

MODEL BASED TEST
GENERATION TOOLS

A l a n H a r t m a n

h a r t m a n @ i l . i b m . c o m

w w w . a g e d i s . d e

A G E D I S C O N S O R T I U M

2

Model Based Test Generation Tools
OVERVIEW

This report attempts to list the main tools for model based test generation in both the academic
and the commercial arena. The aim of the report is to position the AGEDIS tools [1] in the context
of what is currently available in both industry and academia.

WHAT IS A MODEL BASED TEST GENERATOR?

Arguably all software testing activity is model based, since any test case must be designed using
some mental model of the application under test. In recent years the use of explicit models for
software development (most notably the use of UML for object oriented analysis and design) has
expanded greatly. The use of these models for the generation of test cases in the IT industry is still in
its infancy, although a significant part of the telecommunications, aerospace, and micro-electronics
industries have been experimenting with models for verification and test generation for over a
decade.

We will define a model based test generator as an automated process which accepts two main
inputs:

�� A formal model of the software under test, and

�� A set of test generation directives which guide the tool in its generation.

In many tools, the test generation directives are not supplied explicitly to the tool, but are “hard-
wired” into the structure of the test generation tool. The output of a test generator is a set of test
cases, which include a sequence of stimuli to the system under test, and the expected responses to
those stimuli, as predicted by the model.

The process of model based test generation may be carried out manually or with bespoke tools
created for the explicit purpose of generating a test suite for a single application. A good example is
discussed in Robinson’s paper [22]. The focus of this report is on generic model based test generation
tools.

We distinguish between test generators and model based input generators, which do not
output the expected response of the system under test. The models accepted by an input generator
are models of the input sequences accepted by the system under test, but they do not model the
expected behavior of the system. In order to use such tools for the automation of testing, the user
must also provide an oracle for the system behavior. Two examples of model based input generators
are Telcordia Technologies’ AETG [23] and Maurer’s DGL [13].

We also distinguish between test generators and test automation frameworks. A test
automation framework accepts manually created, automatically generated, or pre-recorded test
sequences and runs the sequences without human supervision. Typical examples of such tools are
Mercury’s WinRunner [14], Rational Robot [19], and Telelogic’s Tau Tester [25].

Another class of tools which we do not include in this paper is the set of modeling tools. Tools
in this category include Rational Rose [20], Objecteering [18], Poseidon [6], Together Control Centre
[30], Statemate Magnum [10],AutoFocus [17], SimuLink [28], SCR [9], and Telelogic Tau [25] [24].

 3

These tools serve as the creators of input to model-based test generators, and do not in general have
the capacity to generate test cases.

COMMERCIAL TOO LS

TVEC

T-VEC Technologies has a Test Vector Generation System [29] which accepts models of the
requirements and behavior of a system in a proprietary language called T-VEC Linear Form. The
product also comes with a graphical environment for creating SCR models and automatically
translating them into the Linear Form. Translators exist for two other specification languages namely
SCR [9] and MATRIXx [27].

The test generator generates test cases based on domain testing theory. It generates test cases by
analyzing the logical expressions in the specification model, and creating test cases that reach extreme
values in the decision path (a kind of branch coverage of the specification). The test generation
directives appear to be implicit in the algorithm used to generate test cases.

The test cases produced by T-VEC include expected outputs.

The T-VEC system also has an interface for translating the abstract test cases into executable test
programs (test driver generation).

The tool seems to have been used mainly in the aerospace industry. It does not appear to have
any support for UML or other widely used modeling languages.

CONFORMIQ TEST GENERATOR

Conformiq Software Ltd. has announced a new product which is due for release in autumn 2002.
The literature on their website [2] indicates that their tool will be a true model-based test generator
according to the definition of this paper. The tool accepts UML state diagrams as the model of the
system under test, together with support for real time properties. The main product of the
generator’s analysis is a behavior simulator which may be used in three different ways:

Batch mode: To generate test cases using the TTCN notation. These test cases may be run
against the unit under test at a later time. The test cases contain expected results and verdicts.

Interactive mode: Running the test generator in synchronized mode with the unit under test. The
behavior of the system is verified online.

Trace mode: A trace of system activity is run against the test generator and its output is verified
as conforming to the specification model (or not).

The literature on the website is not specific about the coverage directives used by the tool, but it
indicates that the tool includes a measure of the coverage of the system achieved by the test.

REACTIS

Reactis [21] is a tool produced by Reactive Systems Inc – a company whose focus is on tools for
the development of embedded systems. It accepts models in the SimuLink and StateFlow modelling
language [28].

4

The model is compiled and a model simulator is produced which can be used for manual or
random test generation. Reactis also has an automatic test suite generation capability and the
coverage directives are related to syntactic and structural coverage of the model (branches, states,
transitions, conditions etc.)

The test cases contain expected results, but there does not appear to be any facility for translating
and executing the test cases in a test harness.

TAU TTCN SUITE

Amongst the Telelogic products is a suite of tools for the creation, simulation, and manipulation
of SDL models. The Telelogic Tau TTCN Suite [24] webpage describes an ability to generate TTCN
test cases from an SDL model. No details are given concerning the use of testing directives, but
TTCN test cases certainly included expected results derived from the behavior specified in the SDL
model.

TESTMASTER

The Teradyne Corporation produced a model based testing tool called Test Master (see [26]).
This tool had a proprietary graphical language for specifying the system under test. The tool
produced test suites by exhaustive traversal of the finite state machine used in the specification. Test
Master had no special features for translating abstract tests to executable scripts.

The tool is not currently supported or sold.

UNITESK

The UniTesK (Unified Testing and Specification Toolkit) produced by ISPRAS (Institute for
System Programming of the Russian Academy of Sciences) is on the border between a commercial
and an academic tool (see [12]).

The model is specified in either J@VA or C@++, which are specification languages designed for
Java and C++ code respectively. The specifications are in the form of pre- and post-conditions, and
are coded as comments in the classes and methods to be tested.

As in the T-VEC tool, the test cases are generated by applying branch coverage of the
specification of the post-condition, and this test directive seems to be implicit in the test generation
process.

Since UniTesK is close to the source code, the test drivers are created as part of the test
generation process, and not in a separate abstract to concrete translation phase.

The tool has been used by NorTel in testing parts of the kernel of a real time operating system.

PROPRIETARY TOOLS

GOTCHA-TCBEANS

GOTCHA-TCBeans is one of the ancestors of the AGEDIS test generation and execution tool
suite. The GOTCHA-TCBeans tools are described in two papers [4] [5].

 5

The modeling language used by GOTCHA is an extension of Murphi [3]. The Murphi language
is extended by the addition of test generation directives which allow for the specification of arbitrary
projections of the state space to be used as coverage criteria (see [5]).

The test cases include expected outputs, and the test translation framework is provided by
TCBeans.

The tools have been used within the IBM Corporation and the AGEDIS consortium, but are not
publicly available.

ASML

AsmL is the Abstract State Machine Language [15]. It is an executable specification language
based on the theory of Abstract State Machines. The current version, AsmL 2 (AsmL for Microsoft
.NET), is embedded into Microsoft Word and Microsoft Visual Studio.NET. It uses XML and Word
for literate specifications.

There is a test generation tool which works with this specification language, and Microsoft
researchers have reported on its characteristics in [8]. Their test generation algorithm appears to be
total transition coverage of the derived finite state machine. The tool is not commercially available.

ACADEMIC TOOLS

SPECTEST

SpecTest [7] is an automatic test case generator from George Mason University. It accepts
models written in SCR or UML, and generates test cases based on a choice of two coverage criteria,
with a further two planned for implementation.

The tools are not yet available for downloading.

MULSAW

The MulSaw project [16] at MIT incorporates two tools for the generation of test cases for Java
programs, one tool (TestEra) accepts input in the Alloy modelling language, and the other (KORAT)
accepts input in the Java Modelling Language (JML). The JML is similar to the language used by
UniTesK, in that it places pre-conditions and post-conditions in a Java-like syntax as comments at
the head of a Java method.

The KORAT test cases are generated to cover all instances of the method preconditions, and
provide expected results based on the post-conditions.

The tools are not available for experimentation.

TOSTER

TOSTER (The Object-oriented Software Testing EnviRonment) [33] is a test generation and
execution system produced by the Warsaw University of Technology. It incorporates technology for
mapping the information in UML diagrams to the source code of an application. It also generates
and runs test cases based on expected results derived from the UML state diagrams. There appear to
be two test generation algorithms, but no explicit testing directives.

http://research.microsoft.com/fse

6

TGV/CADP

TGV (Test Generation with Verification) [11] is a test case generator developed at the IRISA and
VERIMAG laboratories. It is an ancestor of the AGEDIS test generation tools.

It accepts input in the form of a LOTOS, SDL, or IF specification model. The output of the test
generator is in the TTCN format, and contains the expected results of the test. The test generation
directives may be in the form of FSM models of the test purposes. The tool has been used
extensively in experimental and industrial situations, mainly in the telecommunications industry.

The test generator is incorporated in the CADP package and may be downloaded from the
website at [32].

TORX/CADP

The TorX is an architecture for test generation and execution from the University of Twente.
Within this architecture there is a test generator which accepts test purposes in a similar format to
TGV. The modeling languages supported by TorX are LOTOS, PROMELA, and SDL.

The TorX test generator is also incorporated in the CADP package [32].

REFERENCES

[1] AGEDIS Consortium, Automated Generation and Execution of
Test Suites for DIstributed Component-based Software.

[2] Conformiq Software Ltd., Conformiq Test Generator.

[3] Dill D., Murphi description language and automatic verifier.

[4] Farchi E., Hartman A., Pinter S. S. Using a Model-based Test
Generator to Test for Standard Conformance, IBM System
Journal - special issue on Software Testing Volume 41(1) (2002)
Pp 89 - 110.

[5] Friedman G., Hartman A., Nagin K., Shiran T., Projected State
Machine Coverage for Software Testing, Proceedings of ISSTA
2002 International Symposium on Software Testing and Analysis
(July 2002).

[6] Gentleware AG, Poseidon for UML.

[7] George Mason University, Spec Test - An automatic test case
generator.

[8] Grieskamp W., Gurevich Y., Schulte W., Veanes M., Generating
Finite State Machines from Abstract State Machines,
Proceedings of ISSTA 2002 International Symposium on Software
Testing and Analysis (July 2002).

[9] Heitmeyer, C., Naval Research Laboratory, SCR Tool.

http://www.agedis.de/
http://www.agedis.de/
http://www.conformiq.com/products.html
http://verify.stanford.edu/dill/murphi.html
http://www.research.ibm.com/journal/sj/411/farchi.html
http://www.research.ibm.com/journal/sj/411/farchi.html
http://www.research.ibm.com/journal/sj/411/farchi.html
http://www.haifa.il.ibm.com/projects/verification/gtcb/papers/projection_issta.pdf
http://www.haifa.il.ibm.com/projects/verification/gtcb/papers/projection_issta.pdf
http://www.gentleware.com/
http://www.isse.gmu.edu/~aynur/rsrch/SpecTest/overview.html
http://www.isse.gmu.edu/~aynur/rsrch/SpecTest/overview.html
http://chacs.nrl.navy.mil/personnel/heitmeyer.html

 7

[10] I-Logix, Statemate Magnum.

[11] IRISA Laboratory, TGV.

[12] ISP RAS Red Verst, UniTesK.

[13] Maurer P. M., Data Generation Language.

[14] Mercury Interactive, WinRunner.

[15] Microsoft Research, Abstract State Machine Language.

[16] MIT Software Design Group, MulSaw.

[17] Munich University of Technology, AutoFocus.

[18] Objecteering Software, Objecteering UML Modeller.

[19] Rational Software, Rational Robot.

[20] Rational Software, Rational Rose.

[21] Reactive Systems Inc, Reactis.

[22] Robinson H., Finite State Model-Based Testing on a Shoestring.

[23] Telcordia Technologies, AETG Web Service.

[24] Telelogic, Tau TTCN Suite.

[25] Telelogic, Tau/Tester.

[26] Teradyne, Test Master.

[27] The MathWorks, MATRIXx graphical CASE environment.

[28] The MathWorks, Simulink and StateFlow.

[29] T-VEC Technologies, Test Vector Generation System.

[30] TogetherSoft, Together Control Centre.

[31] University of Twente, TorX.

[32] Vasy Inria Rhone Alpes, Caesar/Aldebaran Development Package
(CADP).

[33] Warsaw University of Technology, Toster.

http://www.ilogix.com/products/magnum/index.cfm
http://www.irisa.fr/pampa/VALIDATION/TGV/TGV.html
http://www.ispras.ru/~RedVerst
http://www.csee.usf.edu/~maurer/dgl.html
http://www-heva.mercuryinteractive.com/products/winrunner
http://research.microsoft.com/fse/asml
http://mulsaw.lcs.mit.edu/
http://autofocus.in.tum.de/index-e.html
http://www.objecteering.com/us/index.php
http://www.rational.com/products/robot/index.jsp
http://www.rational.com/
http://www.reactive-systems.com/
http://www.model-based-testing.org/shoestring.htm
http://aetgweb.argreenhouse.com/
http://www.telelogic.com/products/tau/ttcn/index.cfm
http://www.telelogic.com/products/tau/tautester/index.cfm
http://www.geocities.com/model_based_testing/sqw97.pdf
http://www.mathworks.com/products/matrixx
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/stateflow
http://www.t-vec.com/Home.asp
http://www.togethersoft.com/products/controlcenter/index.jsp
http://www.inrialpes.fr/vasy/cadp/software/99-b-torx.html
http://www.inrialpes.fr/vasy/cadp.html
http://www.inrialpes.fr/vasy/cadp.html
http://home.elka.pw.edu.pl/~alasota

