
410 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1998

V. CONCLUSIONS

We have demonstrated in this paper that for deriving an activegm-
C filter from anLC ladder, both the element replacement method
and operational simulation result in identical circuits. Thus, regardless
of an application’s requirements, either method may be employed in
the design. Any discussion on the relative practical merits of the
procedures is, therefore, moot and the designer can use the method
which appears more convenient for the initial filter descriptions (only
equations, or ladder topology with element values), irrespective of
any concerns with practical performance issues. Note that throughout
the development of an activegm-C ladder, all transconductors can
be assumed to be identical—a constraint that must be relaxed only
if gain scaling is used.

REFERENCES

[1] Y. Tsividis and J. O. Voorman, Eds.,Integrated Continuous-Time Filters:
Principles, Design and Implementations. New York: IEEE Press, 1993.

[2] A. I. Zverev, Handbook of Filter Synthesis. New York: Wiley, 1967.
[3] R. Schaumann, M. S. Ghausi, and K. R. Laker,Design of Analog Filters:

Passive, Active RC and Switched Capacitor. Englewood Cliffs, NJ:
Prentice-Hall, 1990.

[4] K. Martin and A. S. Sedra, “Design of signal-flow-graph (SFG) active
filters,” IEEE Trans. Circuits Syst., vol. CAS-25, pp. 185–195, 1978.

[5] M. A. Tan and R. Schaumann, “Simulating general-parameterLC-
ladder filters for monolithic realizations with only transconductance
elements and grounded capacitors,”IEEE Trans. Circuits Syst., vol. 36,
pp. 299–307, Feb. 1989.

[6] A. S. Sedra and P. O. Brackett,Filter Theory and Design: Active and
Passive. Portland, OR: Matrix, 1978.

Test Pattern Generation and
Signature Analysis for Burst Errors

Rajendra S. Katti

Abstract—In testing certain systems, checking for burst errors is
important. This is due to the fact that errors are confined to a certain
number of bits. If signature analysis is used to test a circuit then the testing
capabilities depend on the polynomial that defines the linear feedback
shift register (LFSR) used in the test. In this paper we show that the
LFSR that is suitable for checking for burst errors is not suitable for
test pattern generation. We propose a method to modify the LFSR that
performs signature analysis efficiently into a nonlinear feedback shift
register (NLFSR) that is suitable for test pattern generation.

Index Terms—Burst errors, error detection, shift registers, signature
analysis, test pattern generation.

I. INTRODUCTION

Linear feedback shift registers can be used to compress a stream
of test result data [1]. Signatures can be created from test result data
streams by feeding the data into an LFSR. After the data have been
clocked through the LFSR, a residue of the data is left in the shift
register. This residue is unique to the input data stream and represents

Manuscript received January 5, 1996; revised July 31, 1996. This paper
was recommended by Associate Editor B. W. Lee.

The author is with the Department of Electrical Engineering, North Dakota
State University, Fargo, ND 58105 USA (e-mail: katti@plains.nodak.edu).

Publisher Item Identifier S 1057-7130(98)00779-4.

Fig. 1. A signature analyzer circuit.

its “signature.” Another data stream that differs by only one bit from
a previous data stream may have a signature that is different from
the previous one. Fig. 1 shows an example of a signature analyzer
circuit. This circuit consists of ann-bit shift register. Feedback from
certain points in this shift register are XORed with the test data
stream at each clock cycle and fed back into the shift register. Two
signals—START and STOP—mark the start and end of the test data
stream. The signature is then used to differentiate a faulty data stream
from a fault-free one.

Other techniques have also been used to compress a stream of
test result data [2]. One such technique involves the counting of 0-
to-1 and 1-to-0 transitions in the data stream. In this paper we are
concerned only with the use of LFSR’s for compression of a stream
of test result data.

In built-in testing, a set of pseudorandom test patterns are input to
the circuit under test and signature analysis is used on the output data
stream for detecting errors in the circuit. The test hardware consists of
built-in logic-block observers (BILBO). A BILBO is a multipurpose
test module which can be reconfigured to function as an input test
pattern generator or an output signature analyzer. In this paper, we
design a BILBO that can efficiently detect burst errors in the output
data stream of the circuit under test.

LFSR’s can function as test pattern generators and signature
analyzers and hence form a major part of a BILBO. LFSR’s are
specified by polynomials. Such a description of LFSR’s is further
explained in the next section. LFSR’s used as signature analyzers for
the detection of burst errors can be specified by polynomials with
certain properties. Such polynomials however result in LFSR’s that
are not suitable for test pattern generation. In this paper we propose
the use of a nonlinear feedback shift register (NLFSR) for test pattern
generation. This NLFSR can be easily modified for use as a signature
analyzer for the detection of burst errors. This property of the NLFSR
is used to design a BILBO for burst error detection. The importance
of burst error detection in microprocessor testing has been described
in [1].

In Section II we describe LFSR’s for the detection of burst errors.
In Section III we describe the proposed NLFSR’s for test pattern
generation. Section IV describes a BILBO for burst error detection,
and Section V gives some examples. Section VI describes a technique
to modify the NLFSR’s for use in exhaustive testing.

II. LFSR’S FOR BURST ERRORS

LFSR’s are attractive for generating a sequence of binary words.
Applications of LFSR’s include error-correcting codes [3], pseu-
dorandom sequence generation [4], test-pattern generation in VLSI
circuits [5], [8], and program counters [6]. The characteristic poly-

1057–7130/98$10.00 1998 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1998 411

nomial of ann-bit LFSR has the formp(x) = xn + cn�1x
n�1

+

� � � + c1x
1
+ 1: The ci are either 1 or 0. The period of an LFSR is

the smallestm such that

x
m
� 1[mod p(x)]:

The maximum period of ann-bit LFSR is2n � 1: A characteristic
polynomial that results in the maximum period is called a primitive
polynomial. All primitive polynomials are irreducible. The converse
of the above statement, however, is not always true.

Cyclic codes are derived from generator polynomials. Encoding is
performed by multiplying the message polynomial by the generator
polynomial. Decoding is performed by dividing the received polyno-
mial by the generator polynomial. Both encoding and decoding can be
performed by LFSR’s that are specified by the generator polynomial
of the code. We state the following theorems from [7] about generator
polynomials. Note that the theorems are true ifp1(x) is primitive
(defined in [3]).

Theorem 1: A cyclic code generated byp(x) = (x + 1)p1(x)

detects all single, double, and triple errors if the length of the code
is no greater than the period ofp1(x):

A cyclic code generated by a polynomial that has(x+ 1) as one
of its factors can also detect all odd number of errors.

Theorem 2: A cyclic code generated byp(x) = (xn + 1)p1(x)

detects any combination of two bursts, provided(n+1) is equal to or
greater than the sum of the lengths of the bursts,p1(x) is irreducible
and of degree at least as great as the length of the shorter burst, and
provided the length of the code is no greater than the least common
multiple of n and the period ofp1(x):

Theorem 3: Any cyclic code generated by a polynomial of degree
(n�k) detects any burst error of length(n�k) or less. The fraction
of bursts of lengthb> (n � k) that are undetected is2�(n�k) if
b> (n � k + 1); 2�(n�k�1) if b = (n � k + 1):

We know that a signature analyzer based on a polynomial that
generates a cyclic code with certain error detection capabilities
also has the same error detection capabilities [1]. We can therefore
conclude from the above theorems that a signature analyzer based on
a polynomial with(x+1) as one of its factors has good error detection
capabilities. This is especially true for burst errors. For example,
a signature analyzer that is an LFSR based on the polynomial
p(x) = (x+1)(x4+x+1) can detect two bursts of length 2 or less,
any odd number of errors, a burst of 5 or less, 93.8% of the bursts
of length 6, 96.9% of longer bursts [7]. However, if this same LFSR
were used as a test pattern generator, then it would generate only 15
test patterns asp(x) = (x+ 1)(x4 + x + 1) has a period of 15. We
will show next that an NLFSR based on the same polynomial will
result in a period of 30. Therefore, the NLFSR can generate more
test vectors than the LFSR.

Examples of any kind can be constructed by using Theorem 3
above. Let us consider a generator polynomial of degree1000 =

n � k: Then any burst of length 1000 or less can be detected. The
fraction of bursts of length 1001 that cannot be detected is2

�999

and the fraction of bursts of length greater than 1001 that cannot be
detected is2�1000:

We will show that the period of the proposed NLFSR based on the
polynomial(x+1)p(x) is twice that of the period of the LFSR with
characteristic polynomialp(x): This will result in a BILBO that uses
the NLFSR for test pattern generation and the LFSR for signature
analysis.

III. NLFSR’S BASED ON POLYNOMIALS WITH (x+1) AS ONE FACTOR

Let us assume that the characteristic polynomial of an LFSR has
one factor equal to(x + 1) and all other factors of higher degree.

Fig. 2. An LFSR with characteristic polynomial(x + 1)(x3 + x + 1):

Fig. 3. The LFSR of Fig. 2 with an inverter in its feedback path.

The characteristic polynomialp(x) of such an LFSR is given by the
following equation:

p(x) = (x+ 1)p1(x)p2(x) � � � pn(x): (1)

In the above equationp(x) has(n + 1) distinct factors and all the
pi(x) have degree greater than 1. The period of the above polynomial
can be calculated as follows:

Period[p(x)] =LCM(Period[(x+ 1)];Period[p1(x)];

� � � ;Period[pn(x)]): (2)

SincePeriod[(x+ 1)] = 1; the above equation can be rewritten as,

Period[p(x)] =LCM(Period[p1(x)]; � � � ;Period[pn(x)]): (3)

We will show next that by adding an inverter in the feedback path of
the LFSR, the period of the LFSR can be doubled. Let us demonstrate
this first with an example. Consider the LFSR shown in Fig. 2 that
has a characteristic polynomial given byp(x) = (x+1)(x3+x+1):

Therefore,Period[p(x)] = LCM(1;7) = 7: Fig. 3 shows the same
LFSR with an inverter in the feedback path. Notice the inverter
changes the input to the right most flip-flop of the LFSR. Unless
otherwise stated, we assume that this is the position of the inverter
in the feedback path for the rest of the paper. The period of this FSR
(feedback shift register) is 14. The new FSR of Fig. 3 is nonlinear.
We will refer to the polynomialp(x) on which this nonlinear FSR
is based as the constructor polynomial (for a polynomial used to
construct a nonlinear FSR). Note that LFSR’s are of two types: those
that use external XOR’s in the feedback path (Fig. 5) and those that
use internal XOR’s in between flip-flops (Fig. 2). The contents of
the FSR of Fig. 3 after each shift are shown below. The first column
shows the contents of the LFSR of Fig. 2, and the second and third
columns show the contents of the FSR of Fig. 3. The third column
is a continuation of the second column:

0001 0001 1010

0010 0011 1000

0100 0111 1100

1000 1111 0100

1101 0010 1001

0111 0101 1110

1110 1011 0000

We now state the following lemmas before stating the main result
of this section in Theorem 4. All the lemmas assume that the period
of p(x) is P .

Lemma 1: (x+1) does not dividep(x) if and only if the following
equation holds:

(x
P
+ x

P�1
+ � � �+ 1) mod p(x) = 1 (4)

412 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1998

Proof: Let

(x
P
+ x

P�1
+ � � �+ 1) mod p(x) = a(x)

wherea(x) is some polynomial inx: Multiplying both sides of the
above equation by(x + 1); we get

(x+ 1)(x
P
+ x

P�1
+ � � �+ 1) mod p(x)

= (x+ 1)a(x) mod p(x):

The above equation can be rewritten as

(x
P+1

+ 1) mod p(x) = (x+ 1)a(x) mod p(x):

Sincep(x) has a period ofP , xP mod p(x) = 1: Therefore, the
left-hand side of the above equation is simply(x+ 1): This implies
that

(x+ 1) = (x+ 1)a(x) mod p(x)

or

(x+ 1) � (x+ 1)a(x)(mod p(x)):

Sincea(x) = 1 if and only if gcd[(x + 1); p(x)] = 1; both the “if”
part and the “only if” parts of the lemma are proved.

Lemma 2: If (x + 1) does not dividep(x) then the following
equation holds:

(x
P�1

+ x
P�2

+ � � �+ 1) mod p(x) = 0: (5)

Proof: From Lemma 1 we know that

(x
P
+ x

P�1
+ � � �+ 1) mod p(x) = 1:

Adding xP on both sides, we get

(x
P�1

+ � � �+ 1) mod p(x) = 1 + x
P

mod p(x):

This completes the proof asxP mod p(x) = 1:

Lemma 3: If (x + 1) divides p(x) then the following equations
hold if p(x) is given by (1).

(x
P
+ x

P�1
+ � � �+ 1) mod p(x) 6=1 (6)

(x
2P

+ x
2P�1

+ � � �+ 1) mod p(x) = 1 (7)

(x
2P�1

+ x
2P�2

+ � � �+ 1) mod p(x) = 0: (8)

Proof: From Lemma 1 we know that for the following equation
to be true:

(x
P
+ x

P�1
+ � � �+ 1) mod p(x) = 1

gcd[(x+1); p(x)] must equal 1. This implies that the above equation
cannot be true if(x + 1) is a factor ofp(x): This completes the
proof of (6). We shall now derive (7). The left-hand side of (7) can
be rewritten as

x
P
(x
P
+ x

P�1
+ � � �+ 1) + (x

P�1
+ � � �+ 1) mod p(x):

SincexP � 1 mod p(x) and addition is modulo-2 [in GF(2)], the
above polynomial becomes equal to the following:

x
P

mod p(x) = 1:

Equation (8) follows from (7) by addingx2P to both sides of (7).
Theorem 4: Let the characteristic polynomial of an LFSR be given

by (1). Let the period of this LFSR beP . The period of the nonlinear
FSR with a constructor polynomial given by (1) is2P .

Proof: We will refer to the polynomialp(x); on which this
nonlinear FSR is based, as the constructor polynomial (for a polyno-
mial used to construct a nonlinear FSR). LetP be the period of a
polynomialp(x) with (x+1) as one of its factors. Theith count of the
LFSR with characteristic polynomialp(x) is xi�1 mod p(x); 1 �

i � P: The ith count of the FSR with constructor polynomial
p(x) with an inverter in its feedback path is(xi�1 + xi�2 + � � � +

1) mod p(x); 1 � i � 2P: Let the initial contents of the FSR be 1.
The contents of the FSR after theith shift would be

(x
i
+ x

i�1
+ � � �+ x+ 1) mod p(x):

Let M be the period of the nonlinear FSR. Therefore,

(x
M

+ x
M�1

+ � � �+ x+ 1) mod p(x) = 1:

Adding 1 to both sides of the above equation, we get

x(x
M�1

+ � � �+ x+ 1) mod p(x) = 0:

This implies that

(x
M�1

+ � � �+ x + 1) mod p(x) = 0:

From the previous three equations, we get

x
M

mod p(x) = 1:

Since the LFSR based on the characteristic polynomialp(x) has a
period P ,

x
P

mod p(x) = 1:

Therefore,P must divideM: From Lemma 3, we know thatM is
not equal toP as

(x
P
+ x

P�1
+ � � �+ x+ 1) mod p(x) 6= 1:

Therefore, the smallest value ofM must be2P . Therefore,

(x
2P

+ x
2P�1

+ � � �+ x+ 1) mod p(x) = 1:

Therefore, the period of the nonlinear FSR is2P:

From the above discussion, we can conclude that an LFSR based on
a polynomial with(x+1) as one of its factors is good for signature
analysis. The same LFSR can be modified with an inverter in its
feedback path to obtain an NLFSR. This NLFSR can then be used
for test pattern generation. The design of a BILBO based on the above
facts is described in the next section.

IV. M ODIFIED BILBO

In this section we will demonstrate the design of a BILBO that is
based on the polynomialp(x) = (x+ 1)(x3 + x+ 1): Fig. 4 shows
a BILBO based on the polynomialp(x): Two control inputsB1 and
B2 determine one of the four modes in which the BILBO operates.
These four modes are described below.

Mode 1: B1 = 0; B2 = 1: All the flip-flops are reset.
Mode 2: B1 = 1; B2 = 1: The BILBO behaves as a latch. The

input datax1 through x4 can be simultaneously clocked into the
flip-flops and can be read from theQ andQ outputs.

Mode 3: B1 = 0; B2 = 0: The BILBO works as an NLFSR with
an inverter in its feedback path. In this mode, the BILBO is a test
pattern generator.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1998 413

Fig. 4. A BILBO based on the polynomial(x + 1)(x3 + x + 1):

Mode 4: B1 = 1; B2 = 0: The BILBO is converted into a
multiple input signature register. There is no inverter in its feedback
path. The BILBO therefore acts as a regular LFSR based on the
polynomial p(x):

The only difference between the above-described BILBO and a
conventional BILBO is in Mode 3. The BILBO described above
behaves as a nonlinear feedback shift register in this mode. This
allows the BILBO to generate test patterns more effectively. When
the BILBO acts as a test pattern generator in Mode 3, it generates
2
n

�2 test patterns, wheren is the number of flip-flops in the NLFSR.
The BILBO can be easily modified using techniques described in
Section VI, to generate all2n test patterns for exhaustive testing.
The above statement is true only ifp(x) = (x+ 1)p1(x) andp1(x)
is primitive. For the BILBO of Fig. 4,n = 4; hence 14 test patterns
are generated. These test patterns are shown below. The first column
shows the counts of the LFSR without an inverter in its feedback path
and the second and third columns show the 14 counts of the NLFSR:

0001 0001 1110

1000 0000 1111

1100 1000 0111

0110 0100 1011

1011 0010 1101

0101 1001 0110

0010 1100 0011

It is therefore better to use the NLFSR for test pattern generation.
If exhaustive testing is required, then the BILBO can be modified
using the technique described in Section VI, to generate all the 16
test patterns. One should note that the modulo-2 sum of the every pair
of consecutive counts of the NLFSR results in a count in the LFSR.

V. EXAMPLES

Let us consider polynomialsp(x) = (x + 1)p1(x); wherep1(x)
is primitive. Let a BILBO be based on such a polynomialp(x):

When the BILBO functions as a signature analyzer, it is good at
detecting burst errors. When the BILBO functions as a test pattern
generator, it can be used for exhaustive testing as it behaves as an
NLFSR. One can choosep1(x) such thatp(x) has only four terms.
This reduces the number of XOR gates in the feedback path of the

BILBO. As an example consider the following 4-term polynomial,
p(x) = (x + 1)(x15 + x + 1) = x16 + x15 + x2 + 1: Since the
polynomialx15+x+1 is primitive, the BILBO can generate 65 534
test patterns in Mode 3. In Mode 4 the BILBO can be used to detect
two bursts of length 2 or less, any number of odd errors, a burst
of 16 or less, 99.997% of the bursts of length 17, and 99.998% of
longer bursts. The above statement follows from Theorems 1, 2, and
3. Note that sincep(x) has only four terms, only two XOR gates are
required to implement an LFSR based onp(x):

VI. EXHAUSTIVE TESTING

In this section we consider modifying ann-stage NLFSR so that
it has a period of2n: Then-stage NLFSR generates2n � 2 distinct
states. For exhaustive testing, it is also necessary to generate the
remaining two states. It is possible to reconfigure the NLFSR with
some extra logic so that it generates all2

n states. This NLFSR is
referred to as a modified NLFSR. We now describe an approach to
design the modified NLFSR with an example. Consider the LFSR
that is based on the polynomialp(x) = (x + 1)(x3 + x + 1) =

x4+x3+x2+1: This is shown in Fig. 5. The 7 states or counts that
the LFSR generates were described in Section IV. An NLFSR based
on the same polynomial with an inverter in its feedback is shown
in Fig. 6. The 14 counts that the NLFSR generates were also given
in Section IV. The two remaining counts that need to be generated
are 0101 and 1010. Notice that these two counts by themselves form
a cycle. This means that if the NLFSR is initialized with any one
of these two counts, then a single shift in the NLFSR would result
in the other count. Therefore, if the NLFSR is initialized with 0101
then a single shift would result in the state of the NLFSR being 1010.
Another shift would take the NLFSR back to the state 0101.

This gives us a technique to design the modified NLFSR as follows.
Initialize the NLFSR to 0010. Let the NLFSR go through its 14 states.
The NLFSR is now in the state 0100. Then remove the inverter from
the feedback path such that a shift would take the NLFSR to the state
1010. Insert the inverter back into the feedback path. A shift would
now take the NLFSR into the state 0101. Remove the inverter from
the feedback path again. A shift in the NLFSR would now take it
back to the initial state 0010.

414 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1998

Fig. 5. An LFSR based on the polynomial(x + 1)(x3 + x + 1):

Fig. 6. An NLFSR based on the polynomial(x + 1)(x3 + x + 1):

Fig. 7. A modified NLFSR based on the polynomial(x+ 1)(x3 + x+ 1):

The removal and insertion of the inverter can be obtained by
replacing the inverter by a two input XOR gate. One of the inputs
to the gate obtains its inputs from three stages of the NLFSR. This
control input converts the XOR gate into an inverter at the appropriate
times. This results in the modified NLFSR generating all the 16 test
patterns. The modified NLFSR is shown in Fig. 7.

VII. D ISCUSSION AND CONCLUSIONS

We first comment on the quality of the nonlinear FSR (feedback
shift register) presented with respect to test pattern generation. This
part of the discussion is based on [9]. We will compute the probability
of linear dependence according to the procedure suggested in [9]. The
results in [9] are valid for any feedback shift register. Consider an
m-stage FSR. Let us assume that a circuit under test hask inputs,
wherek � m: If we choosek outputs of the FSR as test inputs for
the circuit under test, then the probability of linear dependence gives
us a measure of how close this test set is to being an exhaustive
test set. Letn be the period of the FSR. The probability of linear
dependence is given as [9]

P (k) =
n(n� 1)(n� 3)(n� 7) � � � (n+ 1� 2k�1)

n(n� 1)(n� 2) � � � (n� k + 1)
:

Higher values ofP (k) imply that the probability of the test set being
exhaustive is more. For example, for the FSR of Fig. 5 we obtain
P (3) = 0:8; and for the FSR of Fig. 6 (the same FSR with an
inverter in its feedback), we obtainP (3) = 0:917: This implies
that the proposed nonlinear FSR has better testing capabilities than
the corresponding FSR without an inverter in its feedback. For a 4-
stage LFSR with period 15, we obtainP (3) = 0:923: This LFSR
is slightly better than the proposed FSR. However, this LFSR is
not good at detecting burst errors. Thus the proposed FSR’s testing

capabilities are slightly degraded while having good burst error
detection capabilities.

We will now comment on the hardware overhead for the proposed
BILBO and compare this to the hardware overhead of a conventional
BILBO. Consider anm-stage BILBO. The hardware overhead for a
conventional BILBO is a 2-input AND gate, a 2-input NOR gate, and
a 2-input XOR gate per stage of the BILBO. A 2-to-1 multiplexer
is also required. The hardware overhead for the proposed BILBO
is the hardware overhead for a conventional BILBO and a 2-input
NOR gate and a 2-input XOR gate. These two gates are added in the
feedback path of the proposed BILBO. Thus the only extra hardware
needed in the proposed BILBO is these two gates.

We now describe the main contribution of this brief. The brief
describes a new nonlinear feedback shift register that can be used
for the generation of test patterns or for signature analysis in digital
systems. The proposed register can also be used as a counter and
efficient count recovery algorithms can be derived for it. In this brief
we have shown that the proposed register is good at exhaustive testing
of a digital system. It is also good at detecting burst errors in digital
systems.

We have described a BILBO for efficient detection of burst
errors. Burst errors are important in testing microprocessors [1]. The
BILBO described can also be used for exhaustive testing. This is
accomplished by using a nonlinear feedback shift register for test
pattern generation.

REFERENCES

[1] J. E. Smith, “Measures of the effectiveness of fault signature analysis,”
IEEE Trans. Comput.,vol. C-29, pp. 510–514, June 1980.

[2] J. P. Hayes, “Transition count testing of combinational logic circuits,”
IEEE Trans. Comput.,vol. C-25, pp. 613–620, June 1976.

[3] W. W. Peterson and E. J. Weldon, Jr.,Error-Correcting Codes,2nd ed.
Cambridge, MA: MIT Press, 1972.

[4] H. C. A. van Tilborg, An Introduction to Cryptology, Norwell, MA:
Kluwer Acadamic, 1988.

[5] L. Wang and E. J. McCluskey, “Circuits for pseudoexhaustive test
pattern generation,”IEEE Trans. Computer-Aided Design,vol. 7, pp.
1068–1080, Oct. 1988.

[6] D. W. Clark and L. Weng, “Maximal and near-maximal shift register
sequences: Efficient event counters and easy discrete logarithms,”IEEE
Trans. Comput.,vol. 43, pp. 560–567, May 1994.

[7] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,”
Proc. IRE, pp. 228–235, Jan. 1961.

[8] L. Wang and E. J. McCluskey, “Hybrid designs generating maximum-
length sequences,”IEEE Trans. Computer-Aided Design,vol. 7, pp.
91–99, Jan. 1988.

[9] C. L. Chen,“Linear dependencies in linear feedback shift registers,”
IEEE Trans. Comput.,vol. C-35, Dec. 1986.

