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ABSTRACT
Model-based testing is a new and evolving technique for gen-
erating a suite of test cases from requirements. Testers using
this approach concentrate on a data model and generation
infrastructure instead of hand-crafting individual tests. Sev-
eral relatively small studies have demonstrated how combi-
natorial test generation techniques allow testers to achieve
broad coverage of the input domain with a small number of
tests. We have conducted several relatively large projects in
which we applied these techniques to systems with millions
of lines of code. Given the complexity of testing, the model-
based testing approach was used in conjunction with test au-
tomation harnesses. Since no large empirical study has been
conducted to measure efficacy of this new approach, we re-
port on our experience with developing tools and methods in
support of model-based testing. The four case studies pre-
sented here offer details and results of applying combinato-
rial test-generation techniques on a large scale to diverse ap-
plications. Based on the four projects, we offer our insights
into what works in practice and our thoughts about obstacles
to transferring this technology into testing organizations.

Keywords
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1 INTRODUCTION
Product testers, like developers, are placed under severe
pressure by the short release cycles expected in today’s soft-
ware markets. In the telecommunications domain, customers
contract for large, custom-built systems and demand high
reliability of their software. Due to increased competition
in telecom markets, the customers are also demanding cost
reductions in their maintenance contracts. All of these is-
sues have encouraged product test organizations to search
for techniques that improve upon the traditional approach of
hand-crafting individual test cases.
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Test automation techniques offer much hope for testers. The
simplest application is running tests automatically. This al-
lows suites of hand-crafted tests to serve as regression tests.
However, automated execution of tests does not address the
problems of costly test development and uncertain coverage
of the input domain.

We have been researching, developing, and applying the idea
of automatic test generation, which we call model-based test-
ing. This approach involves developing and using a data
model to generate tests. The model is essentially a specifica-
tion of the inputs to the software, and can be developed early
in the cycle from requirements information. Test selection
criteria are expressed in algorithms, and can be tuned in re-
sponse to experience. In the ideal case, a regression test suite
can be generated that is a turnkey solution to testing the piece
of software: the suite includes inputs, expected outputs, and
necessary infrastructure to run the tests automatically.

While the model-based test approach is not a panacea, it of-
fers considerable promise in reducing the cost of test genera-
tion, increasing the effectiveness of the tests, and shortening
the testing cycle. Test generation can be especially effec-
tive for systems that are changed frequently, because testers
can update the data model and then rapidly regenerate a test
suite, avoiding tedious and error-prone editing of a suite of
hand-crafted tests.

At present, many commercially available tools expect the
tester to be 1/3 developer, 1/3 system engineer, and 1/3 tester.
Unfortunately, such savvy testers are few or the budget to
hire such testers is simply not there. It is a mistake to de-
velop technology that does not adequately address the com-
petence of a majority of its users. Our efforts have focused on
developing methods and techniques to support model-based
testing that will be adopted readily by testers, and this goal
influenced our work in many ways.

We discuss our approach to model-based testing, including
some details about modeling notations and test-selection al-
gorithms in Section 2. Section 3 surveys related work. Four
large-scale applications of model-based testing are presented
in Section 4. Finally, we offer some lessons learned about
what works and does not work in practice in Section 5.
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Figure 1: Architecture of a generic test-generation system

2 METHODS AND TOOLS FOR MODEL-BASED
TESTING

Model-based testing depends on three key technologies: the
notation used for the data model, the test-generation al-
gorithm, and the tools that generate supporting infrastruc-
ture for the tests (including expected outputs). Unlike the
generation of test infrastructure, model notations and test-
generation algorithms are portable across projects. Figure 1
gives an overview of the problem; it shows the data flows in
a generic test-generation system.

We first discuss different levels at which model-based testing
can be applied, then describe the model notation and test-
generation algorithm used in our work.

Levels of testing
During development and maintenance life cycles, tests may
be applied to very small units, collections of units, or entire
systems. Model-based testing can assist test activities at all
levels.

At the lowest level, model-based testing can be used to ex-
ercise a single software module. By modeling the input pa-
rameters of the module, a small but rich set of tests can be
developed rapidly. This approach can be used to help devel-
opers during unit test activities.

An intermediate-level application of model-based testing is
checking simple behaviors, what we call asingle stepin
an application. Examples of a single step are performing
an addition operation, inserting a row in a table, sending a
message, or filling out a screen and submitting the contents.
Generating tests for a single step requires just one input data
model, and allows computation of the expected outputs with-
out creating an oracle that is more complex than the system
under test.

A greater challenge that offers comparably greater benefits
is using model-based testing at the level of complex system
behaviors (sometimes known as flow testing). Step-oriented
tests can be chained to generate comprehensive test suites.
This type of testing most closely represents customer usage
of software. In our work, we have chosen sequences of steps
based on operational profiles [11], and used the combinato-
rial test-generation approach to choose values tested ineach
step. An alternate approach to flow testing uses models of a
system’sbehaviorinstead of its inputs to generate tests; this
approach is surveyed briefly in Section 3.

Model notation
The ideal model notation would be easy for testers to under-
stand, describe a large problem as easily as a small system,
and still be a form understood by a test-generation tool. Be-
cause data model information is essentially requirements in-
formation, another ideal would be a notation appropriate for
requirements documents (i.e., for use by customers and re-
quirements engineers). Reconciling these goals is difficult.
We believe there is no ideal modeling language for all pur-
poses, which implies that several notations may be required.
Ideally the data model can be generated from some represen-
tation of the requirements.

In practice, a requirements data model specifies the set of all
possible values for a parameter, and a test-generation data
model specifies a set of valid and invalid values that will be
supplied for that parameter in a test. For example, an input
parameter might accept integers in the range 0..255; the data
model might use the valid values 0, 100, and 255 as well as
the invalid values -1 and 256. (We have had good experience
with using values chosen based on boundary-value analysis.)
Additionally, the model must specify constraints among the
specific values chosen. These constraints capture semantic
information about the relationships between parameters. For
example, two parameters might accept empty (null) values,
but cannot both be empty at the same time. A test-generation
data model can also specify combinations of values (“seeds”)
that must appear in the set of generated test inputs. The use
of seeds allows testers to ensure that well-known or critical
combinations of values are included in a generated test suite.

Our approach to meeting this challenge has employed a rela-
tively simple specification notation called AETGSpec, which
is part of the AETGTM software system.1 Work with prod-
uct testers demonstrated to us that the AETGSpec notation
used to capture the functional model of the data can be sim-
ple to use yet effective in crafting a high quality set of test
cases. AETGSpec notation is not especially large; we have
deliberately stayed away from constructs that would increase
expressiveness at the expense of ease of use. For example,
complex relational operators likejoin andprojectwould have
provided more constructs for input test specifications, but we
could never demonstrate a practical use for such constructs.

1AETG is a trademark of Bellcore.
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# This data model has four fields.
field a b c d;

# The relation ‘r’ describes the fields.
r rel {

# Valid values for the fields.
a: 1.0 2.1 3.0;
b: 4 5 6 7 8 9 10;
c: 7 8 9;
d: 1 3 4;

# Constraints among the fields.
if b < 9 then c >= 8 and d <= 3;
a < d;

# This must appear in the generated tuples.
seed {

a b c d
2.1 4 8 3

}
}

Figure 2: Example data model in AETGSpec notation

An example model written in AETGSpec notation appears
in Figure 2. Besides the constructs shown in the example,
AETGSpec supports hierarchy in both fields and relations;
that is, a relation could have other relations and a field could
use other fields in a model. The complete syntax of the lan-
guage is beyond the scope of this paper.

Thanks to the relative simplicity of the notation, we have had
good experience in teaching testers how to write a data model
and generate test data. Experience discussed in Section 4
showed that testers learned the notation in about an hour, and
soon thereafter were able to create a data model and generate
test tuples.

After an input data model has been developed it must be
checked. Deficiencies in the model, such as an incorrect
range for a data item, lead to failed tests and much wasted
effort when analyzing failed tests. One approach for mini-
mizing defects in the model is ensuring traceability from the
requirements to the data model. In other words, users should
be able to look at the test case and trace it to the requirement
being tested. Simple engineering techniques of including as
much information as possible in each tuple reduce the effort
associated with debugging the model. Still, defects will re-
main in the model and will be detected after tests have been
generated. Incorporating iterative changes in the model with-
out drastically altering the output is vital but difficult. Using
“seed” values in the data model can help, but ultimately the
test-selection algorithm will be significantly perturbed by in-
troducing a new value or new constraint, most likely result-
ing in an entirely new set of test cases.

Test-generation algorithm
We use the AETG software system to generate combinations

Test Parameters (factors)
no. 1 2 3 4 5 6 7 8 9 10

1 a a a a a a a a a a
2 a a a a b b b b b b
3 b b a b b a b a b a
4 a b b b a a a b b b
5 b a b b a b b a a b
6 b b b a b b a b a a

Table 1: Test cases for 10 parameters with 2 values each

of input values. This approach has been described exten-
sively elsewhere [4], so we just summarize it here.

The central idea behind AETG is the application of experi-
mental designs to test generation [6]. Each separate element
of a test input tuple (i.e., a parameter) is treated as afac-
tor, with the different values for each parameter treated as
a level. For example, a set of inputs that has 10 parameters
with 2 possible values each would use a design appropriate
for 10 factors at 2 levels each. The design will ensure that ev-
ery value (level) of every parameter (factor) is tested at least
once with every other level of every other factor, which is
called pairwise coverage of the input domain. Pairwise cov-
erage provides a huge reduction in the number of test cases
when compared with testing all combinations. By applying
combinatorial design techniques, the example with2

10 com-
binations can be tested with just 6 cases, assuming that all
combinations are allowed. The generated cases are shown
in Table 1 to illustrate pairwise combinations of values. The
combinatorial design technique is highly scalable; pairwise
coverage of 126 parameters with 2 values each can be at-
tained with just 10 cases.

In practice, some combinations are not valid, so constraints
must be considered when generating test tuples. The AETG
approach uses avoids; i.e., combinations that cannot appear.

The AETG algorithms allow the user to select the degree of
interaction among values. The most commonly used degree
of interaction is 2, which results in pairwise combinations.
Higher values can be used to obtain greater coverage of the
input domain withaccordingly larger test sets.

The approach of generating tuples of values with pairwise
combinations can offer significant value even when comput-
ing expected values is prohibitively expensive. The idea is
using the generated data as test data. The generated data set
can subsequently be used to craft high-quality tests by hand.
For example, a fairly complex database can easily be mod-
eled, and a large data set can be quickly generated for the
database. Use of a generated data set ensures that all pair-
wise combinations occur, which would be difficult to attain
by hand. The data set is also smaller yet far richer in combi-
nations than arbitrary field data.
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Initial work with product testers was facilitated by offering
access to the AETG software system over the web. The ser-
vice is named AETG Web. By eliminating expensive delays
in installing and configuring software, testers could begin us-
ing the service almost immediately.

Strengths, Weaknesses, and Applicability
The major strengths of our approach to automatic test gener-
ation are the tight coupling of the tests to the requirements,
the ease with which testers can write the data model, and
the ability to regenerate tests rapidly in response to changes.
Two weaknesses of the approach are the need for an oracle
and the demand for development skills from testers, skills
that are unfortunately rare in test organizations. The ap-
proach presented here is most applicable to a system for
which a data model is sufficient to capture the system’s be-
havior (control information is not required in the model). In
other words, the complexity of the system under test’s re-
sponse to a stimulus is relatively low. If a behavioral model
must account for sequences of operations in which later op-
erations depend on actions taken by earlier operations, such
as a sequence of database update and query operations, ad-
ditional modeling constructs are required to capture control-
flow information. We are actively researching this area, but
it is beyond the scope of this paper.

3 RELATED WORK
Heller offers a brief introduction to using design of experi-
ment techniques to choose small sets of test cases [8]. Mandl
describes his experience with applying experiment design
techniques to compiler testing [10]. Dunietz et al. report on
their experience with attaining code coverage based on pair-
wise, triplet-wise, and higher coverage of values within test
tuples [7]. They were able to attain very high block coverage
with relatively few cases, but attaining high path coverage re-
quired far more cases. Still, their work argues that these test
selection algorithms result in high code coverage, a highly
desirable result. Burr presents experience with deriving a
data model from a high-level specification and generating
tests using the AETG software system [2].

Other researchers have worked on many areas in automated
test data and test case generation. Ince offers a brief sur-
vey [9]. Burgess offers some design criteria that apply when
constructing systems to generate test data [1].

Ostrand and Balcer discuss closely related work to ours [12].
As in our approach, a tester uses a modeling notation to
record parameters, values, and constraints among param-
eters; subsequently, a tool generates tuples automatically.
However, their algorithm does not guarantee pairwise cov-
erage of input elements.

Clarke reports on experience with testing telecommunica-
tions software using a behavioral model [3]. This effort
used a commercially available tool to represent the behav-
ioral model and generate tests based on paths through that
model. Although Clarke reports impressive numbers con-

Category Examples
Arithmetic add, subtract, multiply
String clrbit, setbit, concat, match
Logical and, or, xor
Time and date datestr, timestr, date+, time+
Table addrow, delrow, selrow

Table 2: Manipulators tested in project 1

field type1 type2 type3;
field value1 value2 value3;
field op1 op2;

a rel {
type1 type2 type3: int float hex ;
value1 value2 value3: min max nominal ;
op1 op2: "+" "*" "/" "-";

}

Figure 3: AETGSpec data model for an expression with 3
operators

cerning the cost of generating tests, no indicators are given
about the tests’ effectiveness at revealing system failures.

4 CASE STUDIES
We present experience and results from four applications of
our technology to Bellcore products.

Project 1: Arithmetic and table operators
The first project addressed a highly programmable system
that supported various basic operators [5]. This work had
many parallels to compiler testing, but the focus was very
narrow. Test were generated for arithmetic and table opera-
tors, as shown in Table 2.

The data model was developed manually. Individual data
values were also chosen manually, with special attention to
boundary values. The data model included both valid and
invalid values. Tuples (i.e., combinations of test data) were
generated by the AETG software system to achieve pairwise
coverage of all valid values. (Testing of table manipulators
was slightly different because both tables and table opera-
tions were generated.) All manipulator tests were run using
test infrastructure that was written in the language provided
by the programmable system. This infrastructure (“service
logic”) performed each operation, compared the result to an
expected value, and reported success or failure. The effort to
create the required service logic required more time than any
other project element.

Testing arithmetic/string manipulators
Figure 3 shows a model (an AETG software system relation)
for generating test cases. In this example, each test case con-
sists of an arithmetic expression with two operators and three
operands. The table lists all possibilities foreach. An exam-
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Type Val Op Type Val Op Type Val
float min – float nom + float min
int nom – int min – hex nom
hex max / hex min + int max
int min + int max / float max
hex max * float max * hex min
float nom + hex nom * int nom
hex nom / float max – float nom
int min * hex min – int min
float max / int nom / hex max
hex min – hex max / int nom
float nom * float min / float max
int max * int nom + hex nom
int min / int min * hex min
hex max + int nom – hex min
float max – hex max * float max
int nom + float max + int min
float max + int min – int max
float max – hex nom / hex min

Table 3: Cases for a 3-operator expression with pairwise cov-
erage

ple test case could be “int min + float max * hex nominal”
which might be implemented as “0 + 9.9E9 * ab.” The AETG
software system creates 18 test cases (shown in Table 3) for
covering all the pairwise interactions as compared to 11,664
test cases required for exhaustive testing. We created ex-
pressions with 5 operators. Instead of exhaustively testing
3
12
�4

5 combinations, the AETG software system generated
just 24 test cases. Similar tables were used to create test
cases for the other basic manipulators.

After the test cases were generated, expected output was
computed manually, which was feasible due to the small
number of test cases. A set of invalid test cases was also
generated using invalid values for the parameters. Appropri-
ate logic was appended to the test cases so they would check
and report their own results.

Testing table manipulators
Two steps were required to test table manipulators, namely
generation of tables with data and generation of queries to be
run against the newly generated tables.

In the first step, the AETG software system was used to gen-
erate table and selection schemas. A table schema specifies
the number of columns, the data type of each column, and
for each column an indication whether that column is a key
for the table. A selection schema states which columns will
participate in a query. Figure 4 gives a relation for creating
table and selection schemas for three-column tables.

Except for the addrow operation, all the other operations
have to specify a selection criteria. For the example given

field type1 type2 type3 ;
field key1 key2 key3 ;
field sel1 sel2 sel3 ;

a rel {
# Data type of columns 1, 2, 3
type1 type2 type3: hex int float string date ;
# Is column 1, 2, 3 used as a key?
key1 key2 key3 : yes no ;
# Is column 1, 2, 3 used as selection criteria?
sel1 sel2 sel3 : yes no ;

}

Figure 4: AETGSpec data model for testing 3-column tables

in Figure 4, the AETG software system creates 24 table and
selection schemas instead of approximately 8000 in the ex-
haustive case. Due to an environmental constraint of 15
columns maximum per table, tables were modeled with 15
columns only. Instead of exhaustively testing5

15
� 2

30 test
cases, only 45 test cases were created.

Following the generation of table and selection schemas, in-
stances were created for each. Exactly one instance was
created for each table schema; a random data generator
was used to populate the table instance. Foreach selection
schema that was generated for a particular table, six selection
instances were created. For example, if the selection schema
for a table indicated that only columns 1 and 2 participate,
one selection instance might look like “table1.column1 = 1
AND table1.column2 = ABC.”

Of the six selection instances (six was chosen arbitrarily),
three selections were for rows that existed in the table and
three were for rows that did not exist. The target rows for the
successful selections were randomly chosen from the newly
generated table instance by a program; rows at the begin-
ning, middle, and end of the table were favored. The three
unsuccessful queries were generated by invalidating the three
successful cases.

Results
The models were used to generate 1,601 tests cases, of which
213 (approximately 15%) failed. The failures were analyzed
to discover patterns, resulting in the identification of sev-
eral problem classes. These problem classes included mis-
handled boundary values, unexpected actions taken on in-
valid inputs, and numerous inconsistencies between the im-
plementation and the documentation.

Several of the failures were revealed only under certain com-
binations of values. For example, if a table had a compound
key, (i.e., the key consisted of more than one column), and
if only a subset of these key columns were specified in the
selection criteria, then the system would ignore any non-key
column in the criteria during selection. This would lead to
the wrong rows being updated, deleted, or selected.
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After developing the test-generation system for one release
of the software, test suites were generated for two subsequent
releases with just one staff-week of effort each. In addition
to increasing the reliability of the product, the testing orga-
nization gained a tool that can be used to generate a compact
and potent test suite.

Because the project never changes the functionality of the
basic manipulators, there is no need to regenerate the suite.
One major implication of this stability was that it was
straightforward to transfer the test suite to the testing orga-
nization; they only needed to understand the tests, not the
generator. In this project, the main benefit of generated tests
was the discovery of failures that otherwise would not have
been detected before reaching the customer.

Project 2: Message parsing and building
This project generated tests that exercised message pars-
ing and building functionality for a telephone network el-
ement [5]. Testing the message set’s parsing and building
functionality meant checking that all parameters from all
messages could be read in from the network and sent out
to the network. The message set under test consisted of 25
query messages and associated response messages (total 50
unique messages). Each message had 0 to 25 parameters. Pa-
rameters included scalars (e.g., integers), fixed collections of
scalars (structs), and variable-length collections of arbitrary
types. Ultimately all parameters can be viewed as collections
of scalars.

On this project, the data model was extracted from a specifi-
cation of a message set that had been created by the project in
order to guarantee traceability from the requirements down
to the code. Three valid values and one invalid value were
selected automatically based on the specification for each
scalar. Valids were selected by focusing on boundary val-
ues; the empty (null) value was also shown for all optional
parameters. Included in the generated tests were deliberate
mismatches of values to rule out false positive matches.

The test-generation system
The first step in generating tests was extracting a model of
the data (a test specification) from the message-set specifica-
tion. Challenges that were overcome in developing the data
model included null values for message parameters, complex
parameters (e.g., lists and other variable-length types), and
upper bounds on the total message size.

Message parameter values were chosen individually. The
AETG software system was then used to construct messages
(i.e., tuples of values) such that all pairwise combinations of
parameter values were covered. In invalid messages, exactly
one parameter value was invalid.

The strategy for testing an outgoing message was to build
the message in the network element, send the message out,
and compare the output with the expected result using a text-
comparison tool. The strategy for testing an incoming mes-

sage was to send in a message to the network element using
a call-simulation tool, then to compare the message received
with expected values embedded in the logic (making the case
self-checking).

Following the selection of tuples, all required elements were
generated. These elements included scripts to simulate calls,
expected outputs, logic, and test specifications.

Each test case was run by simulating a telephone call. Tests
of incoming messages were initiated by sending a message
with a full set of parameter values; success or failure was
indicated by the contents of a return message. Tests of out-
going messages were initiated by sending a message with
just enough information to cause the outgoing message to
be sent; success or failure was determined by comparing the
output with an expected output.

Results
The data models were used to generate approximately 4,500
test cases, of which approximately 5% revealed system fail-
ures. The failures were revealed both while developing the
test-generation system and running the generated tests. After
analysis of all problems, 27 distinct failure classes were iden-
tified and submitted for repair. Just 3 of the failures that were
revealed had been detected concurrently by the test team.
The model-based testing approach revealed new failures that
otherwise would have been delivered to the field.

Following the transfer of this technology to the testing orga-
nization, the project will be able to generate test suites for
subsequent revisions of the message set at extremely low
cost. Significantly, the test suite can be generated early in
the release cycle, so the tests can be executed as soon as an
executable version is available.

Project 3: A rule-based system
The system under test helps manage a workforce. It uses
rules encoded in a proprietary language to assign work re-
quests to technicians. A database stores information about
work requests (e.g., job location, estimated time for the job,
skills required, times when the work can and can’t be done,
etc.) and information about technicians (e.g., working hours,
skills, overtime policies, work locations, meetings, etc.). As
the day progresses, the data reflects work assignments that
are completed on-schedule, ahead of schedule, or that are
running late with respect to the estimated times. When run
during a work day, the system extracts information from the
database, assigns work requests to technicians, and stores
the assignments back in the database. The assignment run
is affected by several control parameters, such as the priority
given to work requests due that day.

Modeling and testing challenges
Five separate models were used to generate tests. Three data
models were used to establish the initial state of the database:
one model for work requests (20 parameters), one for tech-
nicians (23 parameters), and one for external assignments
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(“locks”) of technicians to specific jobs (4 parameters). Ac-
tual job times (travel, setup, work duration) were modeled
in relation to the estimated times for the scheduled work re-
quests using a percentage of the estimated times (a fourth
data model). The fifth model had information about con-
trol parameters that affect the assignment of work requests
to technicians (e.g., how many technicians would be consid-
ered for each work request; 12 parameters).

Two types of tests were generated and run. The first tested
the initial assignment of jobs based on the initial state of
the database. These tests could be created rapidly because
the initial state had been generated. The second type of test
checked the assignment of jobs during the course of a day;
i.e., after the estimated time for jobs had been replaced by
actual times. The second type of test was much more diffi-
cult to create becauseupdates had to correlate perfectly with
existing jobs; i.e., the existing state of the database had to be
extracted and used during the test-generation step.

This system differed sharply from the other systems to which
we applied model-based testing in that multiple valid outputs
could result from a single dataset. For example, in the triv-
ial case of two simple work requests and two skilled techni-
cians, the only criteria on the result is that both jobs must be
assigned tosomeone.

Evaluation of the results was, in short, difficult. Because all
data in the application is related, a change to one piece of
input data (e.g., the start time of a work request), can change
every output record. The only case that is easy to detect au-
tomatically is a crash (i.e., no output at all). It is difficult
to determine that each work request is assigned optimally to
each technician, given all the business rules, the other tech-
nicians, and the work requests. Computation of expected
results is the primary weakness of model-based testing. Our
experience demonstrated the need for creative solutions to
constructing an oracle without reimplementing the system
under test.

Because we had no oracle, work assignments were analyzed
manually in several ways. A broad analysis checked whether
work requests were assigned reasonably and in conformance
with business rules. A deep analysis was performed for se-
lected technicians to determine whether the tech’s time was
used efficiently, or to determine why a tech was assigned no
jobs when work requests were still available. Similar deep
analyses were performed for particular jobs that were not
scheduled despite availability of technicians.

Results
The database was loaded and updated using generated data
from the four data models. A total of 13 tests were run,
where a test consisted of requesting assignments for all out-
standing work requests. The 13 tests were generated from the
model of the system’s control parameters (9 valid, 4 invalid).
Measurements of code coverage using a code-coverage tool
developed by Bellcore showed relatively high block cover-

age (84%) after running the test sets. While very good, this
may not be significant for a object oriented system with a
rule processing mechanism.

A total of 4 failures were revealed and submitted for repair,
of which just one was found concurrently by testers. Two of
the failures were due to combinatorial problems in time re-
lations, and one of the failures resulted from a combination
that stressed the priority parameter; the appropriate combina-
tions of values apparently had never been tried before. The
relatively small number of problems detected was directly
caused by the difficulty of analyzing the large amount of out-
put that results from generated test inputs.

Based on this experience, we recommend that test sets be
generated by product test and given to developers to run prior
to delivering the application to product test. This is because
the developers have trace facilities and other tools to check
the output more carefully than is possible by a product tester.
We would also recommend that once the minimum test sets
have been generated, the parameter interaction values in the
data models be increased to create large numbers of tests
that could be used for performance, load, and stress testing.
We also recommend that the product testers use the gener-
ated test data as a starting point for creating hand-crafted test
cases in which the input data is modified in small, controlled
ways so that the output may be more easily understood in
relation to the change.

We found that using the AETGSpec data model for appli-
cation modeling was easy, and can recommend its use by
testers. The analysis of effort shows that modeling and up-
dating the models for new releases took only a few days
whereas harness development took 17% of the total time
spent and the analysis of the large amounts of test output
took 40% of the total time. Further research is necessary to
develop methods for decreasing the analysis time, to develop
methods for easily creating test harnesses, and to develop
more automated test analysis techniques. With the increase
in tests that test automation brings, it is imperative that there
be robust automated test output analysis techniques and test
harnesses to run the tests automatically.

Project 4: A user interface
The objective of this project was to model and generate tests
for a single GUI window in a large application. The tests
would verify that the application responded appropriately to
inputs. Related work focused on discovering the model for
the window automatically, but that is beyond the scope of
this paper.

Challenges in modeling
The window had 6 menus, each with several items. Also
displayed in the window were two “tabs” frequently seen in
the Windows GUI; i.e., the window was really a frame that
housed two pages of information, only one of which could
be displayed at a time. Clicking on one or the other tab com-
pletely changed the window’s controls and behavior.
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The first modeling attempt used a single relation with 41
constraints, but the constraints were difficult to understand
and eventually found to prevent valid cases. Ultimately a
4-relation data model with 15 constraints was created. The
main difficulty was that all menu items are essentially differ-
ent values of the same parameter: only one menu item can
be clicked per test. This meant that the relations all had to
have the same parameters; however, in the case of the cut,
copy, and paste items we did not care about the values of any
parameter except the one that indicated which text field was
the target of the cut, copy, or paste operation. Thus in that
relation for cut, copy, and paste, all parameters had only one
value except the two in question.

The most difficult part of the modeling effort was reading the
requirements and determining the constraints. In fact, some
of the constraints were not covered in the requirements and
we had to run the application to see exactly how it had been
implemented. This is to be expected, since we have found
that on many applications we model, the requirements are
not complete and the developers are forced to make decisions
about the missing cases.

Results
Test generation from the model yielded 159 test cases that
covered 2423 pairwise interactions. Subsequent work devel-
oped a test harness so the tests could be executed automat-
ically. Output analysis was easy because it consisted solely
of determining that the correct window was displayed after
an action key was clicked. A test for the correct window was
implemented in the test harness and the harness checked after
each test to determine if the correct window had appeared.

A total of 6 failures were revealed and reported. Of those
failures, 3 had been detected concurrently by the test team.
Again, the model-based testing approach revealed new fail-
ures that would not have been caught by the test team.

One interesting problem was found thanks to the automatic
execution of tests. The problem occurred because the code
that processed the manipulation of the cut, copy, and paste
icons leaked resources each time characters were selected in
a text box. The problem was found because the windows
would invariably disappear after running about 70 of the 159
automated tests. A close look at a trace file showed that the
cut and copy icons were called frequently, and it was then
simple to construct a script that repeatedly selected and un-
selected text in a text field. The loop ran for 329 times until
the failure was triggered. This type of problem would not
have been found by a manual test approach.

Summary of results
Table 4 gives an overview of the results from the four case
studies. A failed test case is any deviation from the expecta-
tion. A failure class aggregates similar failures. An example
of a failure class is incorrectly handling a null parameter in
a message; this class might be represented by hundreds of
failures.

Total Failed Failure
Project test cases test cases classes
1: Basic manipulators 1,601 13% 43
2: Messaging 4,500 5% 27
3: Rule-based system� 13 23% 4
4: User interface 159 2% 6
�Multiple models were used, andeach test case was large,
so the numbers from Project 3 are misleading.

Table 4: Results from testing manipulators

5 LESSONS LEARNED
We offer some lessons from developing a system that gener-
ates, documents, executes, evaluates, and tracks thousands of
test cases based on a data model, starting with implications
for model-based testing.

The model of the test data is fundamental. The model
must be developed carefully and must include constraints
among data values. It is important that the model properly
maps to the software under test. We found domain expe-
rience to be crucial to developing and quality-checking the
model, and we interacted heavily with project developers and
testers.

Iteration is required. Our method of operation when build-
ing a layer of the testing system was first to build sample data
artifacts manually (such as script files or test specification
text segments) and next to write software that produced sim-
ilar artifacts. We would iterate again to incorporate updated
or more complete models. We found the iterative approach
effective and would apply it to similar projects.

Find abstractions. It takes effort and experience to layer
the testing software and to interface the layers. We devel-
oped a number of intermediate data artifacts between soft-
ware layers, but having multiple layers allowed us to encap-
sulate functionality within layers to help with software read-
ability and maintenance.

Use intermediate files.Managing artifacts in the testing sys-
tem is a large part of a test-generation effort. We chose a file
interface between software layers; this allowed every layer of
files (such as test specification documents) to be placed un-
der revision control, and altered manually if necessary. The
payoff from this effort was that we could execute layers of
software in succession using a traditional “Makefile.”

Minimize effort by managing change. Support for man-
aging change is critical to minimizing human effort. Both
during testing system development and when analyzing test
results, we found both data model and testing system prob-
lems. We found it non-trivial to require minimal regeneration
and/or test case execution when a layer of data or software
changed. Using ’make’ helped in a limited way, but nomi-
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nally, changes required both regeneration of all downstream
file and re-execution of the test suite (costly). Revision con-
trol, manual updates, and tracking test results were challeng-
ing to handle as well with respect to regeneration. Prototype
testing systems can ignore some of these issues, but at the
expense of maintainability or of not conforming to auditable
quality standards.

Restart in the middle. When running thousands of gener-
ated test cases, invariably the machine will be restarted, the
power will fail, or some other unfortunate event will interrupt
the session. The tester must be able to continue execution of
tests following these interruptions. One technique that helps
is making tests independent of each other; i.e., starting each
test from a known base state instead of chaining them.

Obstacles to technology transfer
Model-based testing represents a significant departure from
conventional testing practice, and researchers face a number
of problems in transferring this approach into a testing orga-
nization.

Tests are mysterious.The testing objectives of a particular
test case are not as clearly defined as in a typical, manually
authored test case. In other words, there is no comment such
as “test feature X.” Instead, the testing objective of covering
the input domain is spread across a large number of cases.
This can lend an unwanted element of mystery to each test.

Development expertise wanted.A test-generation system
can be readily applied by testers, but the development of that
system requires staff who have experience with both the soft-
ware quality profession and software development. The mix
of skill sets is imperative for making the tradeoffs involved in
designing data flows and implementing tools, yet is difficult
to find in most testing organizations.

Local practices may hinder automation. Local practices
may directly conflict with automation, but any generation
system must respect them. For example, a test specifica-
tion document may be required to establish an audit trail.
Tracking the number of test cases run, failed, and passed
may be required; without an interface to the tracking system,
the generated tests will be invisible to project management.
These issues can dramatically increase the effort required to
develop the testing system, but are vital to acceptance.

Test process must be reengineered.A substantial ini-
tial investment is required to benefit from model-based test-
ing. Appropriate changes must be made in test strategies,
test planning, etc. Additionally, a large development ef-
fort is required to establish the needed support infrastruc-
ture for running and logging thousands of test cases. How-
ever, brute force test data generation approaches immedi-
ately drive themselves out of contention when automation is
lagging. Fine tuning of the generation process to go from a
select few tests with critical coverage to a highly redundant,
high coverage set of tests can help.

6 CONCLUSION AND FUTURE WORK
In the four case studies presented here, generated test cases
revealed numerous defects that were not exposed by tradi-
tional approaches. Many of the defects could only be ob-
served given certain pairs of values, which offers consider-
able support for the efficacy of the AETG software system’s
approach.

We believe our modeling and test-generation approach satis-
fies the goal of usability by testers. In our experience, testers
found the activity of specifying a software component’s in-
puts to be natural and straightforward. By using the AETG
software system, testers required minimal training (about
two hours) to write their first data model and generate test
tuples with pairwise combinations. As noted above, these
tuples offer immediate value when used as test data sets (in-
puts for hand-crafted tests). Of course a significantly greater
investment, mostly in software and script development, is re-
quired to develop the infrastructure such as an oracle that will
allow the tests to be run wholly automatically. These invest-
ments revealed significant numbers of failures in our pilot
projects, which is the ultimate justification for investments
in testing technology.

We have identified the following questions for future work:

� What are the challenges of applying model-based test-
ing during different phases of testing?

� Can the same modeling language be used for different
phases of testing?

� What benefits will model-based testing deliver at differ-
ent phases of testing?

� How can commonalities in successive versions of a gen-
erated test suite be identified in order to avoid unneces-
sary regeneration?

Future work will also explore combining behavioral models
(covering possible paths) with input models (covering pair-
wise combinations of inputs) to reach new heights in test ef-
fectiveness and input domain coverage.

Free trials of the AETG software system are offered via a
secure server on the world-wide web. Please visit:
https://aetgweb.tipandring.com
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