

Reed Solomon Codes

Written : January 2001
Author : Joel Sylvester

Reed Solomon forward error correcting codes have become commonplace in modern digital
communications. Although invented in 1960 by Irving Reed and Gustave Solomon, then
working at MIT Lincoln Labs, it was many years before technology caught up and was able to
provide efficient hardware implementations.

In turn Reed and Solomons work was based on an area of mathematics invented by French
mathematician Evariste Galois in the 1830's. It pains some mathematicians to find that the
field of number theory, one of the more esoteric areas of mathematics which Galois helped
found, has proved so useful.

Versions of Reed Solomon codes are now used in error correction systems found just about
everywhere, including...

�� Storage devices (hard disks, compact disks, DVD, barcodes)
�� Wireless communications (mobile phones, microwave links)
�� Digital television
�� Satellite communications (including deep space missions like Voyager)
�� Broadband modems (ADSL, xDSL etc)

Reed Solomon codes work by adding extra information (redundancy) to the original data. The
encoded data can then be stored or transmitted. When the encoded data is recovered it may
have errors introduced, for instance by scratches on the CD, imperfections on a hard disk
surface or radio frequency interference with mobile phone reception. The added redundancy
allows a decoder (with certain restrictions) to detect which parts of the received data are
corrupted, and correct them. The number of errors the code can correct depends on the
amount of redundancy added.

Properties of Reed-Solomon Codes

The topic of error correcting codes is extensive, and most texts treat all codes equally
whether they are easily implemented or not. Reed-Solomon codes have certain properties
which make them useful in the real world.

RS codes are a systematic linear block code. Its a block code because the code is put
together by splitting the original message in to fixed length blocks. Each block is further sub
divided into m-bit symbols. Each symbol is a fixed width, usually 3 to 8 bits wide.

The linear nature of the codes ensures that in practice every possible m-bit word is a valid
symbol. For instance with an 8-bit code all possible 8 bit words are valid for encoding, and
you don't have to worry about what data (whether it's binary, ASCII etc) you are
transmitting. Systematic means that the encoded data consists of the original data with the
extra 'parity' symbols appended to it.

An RS code is partially specified as an RS(n,k) with m-bit symbols. For instance the DVB code
is RS(204,188) using 8-bit symbols. The n refers to the number of encoded symbols in a
block, whilst k refers to the number of original message symbols. The difference n-k (usually
called 2t) is the number of parity symbols have been appended to make the encoded block.

An RS decoder can correct up to (n-k)/2 or t symbols, ie any t symbols can be corrupted in
any way, and the original symbols can be recovered. Thus the DVB code splits the message
into blocks 188 symbols long. The 16 parity symbols (2t = 204-188 = 16) are then appended
to produce the full 204 symbol long code. Up to 8 (t = 16/2) symbol errors can then be
corrected.

The power of Reed Solomon codes lies in being able to just as easily correct a corrupted
symbol with a single bit error as it can a symbol with all its bits in error. This makes RS codes
particularly suitable for correcting burst errors. Usually the encoded data is transmitted or
stored as a sequence of bits. With the DVB code, a sequence of up to 56 consecutive bits
could be corrupted affecting at most 8 symbols, and the original message could still be
recovered. However it does mean that RS codes are relatively sensitive to evenly spaced
errors. In the DVB code if 9 symbols have a single bit error then no corrections can be made.
Other codes such as convolutional codes are better at correcting randomly occurring errors.
Often the RS encoded block is further encoded in a convolutional code to try and cope with
both burst and random errors.

Galois Field Arithmetic and Reed Solomon Codes

Reed Solomon codes are based on finite fields, often called Galois fields.

Rather than look at individual numbers and equations, the approach of modern
mathematicians is to look at all the numbers that can be obtained from some given initial
collection by using operators such as addition, subtraction, multiplication and division. The
resulting collection is called a field. Some fields, like the set of integers, are infinite. This
causes problems when you try to represent them on a computer with a fixed length word.

Galois fields have the useful property that any operation on an element of the field will
always result in another element of the field. The field is also finite, so it can be fully
represented by a fixed length binary word. An arithmetic operation that, in traditional
mathematics, result in a value outwith the field gets mapped back in to the field - it's a form
of modulo arithmetic.

For instance, in the Galois field used for the DVB RS codec, only the numbers 0 to 255 exist.
The operation 20 times 20 does not result in 400, but gets wrapped around to 13. Don't try
and make sense of that result, it is not simple modulo 256.

This means that algorithms using Galois arithmetic, in contrast to traditional binary
arithmetic, do not have to cope with over or under flow exceptions. Galois arithmetic has very
little to do with counting things, 2+2 is not necessarily 4. For ease of handling the Galois field
elements are often called by their binary equivalent, but this can be misleading. The binary
value 20 (00010100) maps to the 52nd element in the DVB Galois field, not the 20th. There
are many Galois fields, and part of the RS specification is to define which field is used.

Galois arithmetic is ideally suited to hardware implementation. Addition and subtraction
consists of simply xor'ing two symbols together. Multiplication is a little more difficult, (as
always) but can be done using purely combinational logic. Alternative architectures can do
multiplications using shift registers. Trade off's can be made between speed and the

hardware resources used. This makes Galois arithmetic ideal for implementation using FPGAs
or ASICs.

Galois arithmetic is less well suited to DSPs or microprocessors. Here the single cycle binary
multipliers are of no use, and multiplication may take many clock cycles. There exist library
routines for Matlab and Mathematica for high level programming, and 'C' routines for lower
level programming. Having said that, the TMS320C6400 DSP has Galois arithmetic operators
in it's instruction set.

An RS code with 8 bit symbols will use a Galois field GF(28), consisting of 256 symbols. Thus
every possible 8 bit value is in the field. The order in which the symbols appear depends on
the generator polynomial. This polynomial is used in a simple iterative algorithm to generate
each element of the field. Different polynomials will generate different fields. For instance,
the generator polynomial for DVB is p(x) = 1 +x2 + x3 + x4 + x8. This can be given the
shorthand 285, from the binary value of the coefficients 100011101. From this the nth
element of the field can be constructed by raising element 0 to the power n.

As an example, take the Galois field GF(24) - using 4 bit symbols, and generator polynomial
19. The polynomial is p(x) = 1 + x + x4. The Galois field consists of 16 symbols as follows.

Note that each element is the previous
multiplied by �. By setting p(�) = 0,
then �4 = 1 + � (substituting � into
the polynomial p(x)).

Thus in the above table �

4 is
substituted with 1+ �, then

�

5 = (1 +�)�,
= � + �2.

�

6 = �.�5
= �2 + �3

�

7 = �.�6
= �3 +�

4
= 1 +� + �3

and so on.

The last parameter needed is the starting point for the RS generator polynomial (B0). For
DVB this is zero. The RS generator is touched on later. Given n, k, the symbol width m, the
Galois field polynomial p and starting root B0, the Reed-Solomon code is fully specified.

Reed Solomon Encoder

The encoder is the easy bit. Since the code is systematic, the whole of the block can be read
into the encoder, and then output the other side without alteration. Once the kth data symbol
has been read in, the parity symbol calculation is finished, and the parity symbols can be
output to give the full n symbols.

Gross simplification coming up. The idea of the parity words is to create a long polynomial (n
coefficients long – it contains the message and the parity) which can be divided exactly by

the RS generator polynomial. That way, at the decoder the received message block can be
divided by the RS generator polynomial. If the remainder of the division is zero, then no
errors are detected. If there is a remainder, then there are errors. Dividing a polynomial by
another is not conceptually easy, but if you follow the maths in some of the references its not
too hard to understand.

The encoder acts to divide the polynomial represented by the k message symbols d(x) by the
RS generator polynomial g(x). This generator polynomial is not the same as the Galois Field
generator polynomial, but is derived from it.

x(n-k).d(x)/g(x) = q(x) + r(x)/g(x)

The term x(n-k) is a constant power of x, which is simply a shift upwards n-k places of all the
polynomial coefficients in d(x). It happens as part of the shifting process in the architecture
below. The remainder after the division r(x) becomes the parity. By concatenating the parity
symbols on to the end of the k message symbols, an n coefficient polynomial is created which
is exactly divisible by g(x).

The encoder is a 2t tap shift register, where each register is m bits wide. The multiplier
coefficients g0 to g(2t-1) are coefficients of the RS generator polynomial. The coefficients are
fixed, which can be used to simplify the multipliers if required. The only hard bit is working
out the coefficients, and for hardware implementations the values can often be hard coded.

At the beginning of a block all the registers are set to zero. From then on, at each clock cycle
the symbol in each register is added to the product of the feedback symbol and the fixed
coefficient for that tap, and passed on to the next register. The symbol in the last register
becomes the feedback value on the next cycle. When all n input symbols have been read in,
the parity symbols are sitting in the register, and it just remains to shift them out one by one.

Reed Solomon Decoder

Decoding is a far harder task than encoding. Typically about ten times more resources (be it
logic, memory or processor cycles) are required to decode and correct the corrupted data.

The decode operation takes
several stages. There are plenty of
sources available for software
implementations of the various
algorithms required. Hardware
implementations (FPGA or ASIC)
are a little harder to come by,
especially those with
parameterised specifications.
Texas Instruments give their
software decoder away for free,
whilst by comparison FPGA
manufacturers such as Xilinx or
Altera can charge many thousands
of dollars for their hardware
implementations.

Syndrome decoder

The first step in decoding the
received symbol is to determine
the data syndrome. Here the input
received symbols are divided by
the generator polynomial. The
result should be zero (the parity
was placed there to ensure that
code is exactly divisible by the
generator polynomial). If there
there is a remainder, then there
are errors. The remainder is called
the syndrome.

Syndrome calculation can be done
by an iterative process, such that
the answer (2t syndrome symbols)
is available as soon as the last

parity symbol has been read in. The circuit below will generate the i'th syndrome, 2t of these
will be needed for the full syndrome decoder. The syndromes depend only on the errors, not
on the underlying encoded data.

Error polynomial lambda - Berlekamp-Massey and Euclids
algorithm

The second step is to find the
error polynomial lambda. This
requires solving 2t
simultaneous equations, one
for each syndrome.

The 2t syndromes form a
simultaneous equation with t
unknowns. The unknowns are
the locations of the errors. In
general there are many
possible solutions to the set of
equations, but we assume that
the one with the least number
of errors is the correct one.
This assumption is the reason
that more than t errors can
actually cause the decoder to
corrupt the received signal
further (if allowed to). If more
than t errors occur, then there
will exist a possible solution to
the equations with less than t
errors. Unfortunately this
solution is unlikely to correct
the right symbols.

The process of solving the
simultaneous equations is
usually split into two stages.
First, an error location
polynomial is found. This
polynomial has roots which
give the error locations. Then
the roots of the error
polynomial are found.

There are several methods of
finding the error polynomial
lambda, the two most popular
are Euclid's Algorithm (easier
to implement) and the

Berlekamp-Massey Algorithm (more efficient use of hardware resources).

The algorithm iteratively solves the error locator polynomial by solving one equation after
another and updating the error locator polynomial. If it turns out that it cannot solve the
equation at some step, then it computes the error and weights it, increases the size of the
error polynomial, and does another iteration. A maximum of 2t iterations are required. For n
symbol errors, the algorithm gives a polynomial with n coefficients. At this point the decoder
fails if there are more than t errors, and no corrections can be made. Doing so might actually
introduce more errors than there were originally.

Finding the error polynomial roots - Chien search

Once the error polynomial lambda is known, its roots define where the errors are in the
received symbol block. The most commonly used algorithm for this is the Chien search. This
is a brute force and ignorance method, or more politely, an exhaustive search. All 2^m
possible symbols are substituted into the error polynomial, one by one, and the polynomial
evaluated. If the result comes to zero, you have a root.

Calculate the error magnitudes - Forney algorithm

You now know where the errors are, but not what they are. The next step is to use the
syndromes and the error polynomial roots to derive the error values. This is usually done
using the Forney algorithm. The algorithm is an efficient way of performing a matrix
inversion. The algorithm works in two stages. First the error evaluator polynomial omega is
calculated. This is done by convolving the syndromes with the error polynomial lambda (from
the Berlekamp-Massey result). Omega is then calculated at each zero location, and divided by
the derivative of lambda. Each calculation gives the error symbol at the corresponding
location. If a bit is set in the error symbol, then the corresponding bit in the received symbol
is in error, and must be inverted.

All that remains is to correct the received symbols. The symbols are read again from an
intermediate store, and at each error location the received symbols xor'ed with the error
symbol. Usually the parity symbols are stripped off.

Implementation

That's the basics - all that remains is simply a matter of implementation.

There are a number of of-the-shelf hardware implementations, for instance Advanced
Hardware Architectures do a series of VLSI Reed Solomon codecs.

Alternatively, you can buy intellectual property in hardware description languages such as
VHDL or Verilog. These tend to be far more flexible (any reasonable n,k,m) and are targeted
at implementation in an FPGA or ASIC. The advantage here is that other tasks can be
integrated in to the same device, for instance the Reed Solomon codec could be joined with a
convolutional codec (for random error correction), and controlling microprocessor, memory
and a transceiver for a complete system-on-a-chip.

Software implementations are usually slower and more costly than a dedicated hardware
approach, although some DSP targets will come close.

Want to know more ?

Try the following if you want the maths...

Lin and Costello, "Error Control Coding: Fundamentals and Applications", Prentice Hall 1983,
ISBN 013283796

If you want an optimised VHDL implementation, talk to us at Elektrobit. www.elektrobit.co.uk

If you want free 'C' code, try Robert Morelos-Zaragoza's page at
http://imailab-www.iis.u-tokyo.ac.jp/~robert/codes.html

	Reed Solomon Codes
	
	Written : January 2001
	Author : Joel Sylvester
	
	
	
	Properties of Reed-Solomon Codes
	Galois Field Arithmetic and Reed Solomon Codes
	Reed Solomon Encoder
	Reed Solomon Decoder
	Syndrome decoder
	Error polynomial lambda - Berlekamp-Massey and Euclids algorithm
	Finding the error polynomial roots - Chien search
	Calculate the error magnitudes - Forney algorithm
	Implementation
	Want to know more ?

