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A mixed-type feedback shift register (MFSR) is danto a linear feedback shift
register (LFSR) except that the connection betwegnconsecutive flip-flops (F/F's)
may be through the Q or output, and an extra tevenay exist at the input to the
first flip-flop (stage) of the register. In thisaper, we exploit the properties of
MFSR's and show that by using an MFSR based psaundom pattern generator
(PRPG) or multiple input signature analyzer (MISAgveral good features for
built-in self test can be obtained. Specifically show that: (1) for any given initial
seed, an MFSR always exists that can generateathe serial output sequence as can
an LFSR with the same characteristic polynomial ang initial seed; (2) for any
MFSR, we can always find an initial seed for thif8R such that it can generate the
same serial output sequence as can an LFSR witkathe characteristic polynomial
and any initial seed; and (3) for any given initi&led and any test response to be
compressed, an MFSR based MISA can usually be fdahat will result in any
required final signature. If such an MFSR canrefdund for a specific initial seed
and a specific test response sequence, we shovbyhsitnply adding one arbitrary
dummy pattern to the test response, one can alfuayshe required MFSR. We
also show that if the characteristic polynomialtoé MFSR based MISA can be
chosen freely, it is almost guaranteed that a @dVIFSR can be found without
adding any dummy patterns to the test responser example, for a 16-stage MISA,
the probability that a feasible MFSR does not a@gi#ss than 2-32768.

Keywords: mixed-type feedback shift register, linear feakbashift register,
pseudorandom pattern generator, multiple inputadige analyzer.

1. INTRODUCTION

Due to their simple and regular structure, linegdback shift registers (LFSR's)
and their extended versions have been widely usétkitesting of digital circuits [1].
These include BILBO [2], M-LFSR [3], combined LFS® [4], combined
LFSR/XOR [5], cyclic LFSR [6], the LFSR based p#hlpseudorandom pattern
generator [7], the LFSR based pseudo-exhaustiv@a#dtern generator [8, 9, 19], the
reseeding and characteristic polynomial reprogramgntechniques [10, 11], the

_ _ multiple seed LFSR [12], the
Received November 19, 1996; revised July 16, 1997.
Communicated by Youn-Long Lin. two-pattern generator [20] etc.



The properties and theories of LFSR's have beeusiged in [13, 14, 15, 16].

The applications of LFSR's to digital testing asarfd in two major fields. One
is the use of an LFSR as a test pattern genetatown as a pseudorandom pattern
generator (PRPG), and the other is the use of &RL&S a test response compressor,
known as a signature analyzer (SA) [1].

It is well known that an LFSR with a primitive clateristic polynomial can
generate a maximum sequence (m-sequence) of I@hdthf it contains a nonzero
initial seed, where k is the number of F/F's in tiwSR [15]. Therefore, provision
of a nonzero initial seed is an essential requirgnigr using an LFSR as a PRPG
unless some extra logic is used. Conventionaltg, may use F/F's with both preset
and clear (reset) control lines, or use an extbrmantrollable scan path to provide
the nonzero seed. Both methods require extracrerhead [17].

For the signature analysis application, it is atkear that when the initial seed
and test response are fixed, the final signaturéixexd [15]. To determine the
correctness of this final signature, either sonweasgfe for the correct signature and
some comparison circuitry must be added to thesitichip) under test (CUT), or the
signature must becanned out of the CUT for comparison. Again, both method
require extra hardware overhead.

In this paper, we propose a generalized type aflfaek shift registers, called a
mixed-type feedback shift registers (MFSR's), ttaat be used to reduce the difficulty
of the above problems. An MFSR is similar to arBEFexcept that the connection
between two consecutive stages of F/F's in an MF@R be through the true (Q) or
complementary@) output of the preceding F/F stage, and the inpuhe first F/F
stage may or may not go through an extra invertéig. 1 shows an example of a
4-stage MFSR in which the output of F/F3 is thro@hvhile F/F1, F/F2, and F/F4
are through_Q An inverter presents before F/F1. Since, inegakh both Q and
Q of an F/F can be used for interstage connectio@, dircuit complexity of an
MFSR is the same as that of an LFSR except thaeatra inverter may be required
at the input of F/F1.

The structure of an MFSR implies that an LFSR gpecial case of an MFSR,
where all the connections are through Q and noriev@resents before the first F/F
stage. The intrainverted feedback shift registEER) proposed in [17] is also a
special case of an MFSR, where all the connectmasthrough_Q including the
feedback from the last stage to the first staganceSboth LFSR's and IFSR's are
special cases of MFSR's, all useful propertiestiagisn LFSR's and IFSR's also exist
in MFSR's. However, there are several unique ptgseof MFSR's that may not
exist in LFSR's and IFSR's.
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Fig. 1. Example of internal type MFSR with charasticipolynomial C(X) =

4
X +X+1, initial seed (0000), and inversion vectorX1)

In this paper, we shall exploit these propertiesM#SR's, emphasizing their
application to random number generation and sigaanalysis. We shall show that:
(1) for any given initial seed, an MFSR always &xithat can generate the same
output sequence as can an LFSR with the same t¢hastic polynomial and any
initial seed; (2) for any MFSR, we can always fardinitial seed for this MFSR such
that it can generate the same output sequence rasartalFSR with the same
characteristic polynomial and any initial seed; &Bpfor any given initial seed and
any test response to be compressed, an MFSR basd ddn usually be found that
will result in any required final signature. Ifduan MFSR cannot be found for a
specific initial seed and a specific test respaespience, we will show that by simply
adding one arbitrary dummy pattern to the testarse, one can always find the
required MFSR. We will also show that if the cleaesistic polynomial of the
MFSR based MISA can be chosen freely, it is alnmpsaranteed that a feasible
MFSR can be found without adding any dummy patterthe test response. For
example, in a 16-stage MFSR based MISA, the prdibalinat one would need an
arbitrary dummy pattern is less tharf 22

According to the above properties (1) and (2), ae see that the nonzero initial
seed requirement for an LFSR based PRPG does isvf@xan MFSR based PRPG.
Hence, one can simply design an MFSR with the regpability, which should be
simpler than an LFSR with both the preset and resgabilities. On the other hand,
since the initial seed and the final signatureroMESR based MISA can be chosen
freely, much more design flexibility is allowed. offexample, one may select an
all-zero pattern for both the initial seed and fihal signature, hence, simplifying the
seeding and signature checking process. Anothdicappn is that if a register is to



be used as an MISA in one test session and a PRE inext session, then we can
set the final signature of the first session taH@esame as the initial seed of the PRPG
for the next session, hence, eliminating the needded reloading.

This paper is organized as follows. Section 2 gjiaebrief review of the well
known LFSR's. Section 3 describes the structundspamlynomial representation of
MFSR's. Based on some formal theoretical analyaetions 4 and 5 relate the
behaviors of the MFSR based PRPG and MISA to tlobgbe LFSR based PRPG
and MISA, respectively. A comparison between MR8 IFSR based PRPG's is
also given in Section 4. Finally, we give a distos and draw conclusions in
Section 6.

2. LINEAR FEEDBACK SHIFT REGISTERS

Depending on the positions of exclusive-or gatestet are two types of LFSR's.
In this paper, we will only consider the interngp¢ LFSR and its corresponding
MFSR based on polynomial representation. The tegddtained in this paper also
apply to other types of LFSR's or MFSR's thoughlam based on matrix
representation may be necessary since it is diffioiconduct polynomial analysis on
external type LFSR's or MFSR's. Hereatfter, all RESor MFSR's referred to are
internal ones. The structure of a k-stage LFS&h@wvn in Fig. 2. The behavior of
this LFSR can be described using mathematical pohyal representation over GF(2).

Its characteristic polynomial C(X) is defined &X) = > G x| , Where g=C =

i=0
1. The symbols * and + denote binary multiplicatiand addition over GF(2),
respectively. The initial state.{aa,,....... , &) can be represented using an initial
state polynomial LO(X) as:
K i-1
Lo(X) = 2ai*X ™. @)

i=1
The i-th state polynomial Li(X), i.e., the contaitthe k-stage LFSR after i shifts,
is represented by

Li(X) = [X"*L o(X) mod C(X)] i=0,1,2 .. )
Coé) Clé C, C C,
|—> D QD Q= ——=D Q
1 2 k Output

a, a,

Figure 2 Architecture of internal type LFSR withatcacteristic polynomial

k
C(X)= Zci*x‘ and initial seed(a_,, a,, ..., &)
i=0



This equation has also been used in [17], anddicates that the i-th internal
state in an LFSR is dependent on both the inite¢dsand the characteristic
polynomial. Fig. 3 shows an example of an LFSFh@(X) = X* + X + 1 and an
initial seed (0110), where and are clear andegpresntrol lines to each F/F.
When the initial state (1011) is needed, we letdlees at A and B in Fig. 3 be 0 and
1, respectively.
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Figure 3 Example of internal type LFSR with chéeastic polynomial C(X) =
® +X+1 and initial seed (1011)

3. MIXED-TYPE FEEDBACK SHIFT REGISTERS

Refer to Fig. 4. The output of each F/F in a mikgee feedback shift register
(MFSR) is either in true (Q) or complementat_y)(form and can be specified by the
value of an inversion variablg.d If the Q (_Q) output of the i-th F/F in MFSR is
used, thends zero (one). For the input to the first stagbich is fed by the output
of the last stage, we assume that an inversiomablari@d is used. Therefore,
compared with an LFSR, the behavior of a k-stageSRIEan be characterized by a
characteristic polynomial C(X) of degree k, anialiseed (s, s,......, %), and an
inversion vector (¢l di,......, d). It should be pointed out again that the
Exclusive-OR gates and theidputs shown in Fig. 4 are merely for our convane
in analyzing the properties of MFSR's. In the attmplementation, they need not
exist. For example, Fig. 1 shows an MFSR with @ o, d3, d)) = (1, 1, 1, 1, O, 1).
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Figure 4 Architecture of internal type MFSR withagacteristic polynomialC(X) = D C, *X',
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initial seed (S, S,, -+, S), and inversion vectold,, d;, ..., d)

Similar to the analysis of an LFSR, the initial tstgpolynomial B(X) of a
k-stage internal type MFSR can be expressed as

k )
To(X) = Ys;*x'L. 3)
i=1

Let M;(X) be a polynomial whose coefficients are the eahbf each F/F adding

the corresponding inversion variable after i shiisd let the i-th internal state
polynomial of the MFSR be;{X) then T;(X) can be represented by

Ti(X) = Mi(X) + D(X) 4)

where D(X) is the inversion polynomial of an MFSRdas defined as

k .
D(X) = >d*x'™. (5)
i=1

Note that M(X) does not depend on dO and can be expressed as:

Mo(X) = To(X) + D(X). (6)
By the shift operation of an MFSR, we see that

M1(X) =[M1(X)* X + D(X) + dg] mod C(X)

= [To (X) * X + D(X) * (X+1) + dg] mod C(X).

Ma(X) = [M1(X)* X + D(X) + dg] mod C(X)

= [To(X) * X2+ D(X) * (X2 + X + 1) + & * (X+1)] mod C(X).

Therefore, we can obtain a general expression f@gKMof an internal type
MFSR:



Mi(X) = [To(X)* X'+ DOO* X' + X+ .+ X +1)+
do*(X Fly X2y e X+ 1)] mod C(X)

= [To(X) * X'+ DOX(X"™

+ 1)/(X+1) +
dg*(X' + 1)/(X+1)] mod C(X). )
Substituting this equation into Eq. (4), we obtain
Ti(X) = {To(X) * X" + [D(X) * X + do]*(X ' + 1)/(X+1)} mod C(X).
i=0,1,2, .. 8)

Fig. 1 shows an example of an MFSR with C(X) £4#XX + 1 and an initial seed
(0000). Here, the inversion vectop,(di, d, s, ds) is (1, 1, 1, 0, 1). Note that the
initial seed can be obtained by simply setting Ato

4. MFSR BASED PSEUDORANDOM PATTERN GENERATORS

In this section, we will discuss an MFSR based PRIP@ its relation to an
LFSR based PRPG. Let {p={Og, O1, Oy, ...} and {Ony} = {O'g, O, O, ...}
represent the output sequence generated by an IdaSe&d PRPG and an MFSR
based PRPG, respectively, wherg @) is the first bit appearing at the output, O1

(O'p) is the second, and so on.

Fig. 2 shows the configuration of an internal tyf¢SR based PRPG. Each bit
of the output sequence from this PRPG can be esguless:

Oo = ak
O1=C1*Op + ak+1

Ok1=C1*Ok2+ CG2*Ok3+..+G*Op+ay

Ok =C1* Ok1+ G2*Ok2+ ... + G* 02+ C1*O1 + O
Ok+1=C1* Ok + G2* Ok-1+ ... + G* 03+ C1* 02+ O

The above equations can be generalized as:

Op — Zp:l(Q(-i *Op-i) + ak+p for p= O, 1, 2, ey (k'l) (ga)
1=

or



k-1
op = gl(q_i*op_i) + Opsp  forp=k, (k+l), .. (9b)

Refer to Fig. 4. Assume that the MFSR under camaitbn has the same
characteristic polynomial C(X); then, each bit loé¢ butput sequence from the k-stage
MFSR is represented as:

Op =sk+d
071 =G1*0'0+Sk+1+ k1 +

Ok1 =G1"Ok2+ C2*O'k3+..+G*Op+sy+h+h+ ... + a1+ 0k
Ok =G1"0'%k1+ G 2*O'k2+ ... + G022+ C1*O"1 + Opg+ dp+ dh +

+ ..+ 0eq + Ok
Ok+1 = GOk + Gk 2*O'k-1 + ... + G*O'3 + CG*O'2 + O1 + dp + dy + b
+ ..+ 0eq + Ok

The general form of the above equations is expdease

. P . P
Op = X (Cki*Op.i) + Skap + ki forp=0,1,2, .., (k1) (10a)
i=1 i=0
or
.k . , k
Op = i_Zl(ck-i*op-i) + Oy4p + i%di for p =k, (k+1), ... (10b)

In the following, Lemmas 1 and 2 show the requiretmtdat both LFSR and
MFSR based PRPG's can generate the same outpensegu

Lemmal: For internal type LFSR and MFSR based PRPG's with same

characteristic polynomial of degree k, if they gae the same output sequence with
initial seeds of (a, ap, ..., a,) and (s1, S2, ..., Sk), respectively, then the

relationship between these initial seeds can beeggpd as

k
a; +sj= Zdj fori=1, 2, ..., k. (11)
j=i
Proof:  Since the two output sequences of LFSR and MFSRMBRRPG's are the
same, from Egs. (9a) and (10a), we have:
G =00, i.e., & =Sk + ok

O =04, i.e.,, G-1*Og + ak+1 = Ck1*O'p + Sk+1 + k1 +



which implies a1 = Sk+1 + k-1 + Gk

Ok1 =0k1, i€, G1*Ok2 + G2*Ok3 + .. + G*Op + a1 =
Ck-1"O'k-2 + C.2*O'k-3 + .. + G*O'p + 51 + ch +
do + ... + ¢-1 + Gk, which impliesa =s1+d; + do
+ ...+ -1+ Gk

These can be generalized as follows:

p
A k+p + Sk+p = de-i forp=0,1,2, .., (k-1).
i=0
k
Or equivalently, we have; + s; = > dj,fori=1,2,.., k. Q.E.D.

j=i

Lemma2: For internal type LFSR and MFSR based PRPG's with same
characteristic polynomial of degree k, if they gewe the same output sequence, then
the weight of the inversion vector in an interngdd MFSR based PRPG must be
even, where the weight of the inversion vectoregnd as the summation of all the
inversion variables.

Proof: Since internal type LFSR and MFSR based PRPG'H wie same
characteristic polynomial generate the same owgpguience, by Eqgs. (9b) and (10b),
the k-th bit output sequence is

Ok =0k, i.e., G-1"0Ok-1 + G2*Ok2 + ... + G*O2 + C1*O1 + Op =
Ck-1"O'k-1 + Cy2*O'k2 + ... + G*O'2 + C1*O'1 + Op + do
+dp+dp+ ..+ a1t

and the (k+1)-th bit output sequence is

Ok+1 =Ok+1, i€, G1*Ok + G-2*Ok-1 + ... + G*O3 + C*O2 + O =
Ck-1*O'k + Cx2"O'k1 + ... + G*O'3+ C1*0O'2 + O1 +
+dp+dp+ .+ gtk

All these equations result ipet dy +do + ... +d-1 + K =0, i.e.,

>d; = 0. (12)

Q.E.D.



Lemma 3: For two internal type LFSR and MFSR based PRP@ls the same
characteristic polynomial of degree k, if Egs. (Abd (12) hold, then the sequences
generated by the two PRPG's are the same.

k
Proof: By Eq. (11), we havea; + sj = 2, dj, and this can becomes
j=i

ak+sk=0d

ak+1+ Sk+1 = Gk + k-1

ar+si=c+d1t..+d+d

By Eq. (12) we obtain
O=ditde1t...+d+do

Substituting these equations into Eq. (10a), we get
Op =sk+dk=ak=0p

O1 =G1*O'g+Sk+1+ k-1 + & =Cy1*Op+ak+1=O0r

Ok1 = G1*O'k2+ G2*O'k-3+ ..+ G*O'p+s1+dp+ b+ ... + k1
+ 0k = Cy.1*Ok2 + G2*Ok3+ .. + G*Op + a1 = Ok1

Ok =G1"0'%1+ G202+ ..+ G*0'1+ Op+ o+ dp+cp + ... +
dk-1 + k = C-1*Ok-1 + G-2*Ok-2 + .. + G*O1 + Op = O

Ok+1 = G1*O'k + G2 O'k1+ .. + G*O2+ O+ dh+ i + o + ... +
dk-1 + k = C-1*Ok + G-2*Ok-1 + .. + G*O2 + O = Ok

By induction the lemma holds. Q.E.D.

Theorem 1: If an internal type LFSR and MFSR have the samaratteristic
polynomial, then their output sequences are theeshand only if Egs. (11) and (12)
hold.

Proof: Lemma 1 and 2 give the necessary condition whienia 3 gives the
sufficient condition. Q.E.D.



Given the initial seeds of an LFSR and an MFSR fellewing example can be
used to show how the inversion vectag, (@, db, ..., &) can be found.

Example 1. If the LFSR shown in Fig. 3, which has the iniséhte (a, ap, a3, a4)
=(1, 0, 1, 1), and the MFSR shown in Fig. 1, whiels the initial state {5 s, S3,
s4) = (0, 0, 0, 0), generate the same output sequémee by Eqgs. (11) and (12), we
can obtain five equations as follows:

obtain five equations as follows:

ag+sg=dg=1 (13a)
ag+sz=m@+dg=1 (13b)
as+sy=th+dgg+dh=0 (13c)
ar1+si=th+h+d+d=1 (13d)
do+ch+h+g+d=0 (13e)

To solve these equations, firstly, d4 can be founBq. (13a); then, substituting
d4 into Eq. (13b), d3 can be found and so on. Ikind0 can be found in Eqg. (13e).
Thus, the value of the inversion vectog,(dy, do, ..., &) in the MFSR is (1, 1, 1, O, 1).
In general, since a new inversion variable canliiained in each equation by means
of the above procedure, and there are totally (legflations for the (k+1) unknowns,
the solution is unique and is quite easy to obtain.

Based on Theorem 1, we can make two observatidpdf {he initial seed of an
LFSR is given, then for any given initial seed, @am find an MFSR that can generate
the same output sequence as can the LFSR. (2¢ ihversion vector of an MFSR
and the initial seed of an LFSR are given, thencese find an initial seed for this
MFSR to generate the same output sequence. An dmtee application of
observation 1 is that the nonzero initial seed ireguent for an LFSR based PRPG is
no longer needed when an MFSR based PRPG is usedact, not only the all-zero
initial seed, but als@ny initial seed can be used. This property gives somehow
surprising results when compared with the IFSR dd&¥@PG proposed in [17]. As
mentioned before, an IFSR is a special case of BBRMwith all connections between
two stages being throug@. Our results here apparently state that givenL&8R
with any initial seed, we can always find an IF3Rttcan generate an m-sequence
that the LFSR can generate. However, in [17] is wtated that there exist some
LFSR's that do not have corresponding IFSR's. Tdiratareful examination, we can
find that the inverter before the first F/F plakg tmajor role in this difference. Due
to this inverter, the weight of the inversion vateacan be kept even; hence, we can



always find an initial seed for any MFSR to generidte required m-sequence while
in the IFSR design, freedom in selecting dO is alkdwed, which results in the
inability to generate the output sequence of soffeR's using IFSR.

So far, we have discussed the properties of thpubigequences generated by
MFSR and LFSR based PRPG's. Now, we will condiaeinternal states of MFSR
based PRPG's and then discuss parallel pattermajerse

The following lemma shows the initial seed relasioip between an LFSR and
an MFSR from the point of view of polynomials.

Lemma4: For internal type LFSR and MFSR based PRPG's with same
characteristic polynomial, if the relationship beem their initial seeds can be
expressed by EqQ. (11), then the relationship betwleeir initial state polynomials can
be represented by

Lo(X) + To(X) = [X*D(X) + dg] / (1 +X). (14)

Proof: The initial state polynomial 4(X) of a k-stage internal type LFSR ang(X)

k .
of an internal type MFSR are expressed &ag(X) = Zai*x"l and
i=1

K i-1
To0) = XX,
i=

By Eg. (11) the relationship between these inisiaéds of the LFSR and the
k
MFSRis expressed aa; + s; = 2. dj fori=1,2,..k
i

Then,

k k .
Lo(X) = X(si + 2dj)*x'™

i=1 =i
k . k k .
:Zs*xl—l_l_zzdj*xl—l
i=1 i=1j=i
k i-1 ) k
= To(X) + Y. > dj*x'™t (since > d =0
i=1j=0 =0

= To(X) + do + X*(do + d) + XZ*(do + dp + dp) + ... + Xx(dg + oy
£+ o)

= To(X) + dg*(L + XK)(L+X) + d*X*(L + X HIL+X) + dp*X (L +
XK2) 114X) + ...+ X KL + X)L +X)



= To(X) + [X*D(X) + do]/(1 + X).
Thus, the lemma. Q.E.D.

Theorem 2: For internal type LFSR and MFSR based PRPG's with same
characteristic polynomial C(X), their i-th interrgtate polynomials,[X) and T (X),
can be expressed as

Li(X) + Ti(X) = [X*D(X) + do] / (1 + X) (15)

if and only if they generate the same output secglen

Proof: By Theorem 1 and Eq. (8), the i-th internal sqabdynomilal Ti(X) of an
internal type MFSR based PRPG is expressed;&X) E {To(X)*X' + [D(X)*X +
dol*(X ' + 1)/(X+1)]} mod C(X).

By Eq. (14), T(X) can be rewritten as

Ti(X) = {Lo(X)*X ' + X*(X*D(X) + d 0)/(X + 1) + (X*D(X) + do)*(X" + 1)/(X +
1)} mod C(X)

= {Lo(X)*X L (X*D(X) + dg)/(X + 1)} mod C(X).
= Li(X) + (X*D(X) + do)/(X + 1).
Thus, the theorem. Q.E.D.

Lemma 4 and Theorem 2 show that the relationshipd®n the internal states of
LFSR and MFSR based PRPG's is invariant. This et (1) the sequence from
any F/F output of an LFSR is the same as the sequieam the corresponding F/F
output of the corresponding MFSR, and (2) eacle gtansition of an LFSR from one
state L(X) to another state;(X) of the LFSR has a corresponding state tramsitio
from one state {[X) to another state{X) in an MFSR. Thus, the behavior of an
LFSR can be completely mapped onto an MFSR. 1§ itequired that the*2L
parallel patterns generated by k-stage LFSR andRVB&ed PRPG's be the same,
then Theorem 2 can be used to determine how theubof an MFSR to a circuit
under test can be tapped, as described next.

Let the i-th true outputs of LFSR and MFSR base®BR be (Q); and (Qu)i,
respectively. Then, Eq. (15) becomes



_2[<QL). +(QulrXx' = X*(Zd XY+ 3417 @+ X)

i=1
2( Je X(3d) + XS + .+ X3 )
i=2 i=3 i=k (16)

By equating both sides of Eq. (16), we can obtain

Kk
QL) + (Qu)i = 2d;. (17)
Fi

Eq. (17) indicates that to obtain the same parpb¢derns as obtained in LFSR
based PRPG s, the i-th true (complement) outpu¥BER based PRPG's must be
k
used if Zd =0 (Zdj = 1). For example, to generate the same paraditerns
j=i =i
in Fig. 3, the parallel pattern generator outpot&ig.1 must be(@, Qo, Q_3 E))

with the inversion vector (gdd;, b, ds, ds) = (1, 1, 1, 0, 1).

The following theorem shows how many different insrtype MFSR based
PRPG's can generate the same output sequencetas ¢ha be generated by an
internal type LFSR based PRPG.

Theorem 3: For a given characteristic polynomial of degred #e initial seed can

be arbitrarily selected, then there afeVBFSR based PRPG's which can generate the
same output sequence as that generated by an L&& PRPG with a given initial
seed.

Proof: To meet the condition that any MFSR based PRPCGgearrate the same
output sequence as that for an LFSR based PRPG(EQsand (12) for any MFSR

based PRPG must hold, nameby,; + s; = Z d;, and Zd
=i i=0

There are (k+1) coefficients in the inversion veci@r.,

k
(do, ch, dp, .y kg, i) = (_gldi, dy, da, ..y G, i)

Therefore, there ard @lifferent combinations in the inversion vectosifi =
2,......, k can be arbitrarily selected. Thus,ttlteorem holds. Q.E.D.

5. MULTIPLE INPUT SIGNATURE ANALYZERS (MISA's)

In this section, we will discuss the behavior otth&FSR based and MFSR



based MISA's. We assume that the length of the ree=gponse sequence to be
compressed is L. For a k-stage MISA, let its prthut be ). We can use the
following L*k array to represent the test respossgquence:

RoL-1  RyrLa Roi-1 - Rk-1,L-1
RoL-2 RyL-2 Rop-2 - Re-1L-2
Ro.1 Ri1 R21 Re-11
Ro,0 Ri0 R2o R¢-1.0

where R o means the bit of the g-th test response appli¢gdbthe MISA.
5.1 LFSR Based MISA's

Consider the LFSR based MISA shown in Fig. 5 thas la characteristic
polynomial C(X) and an initial seed_{aay,......, &). The initial seed can also be
expressed in terms of the polynomia(X) as stated in Eq. (1). If we put the L*k
test response array into this LFSR based MISAi-tiiscontent after i shifts, I(X),
can be expressed as:

Li(X) =[X*Lo(X) + Ro,L.-1+ Ry, L-1*X + ... + Rcq,1-1*X I('1] mod C(X)
k-1 .
= [X*Lo(X) + TRjL4*XImod C(X)
j=0

La(X) = [X*L1(X) + Ro L2+ Ry L-2"X + ... + Re1.1-2*X K mod C(X)

) k1 L Kkl .
= [X"*Lo(X) + Z%)Rj,L-l*XJ + _ZORj,L-z*XJ] mod C(X)
F F

L k-1 . .
LX) = X" *Lo(X) + X (XR; i *X ) mod c(x) (18)
i=1 j=0
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Figure 5 Architecture of internal type LFSR base&Mwith characteristic
k
polynomialC(X)= D.C *X' and initial seeda_*a,*...+a,)
i=0
LL(X) in Eq. (18) is the final signature of an imt@l type LFSR based MISA for
an L*k test response array. Once the initial ssed characteristic polynomial have
been specified, the final signature is determingthlke given test response array.

5.2 MFSR Based MISA's

Fig. 6 shows a configuration of the MFSR based MISBy means of the shift
operation of an MFSR based MISA and an L*k tespoase array, we have

k- .
M1(X) =[X*M o(X) + D(X) + dg + Zle,L—l*X 11 mod C(X)
j=0
k-1 .
= [X*To(X) + D(X)*(X+1) + do+ X Rjj —1*X '] mod C(X)
j=0
k-1 .
M2(X) =[X*M1(X) +D(X) +do+ Y Rj; —»*X']mod C(X)
j=0

= [X2*T o(X) + D(X)*(X 2+X+1) + cby*(X+1) +

k-1 v kA .
. ORJ',L—l*XJ + Z%)Rj,l_—z*xj] mod C(X)
1= i=

ML(X) = [XE*To(X) + DOX)*(X HH1+1)/(X+1) + (X L+1)/(X+1) +

L k-1 Ltici
> YR i *X ' mod C(X). (19)
i=1j=0
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Figure 6 Architecture of internal type MFSR ba8t&A with characteristic
k

polynomialC(X) = Zci *)(il initial seed (.1, S, -, S), and
i=0

inversion vector (d,, d,, ..., d.)

ML(X) in Eq. (19) is the final signature of an imal type MFSR based MISA
for an L*k test response array. Compared to E§), (Eq. (19) indicates that even if
the initial seed polynomial o{X) and characteristic polynomial C(X) of an MFSR
based MISA have been specified, it may still bespie that the final state
polynomial M (X) can be set to any desired value by adjustiegcthefficients of the
inversion vector (g d,......, d). Therefore, MFSR based MISA's are also called
seed-and-signature on demand (SASOD) MISA's. Nex, shall analyze this
problem.

Let three polynomials, A(X), B(X), and F(X), be erpsed as:

L k-1

AX) = MLX) + [XEToX) + 3 Y Rj i *X "1 mod c(X) (20)
i=1j=0
B(X) = (XL+1+1)/(X+1) (21)
and
F(X) = (XL+1)/(X+1). (22)

Substituting Egs. (20), (21) and (22) into Eq. (18)vave
A(X) = [D(X)*B(X) + d o*F(X)] mod C(X). (23)

The original meaning of Eq. (23) is that, given D(EB}X), do*F(X), and C(X), it
follows that A(X), which contains the final signatuM,_(X), is fixed. However, our
objective here is to control the final signaturetty required value by adjusting D(X)
and dO0. Therefore, our question becomes: GivenAgKy, B(X), C(X), and F(X),
can we find a D(X) and a&uch that Eq. (23) holds?

Since the behavior of feedback shift registers loardescribed by polynomial
operations, we shall next solve this problem basegolynomial analysis. Let the
greatest common divisor polynomial of B(X) and C®8 G(X), i.e., GCD[B(X),



C(X)] = G(X). We will first consider the case wleeth= 0. In this case, we have

A(X) = [DX)*B(X)] mod C(X). (24)

The following theorem gives the necessary and @afit conditions for D(X) to
exist.

Theorem 4: For any given three polynomials, A(X), B(X), andX}, where deg
A(X) < deg C(X). Eg. (24) has a solution on D(X)and only if A(X) mod
[GCD(B(X), C(X)] = 0.

Proof: It is well known that (see, e.g., [18]) G(X) = G{EB(X), C(X)] if and only
if we can find two nonzero polynomials, u(X) andy,(such that

G(X) = u(X)*B(X) + v(X)*C(X), (25)
and
GCDJ[u(X), v(X)] = 1. (26)

By means of the polynomial division algorithm, wancfind a unique nonzero
polynomial Q(X) such that Eq. (24) becomes

A(X) = D(X)*B(X) + Q(X)*C(X). (27)
(a) Sufficiency: Since A(X) mod G(X) = 0, we maysame that
A(X) = a(X)*G(X). (28)

By Eg. (24), we know that deg A(X) < deg C(X); henby Egs. (28) and (25),
we get

A(X) = A(X) mod C(X)
= [a(X)*G(X)] mod C(X)
= [a(X)*u(X)*B(X) + a(X)*v(X)*C(X)] mod C(X)
= [a(X)*u(X)*B(X)] mod C(X).

By Eq. (5), if D(X) exists, then we know that de@® < deg C(X). Compared
to Eq. (27), we know that if we set



D(X) = [a(X)*u(X)] mod C(X), (29)

then D(X) is a polynomial with degree less than G€J), and that D(X) satisfies Eq.
(25). Therefore, a solution can be found.

(b) Necessity: Since G(X) = GCD[B(X), C(X)],we cassume B(X) = y(X)*G(X)
and C(X) = z(X)*G(X), where y(X) and z(X) are twomnzero polynomials.

Substituting them into Eq. (27), we get
A(X) = DX)*y(X)*G(X) + Q(X)*z(X)*G(X)

= [DX)*y(X) + Q(X)*z(X)]*G(X).
Thus, A(X) mod G(X) = 0. Q.E.D.
Now, we will consider the case where d0 = 1. s tase, we have
A(X) = [D(X)*B(X) + F(X)] mod C(X). (30)
We modify the above equation and assume a polyriakigi) such that
A'(X) = A(X) + [F(X) mod C(X)].
Then, we have A'(X) = [D(X)*B(X)] mod C(X). (31)

Since Eqgs. (31) and (24) have the same form, we travfollowing theorem that
gives the necessary and sufficient condition fox)i6 exist for ¢ = 1.

Theorem 5: For any given four polynomials, A(X), B(X), C(Xand F(X), where
deg A(X) < deg C(X), Eq. (29) has a solution on Di{Kand only if A'(X) mod
[GCD(B(X), C(X)] = 0, where A'(X) = A(X) + [F(X) md C(X)].

Proof:  Similar to Theorem 4. Q.E.D.

So far, we have proved the necessary and sufficemdition for D(X) to exist.
Next, we will consider the case where dO = 0 and)Afod [GCD(B(X), C(X))] * O.
The case where dO = 1 can be similarly discuss¥de have GCD[(XL+1+1)/(X+1),
C(X)] * 1. Since, in general, C(X) is a primitiveolynomial, in the following
discussion, we shall make such an assumption. CDIGXL+1+1)/(X+1), C(X)] * 1,
then GCD[(XL+1+1)/(X+1), C(X)] = C(X). The follomg theorem provides an
approach to solve D(X) under this condition.

Theorem 6: If GCD[(XL*1+1)/(X+1), C(X)] # 1 and C(X) is a primitive
polynomial, then GCD[(X*2+1)/(X+1), C(X)] = 1.



Proof: Since (XL+2+1)/(X+1) + (XL+1+1)/(X+1) = XL+1, whit cannot be a
multiplication of C(X), the theorem is proved. Q.E.D.

Now, suppose we add one arbitrary dummy pattethedest response such that
M +1(X) is the final signature of the MFSR based MISK & (L+1)*k test response
array, where

MLs1(X) = [XEFBTo(X) + DOO)*(X H2+1)/(X+1) + dp* (X LHL+1)/(X+1) +
L+1k-1

_21 _ZORJ-,Lﬂ_i *X 27 mod c(x).
i=1lj=

Then Egs. (20) and (21) become
L+1k-1 L1+
A1(X) = MLsa(X) + [XEF T o(X) + 3 YR 41 *X 1 mod C(X)
i=1j=0
and

B1(X) = (XL*2+1)/(X+1).

Since GCD[B(X), C(X)] = 1 if GCD[B(X), C(X)] # 1, no matter what the
value A¢(X) is, D(X) must always have a solution.

Now, we will describe a procedure to find D(X) e exists. From Eq. (29),
we know that if we can find u(X) and v(X) that s&i Eqs. (25) and (26), then D(X)
can be easily found. Next, we shall analyze thecqulure for finding G(X) =
GCDI[B(X), C(X)]. From this procedure, we can deria method to find u(X) and
v(X). A standard method for finding the greatesimenon divisor of two
polynomials B(X) and C(X) is to apply the Euclidealigorithm [21] successively as
follows:

Euclidean algorithm [21] successively as follows:
B(X) = Q1(X) * C(X) + R1(X)
C(X) = Q(X) * R1(X) + R2(X)

R1(X) = Q3(X) * R2(X) + R3(X)

Rk-3(X) = Qk(X) * Rk-2(X) + Rk-1(X)

Rk-2(X) = Qk+1(X) * Rk-1(X) + Rk(X)



Rk-1(X) = Qk+2(X) * Rk(X) + Rk+1(X)
until Rk+1(X) = 0. Then GCD[B(X), C(X)] = R(X).

By reversing the above procedure, we can repreBrntX) as a function of
Rk-1(X) and R¢-2(X), then represent |R1(X) as a function of R-2(X) and Rk-3(X),
and so on. Finally, we can represe{’R) as a function of B(X) and C(X) in the
form  Rk(X) = u(X)*B(X) + v(X)*C(X). u(X) in this equationcan then be used to
determine D(X). We will use an example to illugtréhe above process: let A(X) =
X3+ X2+ 1, B(X) = 0 + 1)/(X + 1), and C(X) = X+ X*+ 1. We have

B(X) = (X®+ X*+ X + 1) * C(X) + X
CX)= (X*+X)* (X)) +1
X2=(X®)*1+0
Therefore,
GCDI[B(X), C(X)] = 1
= C(X) + (X + X) * (X3
= C(X) + (¢ +X) * [B(X) + (X°+ X" + X + 1) * C(X)]

=X+ X)*BX)+ (XE+ X+ X+ X+ X3+ X +1)*
C(X).

Thus u(X) = (X + X). Since GCD[B(X), C(X)] = 1, a(X) = A(X). Fror&gs. (28) and
(29), we have

D(X)=[a(X) * u(X)] mod C(X)
= [(X3+ X2+ 1) * (X2 + X)] mod (X* + X3 + 1)
= X2+ 1.
5.3 Consideration of the Dummy Pattern

We have shown that if D(X) does not exist for saspecified initial seed and
test response, then by simply adding one dummyegmatone can always find the
required D(X). In general, adding one dummy pattshould not be a problem
because this only requires one more clock cyclendutesting if a pseudorandom
number generator is used for the pattern generatat, requires that one more test
pattern be scanned into the circuit under teststan system is used. In the case



where such augmentation is absolutely not allowvtlee,following discussion shows
that the problem may still be easy to solve.

From Theorem 5, we know that if {GCDI[B(X), C(X)] &, then a solution for
D(X) always exists. Therefore, if we can use ddfe C(X)'s, then the probability
for {GCD[B(X), C(X)] # 1} will be smaller. According to [15], the numbef
primitive polynomials with degree k isqo(2k -1))/ k, where theg (X)-function is
the Euler's function and is defined as the numligpasitive integers less than or
equal to X that are relatively prime to X. If k16, then (0(2k-1))/ k = 2048.
Now, if none of these primitive polynomials is pano B(X), then the multiplication
of these polynomials, denoted as MC(X), must alstdd B(X). If the degree of
MC(X) is N, then

N =k*(p25-1)/k = g25-1). (32)
The probability that MC(X) divides B(X) will be
p = Adeg BOO}N / p{deg B(X)} = 2N (33)

If k = 16, then N = 16*2048 = 32768, and we have P = 2°?’®®  Therefore,
it is almost guaranteed that a feasible D(X) carfdomd if we have the freedom to
choose C(X).

6. SUMMARY AND FUTURE WORK

In this paper, we have presented a generalized dfgeedback shift register,
called the mixed-type feedback shift register (MI;&Rd shown that the conventional
LFSR and the IFSR proposed in [17] are two spec@édes of MFSR's. Some
properties that MFSR's possess while conventiof@R's or IFSR's do not have
been described. These properties are quite usefulilt-in self-test. Compared to
LFSR's, MFSR's do not require any extra hardwaszlmad except for the inverter at
the input of the first stage whep € 1.

Our analysis shows that by using MFSR based PRPB&,can generate the
same serial output sequence and parallel pattexribose generated by any LFSR
based PRPG, with the extra advantage that thalisgied can be any value. On the
other hand, the seed and signature of an MISAh@ffihal state at the true outputs of
an MFSR) can be set to any value if an MFSR is .usédne of the typical
applications of this type of MISA is in mass protoe, where the same kind of
CUT's are tested using BIST. In such a case,rniti@liseed and the final state can
be set to the same value. If the final signatuwwenfa CUT is correct, then the seed
need not be reloaded; thus, testing time can hecest



The analysis provided in this paper has been basgublynomial representation

of feedback shift registers. It would be intem@gtto use matrix representa-tion to
analyze MFSR's because the behaviors of exterpastygf feedback shift registers are
difficult to analyze using polynomial representatio With the introduction of
MFSR's, we expect that many test schemes thatgraveously been developed using
LFSR's can be reexamined to see whether betteegiep or architectures exist when
MFSR's are used.
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