s watershed line, (d): non-minima of the topological
grayscale watershed

a drop of water falling inside P may flow down towards the minimum 0 or towards the minimum 1, but cannot flow
down towards the minimum 2. Therefore, the watershed line in 6d is better placed than the one in 6c: Meyer’s
algorithm “assigns” the points of P to the minimum 2, while the topological watershed transform “assigns” the
points of P either to the minimum 1 or 0.

6. APPLICATION TO SEGMENTATION

We will now present a segmentation scheme based on connected operators for the filtering step, and on the topological
grayscale watershed transformation for the reconstruction step. Connected operators are powerful tools for image
segmentation that were developped in the framework of the Mathematical Morphology13,14,15. They allow to filter
regions according to some criteria such as area or contrast. We recall here briefly the minimal set of definitions
needed to introduce this notion:

Definition 9: Let E be a set, a transformation ψ acting on P(E) is:
• increasing if X ⊆ Y ⇒ ψ(X) ⊆ ψ(Y ), ∀X,Y ⊆ E;
• idempotent if ψ(ψ(X)) = ψ(X), ∀X ⊆ E;
• anti-extensive if ψ(X) ⊆ X, ∀X ⊆ E.
ψ is an opening if it is increasing, idempotent and anti-extensive.

Definition 10: Let (E,Γ) be a graph, x ∈ E, we define the connected opening ψx as follows:

∀X ⊆ E,ψx(X) =

{

the connected component of X that contains x, if x ∈ X

∅, otherwise



Definition 11: Let E be a set. A criterion on E is a mapping from P(E) to {false, true}.
A criterion T on E is increasing if:

∀X,Y ⊆ E,

{

T (X) = true and Y ⊇ X ⇒ T (Y ) = true
T (X) = false and Y ⊆ X ⇒ T (Y ) = false

For example, T (X) ≡ [area(X) ≥ λ] is an increasing criterion.

Definition 12: Let E be a set, let T be an increasing criterion on E. We define the trivial opening ψT as follows:

∀X ⊆ E,ψT (X) =

{

X if T (X) = true
∅ otherwise

Definition 13: Let (E,Γ) be a graph, let T be an increasing criterion on E.
We define the attribute opening ψT as follows:

∀X ⊆ E,ψT (X) =
⋃

x∈X

ψT (ψx(X))

The attribute opening ψT “filters” the connected regions that satisfy the criterion T .

Definition 14: Let (E,Γ) be a graph, let F ∈ F(E), let ψT be an attribute opening on E.
We define ΨT , which is called a connected operator, as follows:

∀x ∈ E,ΨT (F )(x) = max{k ∈ Z, x ∈ ψT (Fk)}

In the framework of functions, some basic increasing criteria may be considered:

Definition 15: Let (E,Γ) be a graph, let F ∈ F(E), let k, λ ∈ Z.
∀X ⊆ Fk, area(X) = card(X), A(X) ≡ [area(X) ≥ λ]
∀X ⊆ Fk, height(X) = max{F (x) − k, x ∈ X}, H(X) ≡ [height(X) ≥ λ]
∀X ⊆ Fk, volume(X) =

∑

x∈X(F (x) − k), V (X) ≡ [volume(X) ≥ λ]

A typical segmentation scheme based on connected operators consists in the following steps:
(1) to an image F , apply a connected operator ΨT (F ) according to an increasing criterion T ,
(2) extract the maxima from ΨT (F ),
(3) reconstruct the geometry of the segmented regions, by using a watershed operator with the extracted maxima as
marker set.

We will now see how to implement efficiently a topological equivalent of steps (1) and (2) with the help of
the component tree. First, we must associate, to each component C in the tree, a “measure” of this component.
In fact, this measure does not correspond to the component C itself, but rather to its influence area I(C), for example:

µ(C) = area(I(C)), or µ(C) = height(I(C)), or µ(C) = volume(I(C))

These informations may be computed and stored during the construction of the component tree. Then, the marking
algorithm is as follows:

Marking algorithm:

The leaves of the component tree (regional maxima) are put into a list l1. Another list l2 is set to empty.
1) A component C is drawn from l1. If µ(C) ≥ λ and if C has not been invalidated, then C is marked as “pertinent”
and the ancestors of C are invalidated. If µ(C) < λ, then father(C) is put into l2.
Step 1 must be repeated until l1 is empty.
2) If l2 is not empty, swap l1 and l2, and go to step 1.



(a) (b)

(c) (d)

Figure 8. (a): original image, (b): marked components, (c): maxima of the upper-homotopic kernel (with a marking
step), (d): superposition with the original image

7. RESULTS

Figure 8 shows the results of this segmentation scheme on a blood vessel image (angiography). First, the component
tree of the original is built. Then, some components are selected by using the marking algorithm. Here, two criteria
are used: heigth ≥ 15 and area ≥ 10. The selected components appear in white Fig. 8b. The last step is the
upper-homotopic kernel. Fig. 8c shows the maxima of the result, and Fig. 8d is a superposition of 8c (inverted)
and 8a.



(a) (b) (c)

Figure 9. (a): original image, (b): upper-homotopic kernel, (c): upper-homotopic kernel with a marking step
(height ≥ 23) — below: the maxima

In Fig. 9, the effects of the upper-homotopic kernel, without (9b) and with (9c) a marking step, are illustrated
with an uranium oxyde micrography. Below each grayscale image, the corresponding regional maxima are given: they
appear in white. We can see that, in a real image, there is a lot of maxima, and each of these regions is composed of
only few points. The upper-homotopic kernel expands as much as possible these maxima (9b). Using the marking
algorithm allow to filter the “significant” maxima (9c).

It should be noted that the upper-homotopic kernel 9b is a grayscale image, and, though still strongly over-
segmented, it contains a lot of pertinent informations that may be used for further treatments. In particular, its
component tree is the same as the original image’s component tree. Furthermore, in an upper-homotopic kernel,
the maxima come into contact through “thin” frontier lines. This fact may be exploited by some regularization
operators, that can eliminate the “non-significant” maxima or frontier lines without the need of defining or tuning
any parameter. We developped such an approach in recent papers5,16,17.

8. CONCLUSION

In this paper, we have introduced a topological grayscale watershed transformation that generalizes the existing
watershed transformation. This new operator acts on a weighted graph, and is based on the definition of a “one-
dimensional” topology for graphs and weighted graphs. When applied to a grayscale image, its output is also a
grayscale image that still contains pertinent topological and grayscale information. It may be easily combined with
a distance criterion in order to precisely define the position of the watershed line in plateaus.

Furthermore, the topological grayscale watershed transformation may be efficiently computed thanks to the
component tree, which is a very useful representation of the topology of a weighted graph. The time complexity



of the construction of the component tree is almost-linear. We showed in this paper that, based on this tree, a
complete segmentation scheme using a connected operator for filtering and using the topological grayscale watershed
transformation for reconstruction may be efficiently implemented.

Aknowledgments We thank Jean Cousty for his careful reading of the paper, which led to the correction of
some errors.

REFERENCES

1. S. Beucher, Ch. Lantuejoul, “Use of Watersheds in Contour Detection”, Proc. Int. Workshop on Image Process-
ing, Real-Time Edge and Motion Detection/Estimation, Rennes, France, 1979.

2. L. Vincent, P. Soille, “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations”,
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, pp. 583-598, 1991.

3. F. Meyer, “Un algorithme optimal de ligne de partage des eaux”, 8th Conf. Reconnaissance des Formes et
Intelligence Artificielle, Vol. 2, pp. 847-859, AFCET Ed., Lyon, 1992.

4. S. Beucher and F. Meyer, “The morphological approach to segmentation: the watershed transformation”, Math-
ematical Morphology in Image Processing, Chap. 12, pp. 433-481, Dougherty Ed., Marcel Dekker, 1993.

5. G. Bertrand, J.C. Everat and M. Couprie, “A Topological approach to image segmentation”, SPIE, Vision
Geometry V, Vol. 2826, pp. 65-76, 1996.

6. P. Hanusse, P. Guillataud, “Sémantique des images par analyse dendronique”, 8th Conf. Reconnaissance des
Formes et Intelligence Artificielle, Vol. 2, pp. 577-588, AFCET Ed., Lyon, 1992.

7. T.Y Kong and A. Rosenfeld, “Digital topology: introduction and survey”, Computer Vision, Graphics and
Image Processing, 48, pp. 357-393, 1989.

8. C. Vachier, “Extraction de caractéristiques, segmentation d’images et Morphologie Mathématique”, PhD Thesis,
École des Mines, Paris, 1995.

9. D. Harel, R.E. Tarjan, “Fast Algorithms for Finding Nearest Common Ancestors”, SIAM J. Comput., Vol. 13,
No. 2, pp. 338-355, 1984.

10. R.E. Tarjan, Data Structures and Network Algorithms, SIAM, 1978.

11. F. Preteux, “Watershed and Skeleton by Influence Zone: A Distance-Based Approach”, Journal of Mathematical
Imaging and Vision, No. 1, pp. 239-255, 1992.

12. F. Meyer, “Topographic distance and watershed lines”, Signal Processing, No. 38, pp. 113-125, 1994.

13. J. Serra, Image Analysis and Mathematical Morphology, Vol. II: Theoretical Advances, Academic Press, 1988.

14. J. Serra, L. Vincent, “An Overview of Morphological Filtering”, Circuits Systems Signal Process, Vol. 11, No. 1,
pp. 48-107, 1992.

15. E.J. Breen, R. Jones, “Attribute Openings, Thinnings and Granulometries”, Computer Vision and Image Un-
derstanding, Vol. 64, No. 3, pp. 377-389, 1996.

16. J.C. Everat and G. Bertrand, “New topological operators for segmentation”, Proc. ICIP’96, Vol. 3, pp. 45-48,
IEEE Signal Processing Society, 1996.

17. J.C. Everat, G. Bertrand, and M. Couprie, “Reconstruction operators for image segmentation”, to appear in
Proc. 3rd Int. Workshop on Visual Form, IAPR, Capri 1997.


