
A General Structure of Feedback Shift Registers for Built-In Self
Test

Kuen-Jong Lee, Wei-Lun Wang and Jhing-Fa Wang
Department of Electrical Engineering

National Cheng Kung University
Tainan, Taiwan 701, R.O.C.

E-mail: kjlee@mail.ncku.edu.tw

A mixed-type feedback shift register (MFSR) is similar to a linear feedback shift

register (LFSR) except that the connection between two consecutive flip-flops (F/F's)

may be through the Q or output, and an extra inverter may exist at the input to the

first flip-flop (stage) of the register. In this paper, we exploit the properties of

MFSR's and show that by using an MFSR based pseudorandom pattern generator

(PRPG) or multiple input signature analyzer (MISA), several good features for

built-in self test can be obtained. Specifically we show that: (1) for any given initial

seed, an MFSR always exists that can generate the same serial output sequence as can

an LFSR with the same characteristic polynomial and any initial seed; (2) for any

MFSR, we can always find an initial seed for this MFSR such that it can generate the

same serial output sequence as can an LFSR with the same characteristic polynomial

and any initial seed; and (3) for any given initial seed and any test response to be

compressed, an MFSR based MISA can usually be found that will result in any

required final signature. If such an MFSR cannot be found for a specific initial seed

and a specific test response sequence, we show that by simply adding one arbitrary

dummy pattern to the test response, one can always find the required MFSR. We

also show that if the characteristic polynomial of the MFSR based MISA can be

chosen freely, it is almost guaranteed that a feasible MFSR can be found without

adding any dummy patterns to the test response. For example, for a 16-stage MISA,

the probability that a feasible MFSR does not exist is less than 2-32768.

Keywords: mixed-type feedback shift register, linear feedback shift register,

pseudorandom pattern generator, multiple input signature analyzer.

1. INTRODUCTION

Due to their simple and regular structure, linear feedback shift registers (LFSR's)

and their extended versions have been widely used in the testing of digital circuits [1].

These include BILBO [2], M-LFSR [3], combined LFSR/SR [4], combined

LFSR/XOR [5], cyclic LFSR [6], the LFSR based parallel pseudorandom pattern

generator [7], the LFSR based pseudo-exhaustive test pattern generator [8, 9, 19], the

reseeding and characteristic polynomial reprogramming techniques [10, 11], the

multiple seed LFSR [12], the

two-pattern generator [20] etc.

JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 14, 645-667 (1998)

Received November 19, 1996; revised July 16, 1997.
Communicated by Youn-Long Lin.

The properties and theories of LFSR's have been discussed in [13, 14, 15, 16].

The applications of LFSR's to digital testing are found in two major fields. One

is the use of an LFSR as a test pattern generator, known as a pseudorandom pattern

generator (PRPG), and the other is the use of an LFSR as a test response compressor,

known as a signature analyzer (SA) [1].

It is well known that an LFSR with a primitive characteristic polynomial can

generate a maximum sequence (m-sequence) of length 2k-1 if it contains a nonzero

initial seed, where k is the number of F/F's in the LFSR [15]. Therefore, provision

of a nonzero initial seed is an essential requirement for using an LFSR as a PRPG

unless some extra logic is used. Conventionally, one may use F/F's with both preset

and clear (reset) control lines, or use an externally controllable scan path to provide

the nonzero seed. Both methods require extra area overhead [17].

For the signature analysis application, it is also clear that when the initial seed

and test response are fixed, the final signature is fixed [15]. To determine the

correctness of this final signature, either some storage for the correct signature and

some comparison circuitry must be added to the circuit (chip) under test (CUT), or the

signature must be scanned out of the CUT for comparison. Again, both methods

require extra hardware overhead.

In this paper, we propose a generalized type of feedback shift registers, called a

mixed-type feedback shift registers (MFSR's), that can be used to reduce the difficulty

of the above problems. An MFSR is similar to an LFSR except that the connection

between two consecutive stages of F/F's in an MFSR may be through the true (Q) or

complementary (Q) output of the preceding F/F stage, and the input to the first F/F

stage may or may not go through an extra inverter. Fig. 1 shows an example of a

4-stage MFSR in which the output of F/F3 is through Q while F/F1, F/F2, and F/F4

are through Q. An inverter presents before F/F1. Since, in general, both Q and

Q of an F/F can be used for interstage connection, the circuit complexity of an

MFSR is the same as that of an LFSR except that one extra inverter may be required

at the input of F/F1.

The structure of an MFSR implies that an LFSR is a special case of an MFSR,

where all the connections are through Q and no inverter presents before the first F/F

stage. The intrainverted feedback shift register (IFSR) proposed in [17] is also a

special case of an MFSR, where all the connections are through Q, including the

feedback from the last stage to the first stage. Since both LFSR's and IFSR's are

special cases of MFSR's, all useful properties existing in LFSR's and IFSR's also exist

in MFSR's. However, there are several unique properties of MFSR's that may not

exist in LFSR's and IFSR's.

D Q
1

D Q D Q

CK CK

D Q
3

CK CK

2 4

A

Clock

Clock

0

1

2

3

4

5

6

7

1 1

0

1

1

 Q

1

1 1

0

0

01

0 0

Clock Q

8

9

10

11

12

13

14

1

1

0 0

1 1

0

0

0 1

1

0

1

0 1

01

1 1

0 0

1

0 0

01

15 0 11 1

Fig. 1. Example of internal type MFSR with characteristic polynomial C(X) =

 X +X+1, initial seed (0000), and inversion vector (11101)
4

Output
 Q

 C C C C

 Q Q Q

 Q Q Q Q Q Q

1

0

1

1

0

1

1

1

0

1

0

0

1

0

0

1

0

0

0

0

Clock

In this paper, we shall exploit these properties of MFSR's, emphasizing their

application to random number generation and signature analysis. We shall show that:

(1) for any given initial seed, an MFSR always exists that can generate the same

output sequence as can an LFSR with the same characteristic polynomial and any

initial seed; (2) for any MFSR, we can always find an initial seed for this MFSR such

that it can generate the same output sequence as can an LFSR with the same

characteristic polynomial and any initial seed; and (3) for any given initial seed and

any test response to be compressed, an MFSR based MISA can usually be found that

will result in any required final signature. If such an MFSR cannot be found for a

specific initial seed and a specific test response sequence, we will show that by simply

adding one arbitrary dummy pattern to the test response, one can always find the

required MFSR. We will also show that if the characteristic polynomial of the

MFSR based MISA can be chosen freely, it is almost guaranteed that a feasible

MFSR can be found without adding any dummy pattern to the test response. For

example, in a 16-stage MFSR based MISA, the probability that one would need an

arbitrary dummy pattern is less than 2-32768.

According to the above properties (1) and (2), we can see that the nonzero initial

seed requirement for an LFSR based PRPG does not exist for an MFSR based PRPG.

Hence, one can simply design an MFSR with the reset capability, which should be

simpler than an LFSR with both the preset and reset capabilities. On the other hand,

since the initial seed and the final signature of an MFSR based MISA can be chosen

freely, much more design flexibility is allowed. For example, one may select an

all-zero pattern for both the initial seed and the final signature, hence, simplifying the

seeding and signature checking process. Another application is that if a register is to

be used as an MISA in one test session and a PRPG in the next session, then we can

set the final signature of the first session to be the same as the initial seed of the PRPG

for the next session, hence, eliminating the need for seed reloading.

This paper is organized as follows. Section 2 gives a brief review of the well

known LFSR's. Section 3 describes the structures and polynomial representation of

MFSR's. Based on some formal theoretical analysis, Sections 4 and 5 relate the

behaviors of the MFSR based PRPG and MISA to those of the LFSR based PRPG

and MISA, respectively. A comparison between MFSR and IFSR based PRPG's is

also given in Section 4. Finally, we give a discussion and draw conclusions in

Section 6.

2. LINEAR FEEDBACK SHIFT REGISTERS

Depending on the positions of exclusive-or gates, there are two types of LFSR's.

In this paper, we will only consider the internal type LFSR and its corresponding

MFSR based on polynomial representation. The results obtained in this paper also

apply to other types of LFSR's or MFSR's though analysis based on matrix

representation may be necessary since it is difficult to conduct polynomial analysis on

external type LFSR's or MFSR's. Hereafter, all LFSR's or MFSR's referred to are

internal ones. The structure of a k-stage LFSR is shown in Fig. 2. The behavior of

this LFSR can be described using mathematical polynomial representation over GF(2).

Its characteristic polynomial C(X) is defined as C(X) = Ci
i=0

k
∑ * X i , where C0 = Ck =

1. The symbols * and + denote binary multiplication and addition over GF(2),

respectively. The initial state (a-1, a-2,......., a-k) can be represented using an initial

state polynomial L0(X) as:

L0 (X) = a-i
i =1

k
∑ * X i-1 . (1)

The i-th state polynomial Li(X), i.e., the content of the k-stage LFSR after i shifts,

is represented by

Li(X) = [X i*L 0(X) mod C(X)] i = 0, 1, 2, ... (2)

Figure 2 Architecture of internal type LFSR with characteristic polynomial

 a−1

D Q

1
D Q

2
D Q

k

 C0 C1

 a−2

 C2 Ck−1 Ck

 a− k

Output

C(X) = Ci

i =0

k

∑ * X i
 (a−1, a-2, .. ., a-k)and initial seed

This equation has also been used in [17], and it indicates that the i-th internal

state in an LFSR is dependent on both the initial seed and the characteristic

polynomial. Fig. 3 shows an example of an LFSR with C(X) = X4 + X + 1 and an

initial seed (0110), where and are clear and preset control lines to each F/F.

When the initial state (1011) is needed, we let the values at A and B in Fig. 3 be 0 and

1, respectively.

D Q
1

D Q D Q

CK CK

D Q
3

CK CK

2 4

A

B

Clock

 Q1 Q2 Q3 Q4Clock

0

1

2

3

4

5

6

7

1

1

0 1

0 1

1 0 0

1

0

0

1 00 0

0 00 1

0 0 0 1

1 1 0 0

0 1 1 0

 Q1 Q2 Q3 Q4Clock

8

9

10

11

12

13

14

0 1 10

1 1 0

0 1 0

0 0 1

1 1 0

0 1 1

1 1

1

1

1

1

1

1 1

1 0 1 115

Figure 3 Example of internal type LFSR with characteristic polynomial C(X) =

 X +X+1 and initial seed (1011)4

Output

 C C C C P P P P

3. MIXED-TYPE FEEDBACK SHIFT REGISTERS

Refer to Fig. 4. The output of each F/F in a mixed-type feedback shift register

(MFSR) is either in true (Q) or complementary (Q) form and can be specified by the

value of an inversion variable di. If the Q (Q) output of the i-th F/F in MFSR is

used, then di is zero (one). For the input to the first stage, which is fed by the output

of the last stage, we assume that an inversion variable d0 is used. Therefore,

compared with an LFSR, the behavior of a k-stage MFSR can be characterized by a

characteristic polynomial C(X) of degree k, an initial seed (s-1, s-2,......, s-k), and an

inversion vector (d0, d1,......, dk). It should be pointed out again that the

Exclusive-OR gates and the di inputs shown in Fig. 4 are merely for our convenience

in analyzing the properties of MFSR's. In the actual implementation, they need not

exist. For example, Fig. 1 shows an MFSR with (d0, d1, d2, d3, d4) = (1, 1, 1, 1, 0, 1).

Figure 4 Architecture of internal type MFSR with characteristic polynomial

 initial seed (s−1, s-2, ... , s-k), and inversion vector (d0 , d1, ... , dk)

D Q

1

D Q

2

 C0 C1

 d0 d1

 C2

 d2

D Q
k

 Ck−1

 dk −1

 Ck

 dk s−1 s−2 s− k

Output

C(X) = Ci

i =0

k

∑ * X i ,

Similar to the analysis of an LFSR, the initial state polynomial T0(X) of a

k-stage internal type MFSR can be expressed as

T0(X) = s-i
i =1

k
∑ * X i -1 . (3)

Let Mi(X) be a polynomial whose coefficients are the content of each F/F adding

the corresponding inversion variable after i shifts and let the i-th internal state
polynomial of the MFSR be Ti(X) then Ti(X) can be represented by

 Ti(X) = Mi(X) + D(X) (4)

where D(X) is the inversion polynomial of an MFSR and is defined as

 D(X) = di
i=1

k
∑ * X i -1 . (5)

Note that M0(X) does not depend on d0 and can be expressed as:

 M0(X) = T0(X) + D(X). (6)

By the shift operation of an MFSR, we see that

M1(X) = [M1(X) * X + D(X) + d0] mod C(X)

 = [T0 (X) * X + D(X) * (X+1) + d0] mod C(X).

M2(X) = [M1(X) * X + D(X) + d0] mod C(X)

 = [T0(X) * X 2 + D(X) * (X2 + X + 1) + d0 * (X+1)] mod C(X).

:

Therefore, we can obtain a general expression for Mi(X) of an internal type

MFSR:

 Mi(X) = [T0(X) * X i + D(X)*(X i + Xi-1 + ... + X + 1) +

d0*(X i-1 + Xi-2 + ... + X + 1)] mod C(X)

 = [T0(X) * X i + D(X)*(X i+1 + 1)/(X+1) +

d0*(X i + 1)/(X+1)] mod C(X). (7)

Substituting this equation into Eq. (4), we obtain

Ti(X) = {T0(X) * X i + [D(X) * X + d0]*(X i + 1)/(X+1)} mod C(X).

i = 0, 1, 2, ... (8)

Fig. 1 shows an example of an MFSR with C(X) = X4 + X + 1 and an initial seed

(0000). Here, the inversion vector (d0, d1, d2, d3, d4) is (1, 1, 1, 0, 1). Note that the

initial seed can be obtained by simply setting A to 0.

4. MFSR BASED PSEUDORANDOM PATTERN GENERATORS

In this section, we will discuss an MFSR based PRPG and its relation to an
LFSR based PRPG. Let {Om} = {O 0, O1, O2, ...} and {O'm} = {O' 0, O'1, O'2, ...}

represent the output sequence generated by an LFSR based PRPG and an MFSR
based PRPG, respectively, where O0 (O'0) is the first bit appearing at the output, O1

(O'1) is the second, and so on.

Fig. 2 shows the configuration of an internal type LFSR based PRPG. Each bit

of the output sequence from this PRPG can be expressed as:

 O0 = a-k

 O1 = Ck-1 * O0 + a-k+1

 :
 Ok-1 = Ck-1 * Ok-2 + Ck-2 * Ok-3 + .. + C1 * O0 + a-1

 Ok = Ck-1 * Ok-1 + Ck-2 * Ok-2 + ... + C2 * O2 + C1 * O1 + O0

 Ok+1 = Ck-1 * Ok + Ck-2 * Ok-1 + ... + C2 * O3 + C1 * O2 + O1

 :

The above equations can be generalized as:

Op = (Ck-i
i=1

p

∑ * Op-i) + a-k+p for p = 0, 1, 2, ..., (k-1) (9a)

or

Op = (Ck-i
i=1

k-1
∑ * O p-i) + O-k+p for p = k, (k+1), ... (9b)

Refer to Fig. 4. Assume that the MFSR under consideration has the same

characteristic polynomial C(X); then, each bit of the output sequence from the k-stage

MFSR is represented as:

 O'0 = s-k + dk

 O'1 = Ck-1 * O'0 + s-k+1 + dk-1 + dk

 :
 O'k-1 = Ck-1*O'k-2 + Ck-2*O'k-3 + .. + C1*O'0 + s-1 + d1 + d2 + ... + dk-1 + dk

 O'k = Ck-1*O'k-1 + Ck-2*O'k-2 + ... + C2*O'2 + C1*O'1 + O'0 + d0 + d1 + d2

+ ... + dk-1 + dk

 O'k+1 = Ck-1*O'k + Ck-2*O'k-1 + ... + C2*O'3 + C1*O'2 + O'1 + d0 + d1 + d2

+ ... + dk-1 + dk

 :

The general form of the above equations is expressed as:

OP
' = (Ck-i

i=1

p
∑ * Op-i

') + s-k+p + dk-i
i=0

p
∑ for p = 0, 1, 2, ..., (k-1) (10a)

or

 Op
' = (Ck-i

i=1

k-1
∑ * O p-i

') + O-k+p
' + di

i =0

k
∑ for p = k, (k+1), ... (10b)

In the following, Lemmas 1 and 2 show the requirement that both LFSR and

MFSR based PRPG's can generate the same output sequences.

Lemma 1: For internal type LFSR and MFSR based PRPG's with the same

characteristic polynomial of degree k, if they generate the same output sequence with
initial seeds of (a-1, a-2, ..., a-k) and (s-1, s-2, ..., s-k), respectively, then the

relationship between these initial seeds can be expressed as

a-i + s-i = dj
j=i

k
∑ for i = 1, 2, ..., k. (11)

Proof: Since the two output sequences of LFSR and MFSR based PRPG's are the

same, from Eqs. (9a) and (10a), we have:

 O0 = O'0, i.e., a-k = s-k + dk

 O1 = O'1, i.e., Ck-1*O0 + a-k+1 = Ck-1*O'0 + s-k+1 + dk-1 + dk,

which implies a-k+1 = s-k+1 + dk-1 + dk.

 :

 Ok-1 = O'k-1, i.e., Ck-1*Ok-2 + Ck-2*Ok-3 + .. + C1*O0 + a-1 =

Ck-1*O'k-2 + Ck-2 *O'k-3 + .. + C1*O'0 + s-1 + d1 +

d2 + ... + dk-1 + dk, which implies a-1 = s-1 + d1 + d2

+ ... + dk-1 + dk.

These can be generalized as follows:

a-k+p + s-k+p = dk-i
i=0

p
∑ for p = 0, 1, 2, ..., (k-1).

Or equivalently, we have a-i + s-i = dj
j=i

k
∑ , for i = 1, 2, ..., k. Q.E.D.

Lemma 2: For internal type LFSR and MFSR based PRPG's with the same

characteristic polynomial of degree k, if they generate the same output sequence, then

the weight of the inversion vector in an internal type MFSR based PRPG must be

even, where the weight of the inversion vector is defined as the summation of all the

inversion variables.

Proof: Since internal type LFSR and MFSR based PRPG's with the same

characteristic polynomial generate the same output sequence, by Eqs. (9b) and (10b),

the k-th bit output sequence is

 Ok = O'k, i.e., Ck-1*Ok-1 + Ck-2*Ok-2 + ... + C2*O2 + C1*O1 + O0 =

Ck-1*O'k-1 + Ck-2 *O'k-2 + ... + C2*O'2 + C1*O'1 + O'0 + d0
+ d1 + d2 + ... + dk-1 + dk,

and the (k+1)-th bit output sequence is

 Ok+1 = O'k+1, i.e., Ck-1*Ok + Ck-2*Ok-1 + ... + C2*O3 + C1*O2 + O1 =
Ck-1*O'k + Ck-2 *O'k-1 + ... + C2*O'3 + C1*O'2 + O'1 + d0
+ d1 + d2 + ... + dk-1 + dk

 :

All these equations result in d0 + d1 + d2 + ... + dk-1 + dk = 0, i.e.,

di
i =0

k
∑ = 0. (12)

 Q.E.D.

Lemma 3: For two internal type LFSR and MFSR based PRPG's with the same

characteristic polynomial of degree k, if Eqs. (11) and (12) hold, then the sequences

generated by the two PRPG's are the same.

Proof: By Eq. (11), we have a-i + s-i = dj
j=i

k
∑ , and this can becomes

 a-k + s-k = dk

 a-k+1 + s-k+1 = dk + dk-1

 :

 a-1 + s-1 = dk + dk-1 + ... + d1 + d0

By Eq. (12) we obtain

 0 = dk + dk-1 + ... + d1 + d0

Substituting these equations into Eq. (10a), we get

 O'0 = s-k + dk = a-k = O0

 O'1 = Ck-1*O'0 + s-k+1 + dk-1 + dk = Ck-1*O0 + a-k+1 = O1

 :

 O'k-1 = Ck-1*O'k-2 + Ck-2*O'k-3 + .. + C1*O'0 + s-1 + d1 + d2 + ... + dk-1

+ dk = Ck-1*Ok-2 + Ck-2*Ok-3 + .. + C1*O0 + a-1 = Ok-1

 O'k = Ck-1*O'k-1 + Ck-2*O'k-2 + .. + C1*O'1 + O'0 + d0 + d1 + d2 + ... +

dk-1 + dk = Ck-1*Ok-1 + Ck-2*Ok-2 + .. + C1*O1 + O0 = Ok

 O'k+1 = Ck-1*O'k + Ck-2*O'k-1 + .. + C1*O'2 + O'1 + d0 + d1 + d2 + ... +

dk-1 + dk = Ck-1*Ok + Ck-2*Ok-1 + .. + C1*O2 + O1 = Ok+1

 :

By induction the lemma holds. Q.E.D.

Theorem 1: If an internal type LFSR and MFSR have the same characteristic

polynomial, then their output sequences are the same if and only if Eqs. (11) and (12)

hold.

Proof: Lemma 1 and 2 give the necessary condition while Lemma 3 gives the

sufficient condition. Q.E.D.

Given the initial seeds of an LFSR and an MFSR, the following example can be
used to show how the inversion vector (d0, d1, d2, ..., dk) can be found.

Example 1: If the LFSR shown in Fig. 3, which has the initial state (a-1, a-2, a-3, a-4)

= (1, 0, 1, 1), and the MFSR shown in Fig. 1, which has the initial state (s-1, s-2, s-3,

s-4) = (0, 0, 0, 0), generate the same output sequence, then by Eqs. (11) and (12), we

can obtain five equations as follows:

obtain five equations as follows:

 a-4 + s-4 = d4 = 1 (13a)

 a-3 + s-3 = d3 + d4 = 1 (13b)

 a-2 + s-2 = d2 + d3 + d4 = 0 (13c)

 a-1 + s-1 = d1 + d2 + d3 + d4 = 1 (13d)

 d0 + d1 + d2 + d3 + d4 = 0 (13e)

To solve these equations, firstly, d4 can be found in Eq. (13a); then, substituting

d4 into Eq. (13b), d3 can be found and so on. Finally, d0 can be found in Eq. (13e).
Thus, the value of the inversion vector (d0, d1, d2, ..., d4) in the MFSR is (1, 1, 1, 0, 1).

In general, since a new inversion variable can be obtained in each equation by means

of the above procedure, and there are totally (k+1) equations for the (k+1) unknowns,

the solution is unique and is quite easy to obtain.

Based on Theorem 1, we can make two observations: (1) If the initial seed of an

LFSR is given, then for any given initial seed, we can find an MFSR that can generate

the same output sequence as can the LFSR. (2) If the inversion vector of an MFSR

and the initial seed of an LFSR are given, then we can find an initial seed for this

MFSR to generate the same output sequence. An immediate application of

observation 1 is that the nonzero initial seed requirement for an LFSR based PRPG is

no longer needed when an MFSR based PRPG is used. In fact, not only the all-zero

initial seed, but also any initial seed can be used. This property gives somehow

surprising results when compared with the IFSR based PRPG proposed in [17]. As

mentioned before, an IFSR is a special case of an MFSR with all connections between

two stages being through Q . Our results here apparently state that given any LFSR

with any initial seed, we can always find an IFSR that can generate an m-sequence

that the LFSR can generate. However, in [17] it was stated that there exist some

LFSR's that do not have corresponding IFSR's. Through careful examination, we can

find that the inverter before the first F/F plays the major role in this difference. Due

to this inverter, the weight of the inversion variable can be kept even; hence, we can

always find an initial seed for any MFSR to generate the required m-sequence while

in the IFSR design, freedom in selecting d0 is not allowed, which results in the

inability to generate the output sequence of some LFSR's using IFSR.

So far, we have discussed the properties of the output sequences generated by

MFSR and LFSR based PRPG's. Now, we will consider the internal states of MFSR

based PRPG's and then discuss parallel pattern generators.

The following lemma shows the initial seed relationship between an LFSR and

an MFSR from the point of view of polynomials.

Lemma 4: For internal type LFSR and MFSR based PRPG's with the same

characteristic polynomial, if the relationship between their initial seeds can be

expressed by Eq. (11), then the relationship between their initial state polynomials can

be represented by

L0(X) + T0(X) = [X*D(X) + d0] / (1 +X). (14)

Proof: The initial state polynomial L0(X) of a k-stage internal type LFSR and T0(X)

of an internal type MFSR are expressed as L0 (X) = a-i
i =1

k
∑ * X i-1 and

T0(X) = s-i
i =1

k
∑ * X i -1 .

By Eq. (11) the relationship between these initial seeds of the LFSR and the

MFSR is expressed as a−i + s-i = dj
j=i

k
∑ for i = 1, 2, ..., k.

Then,

L0 (X) = (s-i
i=1

k
∑ + dj

j=i

k
∑)* X i−1

 = s-i
i=1

k
∑ * X i −1 + dj

j=i

k
∑

i=1

k
∑ * X i−1

= T (X) + d * X0 j
j=0

i-1

i=1

k
i 1

∑∑
− (since d = 0j

j=0

k

∑)

 = T0(X) + d0 + X*(d0 + d1) + X2*(d0 + d1 + d2) + ... + Xk-1*(d0 + d1
+ ... + dk-1)

= T0(X) + d0*(1 + Xk)/(1+X) + d1*X*(1 + X k-1)/(1+X) + d2*X 2*(1 +

Xk-2) /(1+X) + ... + dk-1*X k-1*(1 + X)/(1 +X)

= T0(X) + [X*D(X) + d0]/(1 + X).

Thus, the lemma. Q.E.D.

Theorem 2: For internal type LFSR and MFSR based PRPG's with the same

characteristic polynomial C(X), their i-th internal state polynomials, Li(X) and Ti (X),

can be expressed as

Li(X) + Ti(X) = [X*D(X) + d 0] / (1 + X) (15)

if and only if they generate the same output sequence.

Proof: By Theorem 1 and Eq. (8), the i-th internal state polynomial Ti(X) of an

internal type MFSR based PRPG is expressed as: Ti (X) = {T0(X)*X i + [D(X)*X +

d0]*(X i + 1)/(X+1)]} mod C(X).

By Eq. (14), Ti(X) can be rewritten as

 Ti(X) = {L 0(X)*X i + Xi*(X*D(X) + d 0)/(X + 1) + (X*D(X) + d0)*(X i + 1)/(X +

1)} mod C(X)

 = {L0(X)*X i + (X*D(X) + d0)/(X + 1)} mod C(X).

 = Li(X) + (X*D(X) + d0)/(X + 1).

Thus, the theorem. Q.E.D.

Lemma 4 and Theorem 2 show that the relationship between the internal states of

LFSR and MFSR based PRPG's is invariant. This means that (1) the sequence from

any F/F output of an LFSR is the same as the sequence from the corresponding F/F

output of the corresponding MFSR, and (2) each state transition of an LFSR from one
state Li(X) to another state Lj(X) of the LFSR has a corresponding state transition

from one state Ti(X) to another state Ti(X) in an MFSR. Thus, the behavior of an

LFSR can be completely mapped onto an MFSR. If it is required that the 2k-1

parallel patterns generated by k-stage LFSR and MFSR based PRPG's be the same,

then Theorem 2 can be used to determine how the output of an MFSR to a circuit

under test can be tapped, as described next.

Let the i-th true outputs of LFSR and MFSR based PRPG's be (QL)i and (QM)i,

respectively. Then, Eq. (15) becomes

[(QL)i
i =1

k
∑ + (QM)i]* X i -1 = [X *(d i

i=1

k
∑ * X i-1) + di

i=1

k
∑] / (1 + X)

 = (di
i =1

k
∑) + X(di

i=2

k
∑) + X2(di

i=3

k
∑) + ... + Xk-1(di

i=k

k
∑)

 (16)

By equating both sides of Eq. (16), we can obtain

(QL)i + (QM)i = dj
j=i

k
∑ . (17)

Eq. (17) indicates that to obtain the same parallel patterns as obtained in LFSR

based PRPG's, the i-th true (complement) output of MFSR based PRPG's must be

used if dj
j=i

k
∑ = 0 (dj

j=i

k
∑ = 1). For example, to generate the same parallel patterns

in Fig. 3, the parallel pattern generator outputs in Fig.1 must be ((Q1, Q2, Q3, Q4))

with the inversion vector (d0, d1, d2, d3, d4) = (1, 1, 1, 0, 1).

The following theorem shows how many different internal type MFSR based

PRPG's can generate the same output sequence as that it can be generated by an

internal type LFSR based PRPG.

Theorem 3: For a given characteristic polynomial of degree k, if the initial seed can

be arbitrarily selected, then there are 2k MFSR based PRPG's which can generate the

same output sequence as that generated by an LFSR based PRPG with a given initial

seed.

Proof: To meet the condition that any MFSR based PRPG can generate the same

output sequence as that for an LFSR based PRPG, Eqs. (11) and (12) for any MFSR

based PRPG must hold, namely, a−i + s-i = dj
j=i

k
∑ , and di

i =0

k
∑ = 0.

There are (k+1) coefficients in the inversion vector, i.e.,

(d0, d1, d2, .. ., dk-1, dk) = (di
i=1

k
∑ , d1, d2, . .., dk-1, dk)

Therefore, there are 2k different combinations in the inversion vector if s-i, i = 1,

2,......, k can be arbitrarily selected. Thus, the theorem holds. Q.E.D.

5. MULTIPLE INPUT SIGNATURE ANALYZERS (MISA's)

In this section, we will discuss the behavior of both LFSR based and MFSR

based MISA's. We assume that the length of the test response sequence to be

compressed is L. For a k-stage MISA, let its p-th input be Ip. We can use the

following L*k array to represent the test response sequence:

R0,L−1 R1,L−1 R2,L−1 ... Rk−1,L−1

R0,L−2 R1,L−2 R2,L−2 ... Rk−1,L−2

: : : : :

R0,1 R1,1 R2,1 ... Rk−1,1

R0,0 R1,0 R2,0 ... Rk−1,0

where Rp,q means the bit of the q-th test response applied to Ip of the MISA.

5.1 LFSR Based MISA's

Consider the LFSR based MISA shown in Fig. 5 that has a characteristic

polynomial C(X) and an initial seed (a-1, a-2,......, a-k). The initial seed can also be

expressed in terms of the polynomial L0(X) as stated in Eq. (1). If we put the L*k

test response array into this LFSR based MISA, its i-th content after i shifts, L-i(X),

can be expressed as:

L1(X) = [X*L 0(X) + R0,L-1 + R1,L-1*X + ... + Rk-1,L-1*X
k-1] mod C(X)

 = [X * L 0(X) + R j,L-1
j=0

k-1
∑ * X j] mod C(X)

L2(X) = [X*L 1(X) + R0,L-2 + R1,L-2*X + ... + Rk-1,L-2*X
k-1] mod C(X)

 = [X 2 * L 0(X) + Rj,L-1
j=0

k-1
∑ * X j+1 + Rj,L-2 * X j

j= 0

k-1
∑] mod C(X)

:

LL (X) = [X L * L 0(X) + (Rj,L-i
j=0

k-1
∑ * X j+L-i)

i=1

L
∑] mod C(X) (18)

 a−1

D Q

1
D Q

2
D Q

k

 C0 C1

 a−2

 C2 Ck−1 Ck

 a− k
 I 0 I1 I 2 I k −1

Figure 5 Architecture of internal type LFSR based MISA with characteristic

 polynomial

C(X) = Ci

i =0

k

∑ * X i and initial seed (a−1+ a-2+ .. .+ a-k)

LL(X) in Eq. (18) is the final signature of an internal type LFSR based MISA for

an L*k test response array. Once the initial seed and characteristic polynomial have

been specified, the final signature is determined by the given test response array.

5.2 MFSR Based MISA's

Fig. 6 shows a configuration of the MFSR based MISA. By means of the shift

operation of an MFSR based MISA and an L*k test response array, we have

M1(X) = [X*M 0(X) + D(X) + d0 + Rj,L −1
j= 0

k−1
∑ * X j] mod C(X)

 = [X*T 0(X) + D(X)*(X+1) + d0 + Rj,L −1
j= 0

k−1
∑ * X j] mod C(X)

M2(X) = [X*M 1(X) + D(X) + d0 + Rj,L −2
j= 0

k−1
∑ * X j] mod C(X)

 = [X2*T0(X) + D(X)*(X 2+X+1) + d0*(X+1) +

Rj,L −1
j= 0

k−1
∑ * X j+1 + Rj,L −2

j=0

k−1
∑ * X j] mod C(X)

 :

ML(X) = [XL*T0(X) + D(X)*(X L+1+1)/(X+1) + d0*(X L+1)/(X+1) +

 Rj,L −i
j= 0

k−1
∑

i =1

L
∑ * X L + j−i] mod C(X). (19)

Figure 6 Architecture of internal type MFSR based MISA with characteristic

 polynomial

C(X) = Ci

i =0

k

∑ * X i,

D Q

1
D Q

2

 C1

 d0 d1

 C2

 d2

D Q
k

 Ck−1

 dk −1

 Ck

 dk s−1 s−2 s− k I1 I 2 I k −1 I 0

 C0

 (s−1, s-2, ... , s-k),initial seed and

inversion vector (d0 , d1, ... , dk)

ML(X) in Eq. (19) is the final signature of an internal type MFSR based MISA

for an L*k test response array. Compared to Eq. (18), Eq. (19) indicates that even if

the initial seed polynomial T0(X) and characteristic polynomial C(X) of an MFSR

based MISA have been specified, it may still be possible that the final state

polynomial ML(X) can be set to any desired value by adjusting the coefficients of the

inversion vector (d0, d1,......, dk). Therefore, MFSR based MISA's are also called

seed-and-signature on demand (SASOD) MISA's. Next, we shall analyze this

problem.

Let three polynomials, A(X), B(X), and F(X), be expressed as:

A(X) = ML(X) + [XL*T0(X) + Rj,L −i
j= 0

k−1
∑

i =1

L
∑ * X L + j−i] mod C(X) (20)

B(X) = (XL+1+1)/(X+1) (21)

and

F(X) = (XL+1)/(X+1). (22)

Substituting Eqs. (20), (21) and (22) into Eq. (19) we have

A(X) = [D(X)*B(X) + d 0*F(X)] mod C(X). (23)

The original meaning of Eq. (23) is that, given D(X), B(X), d0*F(X), and C(X), it

follows that A(X), which contains the final signature ML(X), is fixed. However, our

objective here is to control the final signature to any required value by adjusting D(X)

and d0. Therefore, our question becomes: Given any A(X), B(X), C(X), and F(X),

can we find a D(X) and a d0 such that Eq. (23) holds?

Since the behavior of feedback shift registers can be described by polynomial

operations, we shall next solve this problem based on polynomial analysis. Let the

greatest common divisor polynomial of B(X) and C(X) be G(X), i.e., GCD[B(X),

C(X)] = G(X). We will first consider the case where d0 = 0. In this case, we have

A(X) = [D(X)*B(X)] mod C(X). (24)

The following theorem gives the necessary and sufficient conditions for D(X) to

exist.

Theorem 4: For any given three polynomials, A(X), B(X), and C(X), where deg

A(X) < deg C(X). Eq. (24) has a solution on D(X) if and only if A(X) mod

[GCD(B(X), C(X)] = 0.

Proof: It is well known that (see, e.g., [18]) G(X) = GCD[(B(X), C(X)] if and only

if we can find two nonzero polynomials, u(X) and v(X), such that

G(X) = u(X)*B(X) + v(X)*C(X), (25)

and

GCD[u(X), v(X)] = 1. (26)

By means of the polynomial division algorithm, we can find a unique nonzero

polynomial Q(X) such that Eq. (24) becomes

A(X) = D(X)*B(X) + Q(X)*C(X). (27)

(a) Sufficiency: Since A(X) mod G(X) = 0, we may assume that

A(X) = a(X)*G(X). (28)

By Eq. (24), we know that deg A(X) < deg C(X); hence, by Eqs. (28) and (25),

we get

A(X) = A(X) mod C(X)

 = [a(X)*G(X)] mod C(X)

 = [a(X)*u(X)*B(X) + a(X)*v(X)*C(X)] mod C(X)

 = [a(X)*u(X)*B(X)] mod C(X).

By Eq. (5), if D(X) exists, then we know that deg D(X) < deg C(X). Compared

to Eq. (27), we know that if we set

D(X) = [a(X)*u(X)] mod C(X), (29)

then D(X) is a polynomial with degree less than deg C(X), and that D(X) satisfies Eq.

(25). Therefore, a solution can be found.

(b) Necessity: Since G(X) = GCD[B(X), C(X)],we can assume B(X) = y(X)*G(X)

and C(X) = z(X)*G(X), where y(X) and z(X) are two nonzero polynomials.

Substituting them into Eq. (27), we get

A(X) = D(X)*y(X)*G(X) + Q(X)*z(X)*G(X)

 = [D(X)*y(X) + Q(X)*z(X)]*G(X).

Thus, A(X) mod G(X) = 0. Q.E.D.

Now, we will consider the case where d0 = 1. In this case, we have

A(X) = [D(X)*B(X) + F(X)] mod C(X). (30)

We modify the above equation and assume a polynomial A'(X) such that

A'(X) = A(X) + [F(X) mod C(X)].

Then, we have A'(X) = [D(X)*B(X)] mod C(X). (31)

Since Eqs. (31) and (24) have the same form, we have the following theorem that

gives the necessary and sufficient condition for D(X) to exist for d0 = 1.

Theorem 5: For any given four polynomials, A(X), B(X), C(X), and F(X), where

deg A(X) < deg C(X), Eq. (29) has a solution on D(X) if and only if A'(X) mod

[GCD(B(X), C(X)] = 0, where A'(X) = A(X) + [F(X) mod C(X)].

Proof: Similar to Theorem 4. Q.E.D.

So far, we have proved the necessary and sufficient condition for D(X) to exist.

Next, we will consider the case where d0 = 0 and A(X) mod [GCD(B(X), C(X))] * 0.

The case where d0 = 1 can be similarly discussed. We have GCD[(XL+1+1)/(X+1),

C(X)] * 1. Since, in general, C(X) is a primitive polynomial, in the following

discussion, we shall make such an assumption. If GCD[(XL+1+1)/(X+1), C(X)] * 1,

then GCD[(XL+1+1)/(X+1), C(X)] = C(X). The following theorem provides an

approach to solve D(X) under this condition.

Theorem 6: If GCD[(XL+1+1)/(X+1), C(X)] ≠ 1 and C(X) is a primitive

polynomial, then GCD[(XL+2+1)/(X+1), C(X)] = 1.

Proof: Since (XL+2+1)/(X+1) + (XL+1+1)/(X+1) = XL+1, which cannot be a

multiplication of C(X), the theorem is proved. Q.E.D.

Now, suppose we add one arbitrary dummy pattern to the test response such that

ML+1(X) is the final signature of the MFSR based MISA for a (L+1)*k test response

array, where

ML+1(X) = [XL+1*T0(X) + D(X)*(X L+2+1)/(X+1) + d0*(X L+1+1)/(X+1) +

 Rj,L+1−i
j= 0

k−1
∑

i =1

L +1
∑ * X L+1+ j−i] mod C(X).

Then Eqs. (20) and (21) become

A1(X) = ML+1(X) + [XL+1*T0(X) + Rj,L+1−i
j= 0

k−1
∑

i =1

L +1
∑ * X L+1+ j−i] mod C(X)

and

B1(X) = (XL+2+1)/(X+1).

Since GCD[B1(X), C(X)] = 1 if GCD[B(X), C(X)] ≠ 1, no matter what the

value A1(X) is, D(X) must always have a solution.

Now, we will describe a procedure to find D(X) if one exists. From Eq. (29),

we know that if we can find u(X) and v(X) that satisfy Eqs. (25) and (26), then D(X)

can be easily found. Next, we shall analyze the procedure for finding G(X) =

GCD[B(X), C(X)]. From this procedure, we can derive a method to find u(X) and

v(X). A standard method for finding the greatest common divisor of two

polynomials B(X) and C(X) is to apply the Euclidean algorithm [21] successively as

follows:

Euclidean algorithm [21] successively as follows:

B(X) = Q1(X) * C(X) + R1(X)

C(X) = Q2(X) * R1(X) + R2(X)

R1(X) = Q3(X) * R2(X) + R3(X)

:

Rk-3(X) = Qk(X) * Rk-2(X) + Rk-1(X)

Rk-2(X) = Qk+1(X) * Rk-1(X) + Rk(X)

Rk-1(X) = Qk+2(X) * Rk(X) + Rk+1(X)

until Rk+1(X) = 0. Then GCD[B(X), C(X)] = Rk(X).

By reversing the above procedure, we can represent Rk (X) as a function of

Rk-1(X) and Rk-2(X), then represent Rk-1(X) as a function of Rk-2(X) and Rk-3(X),

and so on. Finally, we can represent Rk(X) as a function of B(X) and C(X) in the

form Rk(X) = u(X)*B(X) + v(X)*C(X). u(X) in this equation can then be used to

determine D(X). We will use an example to illustrate the above process: let A(X) =

X3 + X2 + 1, B(X) = (X11 + 1)/(X + 1), and C(X) = X4 + X3 + 1. We have

B(X) = (X6 + X4 + X + 1) * C(X) + X2

C(X) = (X2 + X) * (X2) + 1

X2 = (X2) * 1 + 0

Therefore,

GCD[B(X), C(X)] = 1

= C(X) + (X2 + X) * (X2)

= C(X) + (X2 + X) * [B(X) + (X 6 + X4 + X + 1) * C(X)]

= (X2 + X) * B(X) + (X8 + X7 + X6 + X5 + X3 + X + 1) *

C(X).

Thus u(X) = (X2 + X). Since GCD[B(X), C(X)] = 1, a(X) = A(X). From Eqs. (28) and

(29), we have

D(X)＝[a(X) * u(X)] mod C(X)

= [(X3 + X2 + 1) * (X2 + X)] mod (X4 + X3 + 1)

= X2 + 1.

5.3 Consideration of the Dummy Pattern

We have shown that if D(X) does not exist for some specified initial seed and

test response, then by simply adding one dummy pattern, one can always find the

required D(X). In general, adding one dummy pattern should not be a problem

because this only requires one more clock cycle during testing if a pseudorandom

number generator is used for the pattern generator, or it requires that one more test

pattern be scanned into the circuit under test if a scan system is used. In the case

where such augmentation is absolutely not allowed, the following discussion shows

that the problem may still be easy to solve.

From Theorem 5, we know that if {GCD[B(X), C(X)] = 1}, then a solution for

D(X) always exists. Therefore, if we can use different C(X)'s, then the probability

for {GCD[B(X), C(X)] ≠ 1} will be smaller. According to [15], the number of

primitive polynomials with degree k is (φ (2k -1)) / k , where the φ (X)-function is

the Euler's function and is defined as the number of positive integers less than or

equal to X that are relatively prime to X. If k = 16, then (φ (2k -1)) / k = 2048.

Now, if none of these primitive polynomials is prime to B(X), then the multiplication

of these polynomials, denoted as MC(X), must also divide B(X). If the degree of

MC(X) is N, then

N = k*(φ (2k -1)) / k = φ (2k -1). (32)

The probability that MC(X) divides B(X) will be

P = 2{deg B(X)}-N / 2{deg B(X)} = 2-N. (33)

If k = 16, then N = 16*2048 = 32768, and we have P = 2-N = 2-32768. Therefore,

it is almost guaranteed that a feasible D(X) can be found if we have the freedom to

choose C(X).

6. SUMMARY AND FUTURE WORK

In this paper, we have presented a generalized type of feedback shift register,

called the mixed-type feedback shift register (MFSR),and shown that the conventional

LFSR and the IFSR proposed in [17] are two special cases of MFSR's. Some

properties that MFSR's possess while conventional LFSR's or IFSR's do not have

been described. These properties are quite useful in built-in self-test. Compared to

LFSR's, MFSR's do not require any extra hardware overhead except for the inverter at

the input of the first stage when d0 = 1.

Our analysis shows that by using MFSR based PRPG's, one can generate the

same serial output sequence and parallel patterns as those generated by any LFSR

based PRPG, with the extra advantage that the initial seed can be any value. On the

other hand, the seed and signature of an MISA (or the final state at the true outputs of

an MFSR) can be set to any value if an MFSR is used. One of the typical

applications of this type of MISA is in mass production, where the same kind of

CUT's are tested using BIST. In such a case, the initial seed and the final state can

be set to the same value. If the final signature from a CUT is correct, then the seed

need not be reloaded; thus, testing time can be reduced.

The analysis provided in this paper has been based on polynomial representation

of feedback shift registers. It would be interesting to use matrix representa-tion to

analyze MFSR's because the behaviors of external types of feedback shift registers are

difficult to analyze using polynomial representation. With the introduction of

MFSR's, we expect that many test schemes that have previously been developed using

LFSR's can be reexamined to see whether better properties or architectures exist when

MFSR's are used.

REFERENCES

1. M. Abramovici, M.A. Breuer and A.D. Friedman, Digital Systems Testing and

Testable Design, Computer Science Press, New York, 1990.

2. B. Konemann, J. Mucha and G. Zwiehoff, "Built-in logic block observation

technique," Digest of Papers 1979 Test Conference, 1979, pp. 37-41.

3. R. Raina and P.N. Marinos, "Signature analysis with modified linear feedback

shift registers (M-LFSRs)," in Proceedings of Fault-Tolerant Computing: 21st

International Symposium, 1991, pp. 88-95.

4. Z. Barzilai, D. Coppersmith and A.L. Rosenberg, "Exhaustive generation of bit

patterns with applications to VLSI self-testing," IEEE Transactions on

Computers, Vol. C-32, No. 2, 1983, pp. 190-194.

5. S.B. Akers, "On the use of linear sums in exhaustive testing," Digest of Papers

15th Annual International Fault-Tolerant Computing Symposium, 1985, pp.

148-153.

6. L.T. Wang and E.J. McCluskey, "Linear feedback shift register design using

cyclic codes," IEEE Transactions on Computers, Vol. C-37, No. 10, 1987, pp.

1302-1306.

7. P.H. Bardell, "Design considerations for parallel pseudorandom pattern

generators," Journal of Electronic Testing and Applications, Vol. 1, No. 1, 1990,

pp. 73-87.

8. W.B. Jone and C.A. Papachristou, "A coordinated approach to partitioning and

test pattern generation for pseudo-exhaustive testing," in Proceedings of 26th

ACM/IEEE Design Automation Conference, 1989, pp. 525-530.

9. R. Srinivasan, S.K. Gupta and M.A. Breuer, "Novel test pattern generators for

pseudo-exhaustive testing," in Proceedings IEEE International Test Conference,

1993, pp. 1041-1050.

10. S. Hellebrand, S. Tarnick, J. Rajski and B. Courtois, "Generation of vector

patterns through reseeding of multiple-polynomial linear feedback shift

registers," in Proceedings of IEEE International Test Conference, 1992, pp.

120-129.

11. S. Venkataraman, J. Rajski, S. Hellebrand and S. Tarnick, "An efficient BIST

scheme based on reseeding of multiple polynomial linear feedback shift

registers," in Proceedings of ICCAD-93, 1993, pp. 572-577.

12. J. Savir and W.H. McAnney, "A multiple seed linear feedback shift register,"

IEEE Transaction on Computers, Vol. 41, No. 2, 1992, pp. 250-252.

13. R.A. Frohwerk, "Signature analysis: A new digital field service method,"

Hewlett-Packard Journal, Vol. 28, No. 9, 1977, pp. 2-8.

14. J.E. Smith, "Measures of the effectiveness of fault signature analysis," IEEE

Transactions on Computers, Vol. C-29, No. 6, 1980, pp. 510-514.

15. P.H. Bardell, W.H. McAnney and J. Savir, Built-in Test for VLSI:

Pseudorandom Techniques, Wiley, New York, 1987.

16. C.L. Chen, "Linear dependencies in linear feedback shift registers," IEEE

Transactions on Computers, Vol. C-35, No. 12, 1986, pp. 1086-1088.

17. A. Guha and L.L. Kinney, "Relating the cyclic behavior of linear and

intrainverted feedback shift registers," IEEE Transactions on Computers, Vol.

C-41, No. 9, 1992, pp. 1088-1100.

18. R.E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, MA,

1983.

19. C.A. Chen and S.K. Gupta, "A methodology to design efficient BIST test pattern

generators," in Proceedings of IEEE International Test Conference, 1995, pp.

814-823.

20. C.A. Chen and S.K. Gupta, "BIST test pattern generators for two-pattern testing -

theory and design algorithms," IEEE Transactions on Computers, Vol. 45, No. 3,

1996, pp. 257-269.

21. I.N. Herstein, Topics in Algebra, 2nd (ed.), Wiley, 1975.

Kuen-Jong Lee（李昆忠）received the B.S. degree in electrical engineering from

National Taiwan University, Taiwan, R.O.C., the M.S. degree in electrical and

com-puter engineering from the University of Iowa, Iowa City, Iowa, and the Ph.D.

degree in electrical engineering from the University of Southern California, Los

Angeles, California. He joined the faculty of National Cheng-Kung University,

Tainan, Taiwan, R.O.C., in 1991, and is currently a Professor in the Department of

Electrical Engineering. His research interests include several aspects of

computer-aided design and implementation of integrated circuits, with particular

emphasis on automatic test pattern generation, design of testable circuits and design

automation.

Wei-Lun Wang（王維倫）received the B.S. degree in electronic engineering from

Chung Yuan Christian University in 1985, and the M.S. degree in electrical

engineering from Tatung Institute of Technology in 1987. He is now a Ph.D. student

in the Department of Electrical Engineering at National Cheng Kung University. His

research interests are in the field of VLSI design and test.

Jhing-Fa Wang（王駿發）received the Ph.D. degree in electrical engineering and

computer science from the Stevens Institute of Technology, Hoboken, in 1983. He is a

senior member of IEEE and was elected general chairman of the Chinese Image

Processing and Pattern Recognition Society in 1993. He was the director of the

Institute of Information Engineering in National Cheng Kung University from 1990 to

1996. He is currently a professor in the department of Electrical Engineering and the

Institute of Information Engineering at National Cheng Kung University. He is

currently also the Chairman of the Taiwan Information Software Association and the

Chairman of the Computer Center of National Cheng Kung University. His current

research interests include graph theory, CAD/VLSI, neural nets for image processing,

computer speech processing, and optical character recognition.

