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Reed Solomon forward error correcting codes have become commonplace in modern digital 
communications. Although invented in 1960 by Irving Reed and Gustave Solomon, then 
working at MIT Lincoln Labs, it was many years before technology caught up and was able to 
provide efficient hardware implementations.  
 
In turn Reed and Solomons work was based on an area of mathematics invented by French 
mathematician Evariste Galois in the 1830's. It pains some mathematicians to find that the 
field of number theory, one of the more esoteric areas of mathematics which Galois helped 
found, has proved so useful. 
 
Versions of Reed Solomon codes are now used in error correction systems found just about 
everywhere, including... 
 

�� Storage devices (hard disks, compact disks, DVD, barcodes) 
�� Wireless communications (mobile phones, microwave links) 
�� Digital television 
�� Satellite communications (including deep space missions like Voyager) 
�� Broadband modems (ADSL, xDSL etc) 

 
Reed Solomon codes work by adding extra information (redundancy) to the original data. The 
encoded data can then be stored or transmitted. When the encoded data is recovered it may 
have errors introduced, for instance by scratches on the CD, imperfections on a hard disk 
surface or radio frequency interference with mobile phone reception. The added redundancy 
allows a decoder (with certain restrictions) to detect which parts of the received data are 
corrupted, and correct them. The number of errors the code can correct depends on the 
amount of redundancy added.  
 
Properties of Reed-Solomon Codes 
 
The topic of error correcting codes is extensive, and most texts treat all codes equally 
whether they are easily implemented or not. Reed-Solomon codes have certain properties 
which make them useful in the real world. 
 
RS codes are a systematic linear block code. Its a block code because the code is put 
together by splitting the original message in to fixed length blocks. Each block is further sub 
divided into m-bit symbols. Each symbol is a fixed width, usually 3 to 8 bits wide. 
 
The linear nature of the codes ensures that in practice every possible m-bit word is a valid 
symbol. For instance with an 8-bit code all possible 8 bit words are valid for encoding, and 
you don't have to worry about what data (whether it's binary, ASCII etc) you are 
transmitting. Systematic means that the encoded data consists of the original data with the 
extra 'parity' symbols appended to it. 
 
An RS code is partially specified as an RS(n,k) with m-bit symbols. For instance the DVB code 
is RS(204,188) using 8-bit symbols. The n refers to the number of encoded symbols in a 
block, whilst k refers to the number of original message symbols. The difference n-k (usually 
called 2t) is the number of parity symbols have been appended to make the encoded block. 



 
An RS decoder can correct up to (n-k)/2 or t symbols, ie any t symbols can be corrupted in 
any way, and the original symbols can be recovered. Thus the DVB code splits the message 
into blocks 188 symbols long. The 16 parity symbols (2t = 204-188 = 16) are then appended 
to produce the full 204 symbol long code. Up to 8 (t = 16/2) symbol errors can then be 
corrected. 
 

 
 
The power of Reed Solomon codes lies in being able to just as easily correct a corrupted 
symbol with a single bit error as it can a symbol with all its bits in error. This makes RS codes 
particularly suitable for correcting burst errors. Usually the encoded data is transmitted or 
stored as a sequence of bits. With the DVB code, a sequence of up to 56 consecutive bits 
could be corrupted affecting at most 8 symbols, and the original message could still be 
recovered. However it does mean that RS codes are relatively sensitive to evenly spaced 
errors. In the DVB code if 9 symbols have a single bit error then no corrections can be made. 
Other codes such as convolutional codes are better at correcting randomly occurring errors. 
Often the RS encoded block is further encoded in a convolutional code to try and cope with 
both burst and random errors. 
 

Galois Field Arithmetic and Reed Solomon Codes 
 
Reed Solomon codes are based on finite fields, often called Galois fields. 
 
Rather than look at individual numbers and equations, the approach of modern 
mathematicians is to look at all the numbers that can be obtained from some given initial 
collection by using operators such as addition, subtraction, multiplication and division. The 
resulting collection is called a field. Some fields, like the set of integers, are infinite. This 
causes problems when you try to represent them on a computer with a fixed length word. 
 
Galois fields have the useful property that any operation on an element of the field will 
always result in another element of the field. The field is also finite, so it can be fully 
represented by a fixed length binary word. An arithmetic operation that, in traditional 
mathematics, result in a value outwith the field gets mapped back in to the field - it's a form 
of modulo arithmetic. 
 
For instance, in the Galois field used for the DVB RS codec, only the numbers 0 to 255 exist. 
The operation 20 times 20 does not result in 400, but gets wrapped around to 13. Don't try 
and make sense of that result, it is not simple modulo 256.  
 
This means that algorithms using Galois arithmetic, in contrast to traditional binary 
arithmetic, do not have to cope with over or under flow exceptions. Galois arithmetic has very 
little to do with counting things, 2+2 is not necessarily 4. For ease of handling the Galois field 
elements are often called by their binary equivalent, but this can be misleading. The binary 
value 20 (00010100) maps to the 52nd element in the DVB Galois field, not the 20th.   There 
are many Galois fields, and part of the RS specification is to define which field is used. 
 
Galois arithmetic is ideally suited to hardware implementation. Addition and subtraction 
consists of simply xor'ing two symbols together. Multiplication is a little more difficult, (as 
always) but can be done using purely combinational logic. Alternative architectures can do 
multiplications using shift registers. Trade off's can be made between speed and the 



 
hardware resources used. This makes Galois arithmetic ideal for implementation using FPGAs 
or ASICs. 
 
Galois arithmetic is less well suited to DSPs or microprocessors. Here the single cycle binary 
multipliers are of no use, and multiplication may take many clock cycles. There exist library 
routines for Matlab and Mathematica for high level programming, and 'C' routines for lower 
level programming. Having said that, the TMS320C6400 DSP has Galois arithmetic operators 
in it's instruction set. 
 
An RS code with 8 bit symbols will use a Galois field GF(28), consisting of 256 symbols. Thus 
every possible 8 bit value is in the field. The order in which the symbols appear depends on 
the generator polynomial. This polynomial is used in a simple iterative algorithm to generate 
each element of the field. Different polynomials will generate different fields. For instance, 
the generator polynomial for DVB is p(x) = 1 +x2 + x3 + x4 + x8. This can be given the 
shorthand 285, from the binary value of the coefficients 100011101. From this the nth 
element of the field can be constructed by raising element 0 to the power n. 
 
As an example, take the Galois field GF(24) - using 4 bit symbols, and generator polynomial 
19. The polynomial is p(x) = 1 + x + x4. The Galois field consists of 16 symbols as follows. 
 

 
Note that each element is the previous 
multiplied by �. By setting p(�) = 0, 
then �4 = 1 + � (substituting � into 
the polynomial p(x)).  
 
Thus in the above table �

4 is 
substituted with 1+ �, then  
 
�

5 = (1 +�)�,  
= � + �2. 
 
�

6 = �.�5 
= �2 + �3 
 
�

7 = �.�6 
= �3 +�

4 
= 1 +� + �3 

 
and so on. 

 
The last parameter needed is the starting point for the RS generator polynomial (B0). For 
DVB this is zero. The RS generator is touched on later. Given n, k, the symbol width m, the 
Galois field polynomial p and starting root B0, the Reed-Solomon code is fully specified. 
 
 
Reed Solomon Encoder 
 
The encoder is the easy bit. Since the code is systematic, the whole of the block can be read 
into the encoder, and then output the other side without alteration. Once the kth data symbol 
has been read in, the parity symbol calculation is finished, and the parity symbols can be 
output to give the full n symbols. 
 
Gross simplification coming up. The idea of the parity words is to create a long polynomial (n 
coefficients long – it contains the message and the parity) which can be divided exactly by 



 
the RS generator polynomial. That way, at the decoder the received message block can be 
divided by the RS generator polynomial. If the remainder of the division is zero, then no 
errors are detected. If there is a remainder, then there are errors. Dividing a polynomial by 
another is not conceptually easy, but if you follow the maths in some of the references its not 
too hard to understand. 
 
The encoder acts to divide the polynomial represented by the k message symbols d(x) by the 
RS generator polynomial g(x). This generator polynomial is not the same as the Galois Field 
generator polynomial, but is derived from it. 
 

x(n-k).d(x)/g(x) = q(x) + r(x)/g(x) 
 
The term x(n-k) is a constant power of x, which is simply a shift upwards n-k places of all the 
polynomial coefficients in d(x). It happens as part of the shifting process in the architecture 
below. The remainder after the division r(x) becomes the parity. By concatenating the parity 
symbols on to the end of the k message symbols, an n coefficient polynomial is created which 
is exactly divisible by g(x). 
 

 
 
The encoder is a 2t tap shift register, where each register is m bits wide. The multiplier 
coefficients g0 to g(2t-1) are coefficients of the RS generator polynomial. The coefficients are 
fixed, which can be used to simplify the multipliers if required. The only hard bit is working 
out the coefficients, and for hardware implementations the values can often be hard coded. 
 
At the beginning of a block all the registers are set to zero. From then on, at each clock cycle 
the symbol in each register is added to the product of the feedback symbol and the fixed 
coefficient for that tap, and passed on to the next register. The symbol in the last register 
becomes the feedback value on the next cycle. When all n input symbols have been read in, 
the parity symbols are sitting in the register, and it just remains to shift them out one by one. 
 
Reed Solomon Decoder 
 
Decoding is a far harder task than encoding. Typically about ten times more resources (be it 
logic, memory or processor cycles) are required to decode and correct the corrupted data.  



 
The decode operation takes 
several stages. There are plenty of 
sources available for software 
implementations of the various 
algorithms required. Hardware 
implementations (FPGA or ASIC) 
are a little harder to come by, 
especially those with 
parameterised specifications. 
Texas Instruments give their 
software decoder away for free, 
whilst by comparison FPGA 
manufacturers such as Xilinx or 
Altera can charge many thousands 
of dollars for their hardware 
implementations. 
 
 
Syndrome decoder 
 
The first step in decoding the 
received symbol is to determine 
the data syndrome. Here the input 
received symbols are divided by 
the generator polynomial. The 
result should be zero (the parity 
was placed there to ensure that 
code is exactly divisible by the 
generator polynomial). If there 
there is a remainder, then there 
are errors. The remainder is called 
the syndrome. 
 
Syndrome calculation can be done 
by an iterative process, such that 
the answer (2t syndrome symbols) 
is available as soon as the last 

parity symbol has been read in. The circuit below will generate the i'th syndrome, 2t of these 
will be needed for the full syndrome decoder. The syndromes depend only on the errors, not 
on the underlying encoded data. 
 
 
 
 
 
 
 
 
 
 



 
Error polynomial lambda - Berlekamp-Massey and Euclids 
algorithm 
 

The second step is to find the 
error polynomial lambda. This 
requires solving 2t 
simultaneous equations, one 
for each syndrome. 
 
The 2t syndromes form a 
simultaneous equation with t 
unknowns. The unknowns are 
the locations of the errors. In 
general there are many 
possible solutions to the set of 
equations, but we assume that 
the one with the least number 
of errors is the correct one. 
This assumption is the reason 
that more than t errors can 
actually cause the decoder to 
corrupt the received signal 
further (if allowed to). If more 
than t errors occur, then there 
will exist a possible solution to 
the equations with less than t 
errors. Unfortunately this 
solution is unlikely to correct 
the right symbols. 
 
The process of solving the 
simultaneous equations is 
usually split into two stages. 
First, an error location 
polynomial is found. This 
polynomial has roots which 
give the error locations. Then 
the roots of the error 
polynomial are found. 
 
There are several methods of 
finding the error polynomial 
lambda, the two most popular 
are Euclid's Algorithm (easier 
to implement) and the 

Berlekamp-Massey Algorithm (more efficient use of hardware resources).  
 
The algorithm iteratively solves the error locator polynomial by solving one equation after 
another and updating the error locator polynomial. If it turns out that it cannot solve the 
equation at some step, then it computes the error and weights it, increases the size of the 
error polynomial, and does another iteration. A maximum of 2t iterations are required. For n 
symbol errors, the algorithm gives a polynomial with n coefficients. At this point the decoder 
fails if there are more than t errors, and no corrections can be made. Doing so might actually 
introduce more errors than there were originally. 

 



 
Finding the error polynomial roots - Chien search 
 
Once the error polynomial lambda is known, its roots define where the errors are in the 
received symbol block. The most commonly used algorithm for this is the Chien search. This 
is a brute force and ignorance method, or more politely, an exhaustive search. All 2^m 
possible symbols are substituted into the error polynomial, one by one, and the polynomial 
evaluated. If the result comes to zero, you have a root. 
  

Calculate the error magnitudes - Forney algorithm 
 
You now know where the errors are, but not what they are. The next step is to use the 
syndromes and the error polynomial roots to derive the error values. This is usually done 
using the Forney algorithm. The algorithm is an efficient way of performing a matrix 
inversion. The algorithm works in two stages. First the error evaluator polynomial omega is 
calculated. This is done by convolving the syndromes with the error polynomial lambda (from 
the Berlekamp-Massey result). Omega is then calculated at each zero location, and divided by 
the derivative of lambda. Each calculation gives the error symbol at the corresponding 
location. If a bit is set in the error symbol, then the corresponding bit in the received symbol 
is in error, and must be inverted. 
 
All that remains is to correct the received symbols. The symbols are read again from an 
intermediate store, and at each error location the received symbols xor'ed with the error 
symbol. Usually the parity symbols are stripped off. 
  
 

Implementation 
 
That's the basics - all that remains is simply a matter of implementation. 
 
There are a number of of-the-shelf hardware implementations, for instance Advanced 
Hardware Architectures do a series of VLSI Reed Solomon codecs. 
 
Alternatively, you can buy intellectual property in hardware description languages such as 
VHDL or Verilog. These tend to be far more flexible (any reasonable n,k,m) and are targeted 
at implementation in an FPGA or ASIC. The advantage here is that other tasks can be 
integrated in to the same device, for instance the Reed Solomon codec could be joined with a 
convolutional codec (for random error correction), and controlling microprocessor, memory 
and a transceiver for a complete system-on-a-chip. 
 
Software implementations are usually slower and more costly than a dedicated hardware 
approach, although some DSP targets will come close. 
  
 

Want to know more ? 
 
Try the following if you want the maths... 
 
Lin and Costello, "Error Control Coding: Fundamentals and Applications", Prentice Hall 1983, 
ISBN 013283796 
 
If you want an optimised VHDL implementation, talk to us at Elektrobit. www.elektrobit.co.uk 
 
If you want free 'C' code, try  Robert Morelos-Zaragoza's page at  
http://imailab-www.iis.u-tokyo.ac.jp/~robert/codes.html 
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