
The Way Forward for Unifying Dynamic Test Case Generation:
The Optimisation-Based Approach

Nigel Tracey John Clark Keith Mander

Department of Computer Science
University of York
Heslington, York

YO1 5DD, England.
+44 1904 432712

fnjt,jac,manderg@cs.york.ac.uk

Abstract

One of the major costs in a software project is the construction of test-data. This paper outlines a gen-
eralised test-case data generation framework based on optimisation techniques. This framework can
incorporate a number of testing criteria unifying both functional and non-function testing. Application
of the optimisation based approach are given for worst-case execution time, specification conformance,
structural coverage and exception condition testing. The results of a number of small example case
studies are presented and show the efficacy of the approach.



1 Introduction

Software testing is an expensive process, typically consuming at least 50% of the total costs involved in
developing software [1]. Automation of the testing process is desirable both to reduce the development
costs and also to improve the quality of (or at least confidence in) software. While automation of the
testing process – the maintenance and execution of tests – is becoming commercially wide spread, the
automation of test-data generation has yet to find its way out of academia. Ould has suggested that it is
this automation of test-data generation which is vital to advancing the state-of-the-art in software testing
[18].

Software testing can be divided into the testing of functional and non-functional properties. Testing
non-functional properties is concerned with ensuring that the constraints imposed by process, product
or external requirements are met [20]. Research into testing non-functional requirements is limited,
with very little work on automation of the testing process [21]. The current industrial state-of-practice
appears to simply reuse functional tests (which in practice is little better than random testing). The work
presented in this paper aims to provide a unified framework which allows test-data to be generated for
both functional and non-functional properties.

Many techniques for generating test-data for functional properties have been developed [2, 4, 5, 6,
10, 11, 13, 14, 16, 17, 23, 24]. These can broadly be classified into static and dynamic methods. Static
techniques do not require the software under test to be executed. They generally use symbolic execution
to obtain constraints on input variables for the particular test criterion. Solutions to these constraints
represent the test-data. Many of the limitations of the static techniques comes from their use of symbolic
execution. In contrast, dynamic methods require the software under test to be executed. Current dynamic
methods are briefly discussed in the following section. This is followed by details of the optimisation
based framework for dynamic test-data generation. Some applications of this framework to specific
testing criteria are then given to show how optimisation techniques can effectively generate good test-
data.

2 Dynamic Approach

The first use of dynamic methods to automatically generate test-data is presented in [16]. The use of
dynamic methods is based on the contention that test-data generation is best formulated as a numerical
maximisation (or minimisation) problem. The results of Miller’s work appear to be very encouraging.
Suggestions for further work included attempting to apply global heuristic optimisation techniques to im-
prove the search process. Later work by Korel [13] presented a technique which monitored the execution
of the software under test. When a undesirable branch was taken the execution was suspended and func-
tion minimisation techniques used to alter the execution path at the branch point. More recently, work by
Jones [10] and Watkins [23] has begun to explore Miller’s recommendation of using global optimisation
techniques. A more detailed review of existing work on test data generation can be found in [9, 22].

The application of many of the existing techniques is limited by the lack of generality. This lack of
generality can be seen in the limited data-types or control-flow structures which can be processed and also
in the limited testing criteria addressed. The aim of the present work is to develop a unified framework for
test-case data generation. The objectives are to automate the generation of test-data to satisfyblack-boxor
white-boxtesting of functional properties and also non-functional properties. This paper focuses on four
applications of this framework – worst-case execution time (WCET) testing, specification-conformance
testing, exception condition testing and structural coverage.

3 Optimisation

General-purpose optimisation techniques make very few assumptions about the underlying problem
which they are attempting to solve. It is this that we wish to exploit to allow a general test-data gen-



eration framework to be devised. Optimisation techniques are simply directed search methods which
attempt to find minimal (or maximal) values of a particular objective function. Simulated annealing
is one such optimisation technique. It has been used to assess the feasibility of an optimisation-based
approach to generalise test-data generation during this work1.

Simulated annealing is based on the idea of neighbourhood search [19]. Thirty years after the original
algorithm was presented [15], Kirkpatrick suggested a form of simulated annealing could be used to solve
complex optimisation problems [12]. Simulated annealing works by selecting candidate solutions which
are in the neighbourhood of the given candidate solution. Better candidate solutions are always accepted,
however worse candidate solutions are accepted in a controlled manner. The idea is that it may be better
to accept a short-term penalty in the hope of finding significant rewards longer term. In accepting an
inferior solution the search aims to escape from locally optimal solutions. A control parameter (often
called the temperature, due to the analogy with the physical annealing process) is used to control the
acceptance of inferior candidate solutions. At the start of a search the temperature is high allowing
almost unrestricted movement around the search space. The temperature is gradually reduced during the
search constraining the acceptance of inferior candidate solutions.

Simulated annealing is a general purpose search strategy. Much of the algorithm remains completely
unchanged across problem domains. All that is required to apply simulated annealing to a given domain
is a representation of candidate solutions and neighbourhoods and an objective function which measure
quality of candidate solutions. As we are dealing with software test-data generation the representation
of a candidate solution and neighbourhood can remain fixed across this domain. A candidate solution is
obviously a collection of data values which represent a test-case. This leads to the natural representation
of a candidate solution as a number of data items which are derived from the underlying data types of
the programming language used for the software under test. The neighbourhood should represent the
set of candidate solutions which are in some respectsclose to a given candidate solution. Given the
representation of candidate solutions, the neighbourhood can be defined as follows for the fundamental
Ada types.

Basic Type Neighbourhood
INTEGER � Some proportion of allowed range
FLOAT � Some proportion of allowed range
BOOLEAN TRUEor FALSE
ENUMERATION Any value from the enumeration

This framework can be used to address any testing problem where the quality of test-data can be
quantified. Methods for quantifying the cost of a candidate solution depend entirely upon the software
testing problem being addressed. These are detailed below for a number of software-testing problems.

4 Applications

4.1 Worst-Case Execution Time Testing

The problem of WCET testing is to find test-data which causes the worst-case path through the software-
under-test. To allow this to be addressed within the optimisation framework a measure of actual dynamic
execution time is used as the objective function. The optimisation, in particular simulated annealing,
approach works as follows. An initial random set of input-data is generated and the software-under-test
is executed and timed. The simulated annealing search then generates test-data in the neighbourhood
of this initial solution and again executes and times the software-under-test. This solution will either be
accepted or rejected (depending on the relative execution times and the current temperature of the simu-
lated annealing algorithm), and the search continued using the (possibly) new test-data. This continues

1Simulated annealing is a very simple optimisation algorithm to implement, it is for this reason that it has been used during
the development of prototype tools. Other optimisation techniques, such as genetic algorithms or tabu-search, may possibly be
more effective, this will require investigation in the future.



until the simulated annealing search terminates, which occurs when none of the test-data generated for a
number of iterations of the algorithm is accepted.

While testing can never give an absolute guarantee of WCET it does give a lower bound on the
WCET. When combined with static analysis techniques (which give an upper bound) a confidence inter-
val can be obtained, within which the WCET is guaranteed to fall. Testing and/or analysis can continue
until this interval is sufficiently small. Some examples have been used to assess the ability to find good
WCET test-case data using the optimisation framework. The following programs have been used in these
tests.

Conditional Blocks – This software unit takes in two parameters – one integer and one enumeration.
It has several conditional blocks, with many interdependencies between the decision taken. This
demonstrates the system’s ability to find valid test-cases in a situation where simple syntax-based
analysis would fail.

Simple Loop – This is a simple software unit which has only one integer parameter. This unit iterates
around a loop the number of times specified in the parameter. The expected result is the maximal
value for the parameter type.

Binary Integer Square Root – This software unit calculates the integer square root of its input parameter
using a binary search. Thus the expected result is a value which causes the maximum number of
iterations in the binary search. In this case, with the input parameter range from 0 to 10,000, the
maximum number of iterations is 14. This demonstrates the system’s ability to cope with a still
more complex cost surface.

Insertion Sort – This software unit performs an insertion sort on an array of 10 integer values. The
worst case complexity for insertion sort is for reverse sorted data, thus the expected results is an
ordered, decreasing array of values. This demonstrates the system’s ability to cope with a large
parameter/search space.

The results of the preliminary tests are shown in table 1. The system was set to search for the WCET
of each of the above programs. The search was repeated 50 times for each program. For all test programs
each search resulted in a valid test case which exercised a worst-case path.

Program Parameter Space WCET Space Parameter Space
Searched

Conditional Blocks 1; 407 50 353:1%

Simple Loop 10; 000 1 47:4%

Binary Square Root 10; 000 321 52:4%

Insertion Sort 9:765625e+ 16 1:027227e+ 10 7:198e� 28%

Table 1: Preliminary WCET Results

As can be seen from the results the optimisation based search is more effective with larger, more
complex, parameter spaces. With small parameter spaces to search, the optimisation based search exam-
ined a very large number of candidate solutions before the algorithm cooled and stabilised. The search
for test-data took between 35 seconds and 3 minutes on an Intel Pentium Pro-200MHz.

4.2 Specification Conformance

A software unit’s specification can be represented as a pre-condition constraint on input values and a
post-condition constraint on input/output values. The most interesting test-case is one which shows an



example of when the specification has not been conformed to (i.e. illustrates an error in the software-
under-test). To allow this to be addressed within the optimisation framework the objective function must
measure how close a test-case is to illustrating a specification falsification. This can be achieved as
follows. Firstly the pre-condition and negated post-condition are converted to disjunctive normal form
(DNF). All possible pairs of single pre-condition disjuncts and post-condition disjuncts are then formed
using conjunction. Each pair can be considered as an encoding of one of the possible ways in which
the software can fail. By generating input test-data and executing the software-under-test to calculate
output data, the optimisation process uses these values to attempt to find a solution to each of the pairs
in turn. Each term within the pair adds a value to the pair’s overall cost according to the rules shown in
Table 2 (the valueK in the table refers to a positive failure constant which is always added if the term
is not true). If all terms are true then it can be seen that the overall cost will be zero, this becomes a
stop-condition for the simulated annealing search. The search process will also stop once the algorithm
has cooled sufficiently and is no longer making any progress.

Term Value

Boolean if TRUE then 0 else K

a = b if abs(a� b) = 0 then 0
else abs(a� b) +K

a 6= b if abs(a� b) 6= 0 then 0
else K

a < b if a� b < 0 then 0
else (a� b) +K

a � b if a� b � 0 then 0
else (a� b) +K

a > b if b� a < 0 then 0
else (b� a) +K

a � b if b� a � 0 then 0
else (b� a) +K

Table 2: Term Values

The following programs have been used to assess the effectiveness of optimisation to find specifica-
tion failures.

Middle – The specification states that given three integer values this routine should return the middle
numeric value. However if two of the input values are the same the return value should be the
other input value. In the case with three values the same this value should be returned. The
implementation of the routine, however, always returns the first input value when any of the input
values are the same. Hence, the desired test-case is one where two of the input values are the same.

Bubble Sort – The specification states that given an array of input values the routine should sort them
into ascending order. The implementation of this routine, however, does not perform enough
iterations to sort the array when the smallest input values appears as the last element in the input
array. Hence the desired test-case is one where the smallest value in the array is in the last element.

Tomorrow – The specification states that given a date including the day of the week the routine should
return the date of tomorrow, accounting for leap years. However the implementation is incorrect in
that it considers all years divisible by 4 as leap years (rather than just years divisible by 400 or 4,
but not 100). Hence the desired test-case is one where the input date is 28th Feb on a year which
is divisible by 100 but not by 400. The specification of this program is shown in figure 1.



type Day Name Type is
(Mon, Tue, Wed, Thu, Fri, Sat, Sun);

type Day Of Month Type is range 1. .31;
type Month Name Type is

(Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);

type Year Type is range 1900. .3000;

procedure Tomorrow
(Day : in Day Name Type; Date : in Day Of Month Type;
Month : in Month Name Type; Year : in Year Type;
Next Day : out Day Name Type; Next Date : out Day Of Month Type;
Next Month : out Month Name Type; Next Year : out Year Type);

��# pre (Date = 31 ->
��# (Month = Jan or Month = Mar or
��# Month = May or Month = Jul or
��# Month = Aug or Month = Oct or
��# Month = Dec)) and
��# (Month = Feb -> Date <= 29);
��# post (Day = Sun -> Next Day = Mon) and
��# (Day == Sun -> Next Day = Succ(Day)) and
��# (Date = 31 ->
��# (Next Date = 1 and (Month = Dec ->
��# (Next Month = Jan and NextYear = Year + 1)) and
��# (Month == Dec -> Next Month = Succ(Month)))) and
��# ((((Date = 30 and
��# (Month = Apr or Month = Jun or
��# Month = Sep or Month = Nov)) or
��# (Date = 29 and Month = Feb)) ->
��# (Next Date = 1 and NextMonth = Succ(Month) and
��# Next Year = Year)) and
��# (((Date = 28 and Month = Feb and
��# ((Year mod 4 = 0 and Year mod 100== 0) or
��# Year mod 400 = 0)) ->
��# (Next Date = 29 and NextMonth = Month and
��# Next Year = Year)) and
��# ((Date = 28 and Month = Feb and not
��# ((Year mod 4 = 0 and Year mod 100== 0) or
��# Year mod 400 = 0)) ->
��# (Next Date = 1 and NextMonth = Mar and
��# Next Year = Year))));

Figure 1: Specification of Tomorrow Routine



The results of the preliminary tests are shown in table 3. The system was set to search for a specifi-
cation failure of each of the above programs. The search was repeated 50 times for each program. For all
test programs each search resulted in a valid test case which illustrated the error in the implementation
of the software-under-test.

Program Parameter Space Parameter Space
Giving Error

Parameter Space
Searched

Middle 1e+ 9 2e� 6% 0:0445%

Bubble Sort 1e+ 30 9:95% 8:7e� 11%

Tomorrow 286; 440 2:79e� 5% 0:2467%

Table 3: Preliminary WCET Results

4.3 Structural Coverage

The approach taken is to search for test-data which covers each statement in turn. Thus the objective
function indicates whether the desired statement has been executed or not. Obviously any particular test-
data will either satisfy this criterion or it will not. We therefore need the objective function to return good
values for test-data whichnearlyexecutes the desired statement and worse values for those cases which
are a long way from executing the desired statement. The objective function used involves instrumenting
the software under test with procedure calls. These procedures monitor the execution path taken and
each contribute to the total value of the objective function. The instrumentation works as follows. A
call tocovered node(x) is made at the start of eachbasic block2. This monitors which basic blocks
are executed by a given test, to allow the system to decide which basic blocks are uncovered and thus
where the subsequent search should be targeted. The calls tocost node x routines are placed at each
point where there is a decision statement (i.e. if statements, loop statements, etc: : : ). These functions
add to the objective function a value which is related to how close the current execution is to taking the
desired branch at the given decision. This is calculated in the same manner as measuring how close to a
specification failure a test-case is.

If the condition is true then the constraint is satisfied, however a small value is still added to the
objective function to bias the search towards boundary values. TheSF constant makes sure that this
value is sufficiently small so that the search is biased towards finding test-data that satisfies the constraint
before finding boundary values. If the condition is not meet then the constraint is not satisfied in this case
a failure constant,K, and a measure of howuntruethe condition is are added to the objective function. A
simple example will help illustrate how this works in practice. Figure 2 shows a simple integer division
routine instrumented for statement coverage. In this example the loop is instrumented such that it requires
three sets of test-data to cover it completely; zero times, once and two or more times round the loop are
considered separate tests (note: the instrumentation lines appear as comments simple so that they can be
easily identified, obviously they are normally inserted as uncommented code).

The call tocoverage.cost node 2, for example, works as follows. If the search is attempting
to find test-data to cover basic-block 2 then the following value is added to the cost.

if (numerator � 0) � 0 then
abs(a� b)

SF
else (Numerator � 0) +K

Assuming we are attempting to find test-data to cover basic-block 2 and we try a test case with
Numerator set to50 then this adds50� 0 +K to the objective function. However, ifNumerator is
set to 1 then this adds only1 � 0 +K to the objective function (i.e. this test-case iscloser to covering

2A basic block is a set of statements such that if any one statement of the set is executed then they all are.



subtype My Integer is Integer range 0 . . 1000;
procedure Remainder

(Numerator : in Integer; Denominator: in Integer;
Quotient Val : out My Integer; RemainderVal : out My Integer)

is
�� No Its : Integer;

begin
�� Coverage.CoveredNode (1);
Quotient Val := 0;
RemainderVal := Numerator;

�� Coverage.CostNode2 (Numerator);
�� Coverage.CostOthersA (Numerator);
if Numerator<= 0 then
�� Coverage.CoveredNode (2);
Quotient Val := 0;
RemainderVal := 0;
return ;

end if;

�� Coverage.CostNode3 (Denominator);
�� Coverage.CostOthersB (Denominator);
if Denominator<= 0 then
�� Coverage.CoveredNode (3);
Quotient Val := 0;
RemainderVal := 0;
return ;

end if;

�� No Its := 0;
�� Coverage.CostNode4 (RemainderVal, Denominator, NoIts);
�� Coverage.CostNode5 (RemainderVal, Denominator, NoIts);
�� Coverage.CostNode6 (RemainderVal, Denominator, NoIts);
while RemainderVal >= Denominatorloop

Quotient Val := Quotient Val + 1;
RemainderVal := RemainderVal � Denominator;

�� No Its := No Its + 1;
�� Coverage.CostNode4 (RemainderVal, Denominator, NoIts);
�� Coverage.CostNode5 (RemainderVal, Denominator, NoIts);
�� Coverage.CostNode6 (RemainderVal, Denominator, NoIts);

end loop;
�� Coverage.CoveredNode (4, NoIts);

end Remainder;

Figure 2: Instrumented Division Routine for Coverage



basic-block 2). Similarly withNumerator set to -50 thenabs(50�0)
SF

is added to the objective function.

However, ifNumerator is set to 0 then this adds onlyabs(0�0)
SF

to the objective function (i.e. this test-
case iscloser to the boundary). Even though both these last two cases cover the basic-block the one
closer to the boundary is biased so it will be selected by the optimisation search.

The search proceeds looking for test-data to cover each basic-block in turn. When test-data is found
which covers the desired basic-block the system monitors which other basic-blocks (if any) the test-data
also covered. The search then moves on to look for test-data for the next uncovered basic-block. The
following table shows the test-data set return by the system for this routine.

Basic Blocks Test-Data
Covered

1, 6 N = 47, D = 21
1, 2 N = 0, D = -100
1, 3 N = 1, D = 0
1, 4 N = 81, D = 82
1, 5 N = 3, D = 2

4.4 Safeness/Exception Conditions and Assertion Check

Safeness conditions represent constraints on program variables which must hold to maintain safe opera-
tion of the system in which the software is embedded. Exception conditions are assertions which must
hold to ensure no exception is raised (for example, numeric overflow or type-bound errors). Assertion
checks are constraints which the developer has specified must hold at a particular point in the code. Tar-
geting testing at causing specific exceptions may be very important. In many production systems it is
assumed that exceptions will not occur (confidence in this is achieved often through reuse of functional
tests). Thus in the released system run-time checks are often disabled to gain a performance increase.
Specific testing for exception conditions may allow increased confidence that unwanted exception con-
ditions will not occur. Using a similar objective function as above for specification conformance it is
possible to search for test-cases which illustrate a unsafe or exception condition or an assertion failure.
The objective function must guide the search to the statement of interest in the software under test, this
can be achieved using the method describe for structural coverage. However, the objective function must
also guide the search to find test-data which causes the exception condition. This can be achieve by
combining the objective introduced for specification conformance.

Preliminary assessment has shown this technique to be effective in generating test-cases to cause
constraint exceptions in a number of numeric routines. With parameter spaces of around10; 000 and
with only a handful of values which cause the exception condition the system has consistently managed
to find test-data to illustrate the exceptions by examining only 5% of the search space. However, further
work on larger-scale realistic samples is required to fully assess the effectiveness of the system in this
area.

5 Further Work

The results presented above show that it is possible to use optimisation to automatically generate test-case
data both effectively and efficiently. The degree of effort required to find test-case data for the problems
presented above is significantly lower than that required by manual test-data generation or tool-supported
proof attempts, given that it is almost completely automated. However, to further assess the optimisation-
based approach to provide a useful, generalised framework for automated test-case data generation more
work on several fronts is needed. Perhaps the most important is that of gathering empirical evidence as to
the effectiveness of the technique. It is essential to evaluate the approach using real, large-scale software
to assess how effectively test-cases can be generated.



5.1 Optimisation Techniques

There are a variety of other optimisation techniques which could be examined. A detailed comparison of
the various optimisation techniques to discover their relative strengths and weaknesses would be required.
Tabu-search [7] and genetic algorithms [8] are two such optimisation techniques which are suitable for
investigation. Some preliminary work on methods to apply tabu-search and genetic-algorithms has al-
ready been carried out (see [22]). However, integration into the prototype tool-set is required to allow a
full assessment of their performance.

Optimisation techniques will never be able to guarantee their results3. However, it may be possible
to devise software metrics which can give guidance in a number of areas – to suggest which optimisation
techniques will give the best results; to suggest suitable parameter values for the optimisation techniques;
and also to give an indication as to the likely quality of the result.

5.2 Search Efficiency

From the results presented in the previous section it can be seen that the search space (even for simple
routines) can be extremely large. It can be seen that the current simple simulated annealing search is more
efficient in its search when the parameter space is large (i.e. a smaller proportion of the parameter space is
examined). Indeed the search time for the case-studies presented ranges from 3 seconds to 6 minutes on a
Pentium-Pro based machine, which is far quicker than the test-data could have been manually generated.
Methods to reduce the amount of the search space examined may still be useful and indeed may allow
very complex or higher-level routines to be processed. A number of problem specific enhancements can
be made to the various optimisation techniques. For example, the neighbourhood of simulated annealing
can be restricted to only allow variables that contribute to a condition failure to be changed. Careful
selection of tabu-move attributes will also increase the efficiency of the search.

5.3 Generalisation

For each testing criterion to be addressed it is necessary to consider how to represent it as an optimisation
problem. This paper shows an approach for representing a number of testing problems in an optimisation
framework. The specification problems is simply a special case of constraint solving involving a trans-
formation of the variable values (i.e. the execution of the software under test). Thus the same objective
function can be used to guide the search for general constraint solving. Indeed a tool using the objective
function developed for general constraint solving has been integrated into a proof-tool being developed
at York [3]. There remains a large number of test-data selection criteria worthy of consideration. For
each criterion it is only necessary to devise an objective function which gives the search process suffi-
cient guidance. This allows virtually any testing criteria to be incorporated into the same generalised
framework.

6 Conclusions

Many of the approaches for automated software test-data generation presented in the literature are inflex-
ible or have limited capacity. They are often limited to particular data-types or control-flow structures
and can often only process the lowest level routines.

Optimisation techniques are a flexible and powerful approach to solvingdifficult problems. To allow
the optimisation technique to generate test-data for a new testing criteria it is necessary only to devise a
suitable objective function. Because of this it is hoped that it will be possible to build a general framework
which can be used to generate test-data for a wide class of testing criteria.

3For example, if optimisation fails to find test-data illustrating a specification failure that does no imply that the software
must be correct, it simply means that the search failed to find any such failures.



The results presented in this paper are extremely encouraging and justify further work in the field.
The ability to obtain test-data illustrating specification failures or exception conditions automatically
could save a significant amount of time and money (time and money which would have been spent on
unsuccessful proof attempts) in the development software, particularly safety-critical software where
such formal specifications are more likely to be available. WCET testing and covering test-sets would
also save money allowing resources to be used in other verification and validation efforts.

As with general dynamic test approaches, we can only show the presence of faults not their absence.
However, the tools we provide for falsification based on heuristic optimisation need not be of high in-
tegrity (that is not to say they need not be of a high quality!) even when testing safety critical code.
We view them as producing test-cases that can be checked by other means. This is important since the
algorithms are stochastic and it is difficult to reason about their efficacy for application to arbitrary code.
We envisage them being used within a wider and integrated set of verification and validation tools.

7 Acknowledgements

This work was funded by grant GR/K63702 from the Engineering and Physical Sciences Research Coun-
cil (EPSRC) as part of the Realising Our Potential Awards (ROPA) scheme in the UK, and also grant
GR/L42872 from the EPSRC as part of the CONVERSE project.

References

[1] B. Beizer. Software Testing Techniques. Thomson Computer Press, 2nd edition, 1990.

[2] R. Boyer, B. Elspas, and K. Levitt. Select – a formal system for testing and debugging programs by
symbolic execution.Preceedings International Conference of Reliable Software, pages 234–245,
1975.

[3] J. Clark and N. Tracey. Solving constraints in law 22117. Law/d5.1.1(annex e), European Com-
mission - DG III Industry, 1997. Legacey Assessment Worbence Feasibility Assessment - Final
Deliverable.

[4] L. Clarke. A system to generate test data and symbolically execute programs.IEEE Transactions
on Software Engineering, SE-2(3):215–222, September 1976.

[5] R. Demillo and A. Offutt. Constraint-based automatic test data generation.IEEE Transactions on
Software Engineering, 17(9):900–910, 1991.

[6] R. Ferguson and B. Korel. The chaining approach for software test data generation.ACM Transac-
tions on Software Engineering and Methodology, 5(1):63–86, 1996.

[7] F. Glover and M. Laguna.Modern Heuristic Techniques for Combinatorial Problems, chapter 3 –
Tabu Search, pages 70–150. McGraw Hill, 1993.

[8] D. E. Goldberg. Genetic Algorithms in Search, Optimisation and Machine Learing. Addison-
Wesley, 1989.

[9] D. Ince. The automatic generation of test data.Computer Journal, 30(1):63–69, 1987.

[10] B. Jones, H. Sthamer, and D. Eyres. Automatic structural testing using genetic algorithms.Software
Engineering Journal, 11(5):299–306, 1996.

[11] J. King. Symbolic execution and program testing.Communications of the ACM, 19(7):385–394,
1976.



[12] S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.Science,
220(4598):671–680, May 1983.

[13] B. Korel. Automated software test data generation.IEEE Transactions on Software Engineering,
16(8):870–879, 1990.

[14] B. Korel. Automated test data generation for programs with procedures.ACM ISSTA, pages 209–
215, 1996.

[15] N. Metropolis, A. W. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculation by fast
computing machine.Journal of Chem. Phys., 21:1087–1091, 1953.

[16] W. Miller and D. Spooner. Automatic generation of floating-point test data.IEEE Transactions on
Software Engineering, SE-2(3):223–226, September 1976.

[17] A. J. Offutt and J. Pan. The dynamic domain reduction procedure for test data generation.
http://www.isse.gmu.edu/faculty/ofut/rsrch/atdg.html, 1996.

[18] M. Ould. Tesintg - a challenge to method and tool developers.Software Engineering Journal,
6(2):59–64, March 1991.

[19] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith, editors.Modern Heuristic
Search Methods. Wiley, 1996.

[20] I. Sommerville.Software Engineering. Addison-Wesley, forth edition edition, 1992.

[21] E. H. Spafford. Extending mutation testing to find environmental bugs.Software – Practice and
Experience, 20(2):181–189, February 1990.

[22] N. J. Tracey. Test-case data generation using optimisation techniques – first year dphil report.
Department of Computer Science, University of York, 1997.

[23] A. L. Watkins. The automatic generation of test data using genetic algorithms.Proceedings of the
4th Software Quality Conference, 2:300–309, 1995.

[24] X. Yang. The automatic generation of software test data from z specifications. Technical report,
Department of Computer Studies, University of Glamorgan, 1995.


