ОБЗОР СОВРЕМЕННЫХ ТЕХНОЛОГИЙ ГАЗИФИКАЦИИ БИОМАССЫ

источник: Журнал "Отопление. Водоснабжение. Вентиляция. Кондиционирование." №3 2006.

          Термохимическая газификация представляет собой процесс частичного окисления углеродсодержащего сырья, такого, как биомасса, торф или уголь с получением газообразного энергоносителя – генераторного газа. Полученный газ состоит из моноксида углерода, водорода, метана, диоксида углерода, небольшого количества углеводородных соединений более высокого порядка, таких как метан и этан, содержит пары воды, азот (при воздушном дутье) и различные примеси, такие как смолы, частицы углистого вещества и золы. В качестве окислителя при газификации могут использоваться воздух, кислород, пар или смеси этих веществ. Максимальная температура процесса составляет 800...1300 0С.
          При воздушной газификации производится генераторный газ с высшей тепотворной способностью 4...6 МДж/м3 (низкокалорийный газ). Этот газ можно сжигать в котлах, после очистки – в газовых двигателях или турбинах, но он не пригоден для транспортировки по трубооводу, ввиду низкой энергетической плотности. Газификация с использованием кислорода дает среднекалорийный газ (10...12 МДж/м3), пригодный для ограниенной транспортировки по трубопроводу и для использования в качестве синтез-гас целью получения метанола и газолина. Среднекалорийный газ (15...20 МДж/м3) может быть получен также путем паровой (пиролитической) газификации. Это двухстадийный процесс, реализуемый в двух реакторах кипящего слоя. Наиболее широко в настоящее время применяется воздушная газификация. При этом исклюются все затраты и трудности, связанные, во-первых, с производством и исользованием кислорода, во-вторых, с необходимостью двух реакторов при паровой газификации
          По типу слоя сырья и способу подвода окислителя основные технологии могут быть разделены на газификацию в плотном (неподвижном) слое с восходящим/ нисходящим/ поперечным движением газа, газификацию в кипящем слое (стационарный КС, ЦКС, два реактора КС) и газификацию в потоке. Детальная характеристика этих технологий приведена в [2].
          Характерной чертой реактора с НДГ является движение газа вниз через опускающийся плотный слой сырья. Такая технология обеспечивает получение относительно чистого генераторного газа с содержанием смол 50...500 мг/нм3. ГГ может и спользоваться в газодизельных электростанциях небольшой мощности. В гафикаторах плотного слоя с ВДГ биомасса, поступающая сверху вниз, сначала просушивается ГГ, который движется вверх. Затем твердое сырье пиролизируется с образованием углистого вещества, которое продолжает двигаться вниз и проходит стадию газификации. Парообразные продукты пиролиза уносятся вверх гоячим ГГ. Смолы, содержащиеся в этих продуктах, конденсируются на холодном опускающемся сырье или уносятся из реактора произведенным газом. Таким обраом, концентрация смол в генераторном газе увеличивается и может достигать 10...100 г/нм3. Ввиду значительного содержания смол, без дополнительной очистки газ может только сжигаться в котле, расоложенном в непосредственной близости от установки. Газификаторы с ПДГ в работе во многом сходны с газификаторами с НДГ. Воздух или смесь воздуха с паом подводятся в реактор через боковую стенку в нижней части корпуса реактора. ГГ отводится из реактора с противоположной стороны. Широкого распространения газификаторы данной конструкции не получили. Отличительными особенностями газификаторов с КС по сравнению с реакторами плотного слоя являются высокие скоости тепло- и массопереноса и хорошее перемешивание твердой фазы, что обесечивает высокие скорости реакции и близкую к постоянной температуру слоя. Частицы сырья должны быть более мелкими, чем при газификации в плотном слое, то есть необходимо дополнительное измельчение. Реакторы с КС – единственный вид газификаторов, работающих с изотермическим лоем сырья. Производится ГГ с содержанием смол 5...10 г/нм3, что является средним показателем между газификацией с ВДГ и НДГ. При газификации в ЦКС частицы, унесенные из реактора потоком газа, отделяются от ГГ в циклоне и возвращаются обратно в слой для увелиения степени конверсии углерода. Проведенный ГГ большинстве коммерческих приложений используется для сжигания в котлах. Технология газификации биомассы в КС и ЦКС может быть реалиована как при атмосферном, так и при высоком давлении. Установка, работающая под давлением, является существенно более сложной и дорогостоящей по сравнению с атмосферной газификацией. Премущества этой технологии проявляются при использовании в крупных парогазотурбинных установках с внутрицикловой газификацией БМ. В этом случае не требуется дополнительного сжатия ГГ перед подачей в камеру сгорания газовой турбины.
          Отличительными особенностями газификаторов с КС по сравнению с реакторами плотного слоя являются высокие скоости тепло- и массопереноса и хорошее перемешивание твердой фазы, что обесечивает высокие скорости реакции и близкую к постоянной температуру слоя. Частицы сырья должны быть более мелкими, чем при газификации в плотном слое, то есть необходимо дополнительное измельчение. Реакторы с КС – единственный вид газификаторов, работающих с изотермическим слоем сырья. Производится ГГ с содержанием смол 5...10 г/нм3, что является средним показателем между газификацией с ВДГ и НДГ. При газификации в ЦКС частицы, унесенные из реактора потоком газа, отделяются от ГГ в циклоне и возвращаются обратно в слой для увелиения степени конверсии углерода. Проведенный ГГ большинстве коммерческих приложений используется для сжигания в котлах. Технология газификации биомассы в КС и ЦКС может быть реалиована как при атмосферном, так и при высоком давлении. Установка, работающая под давлением, является существенно более сложной и дорогостоящей по сравнению с атмосферной газификацией. Премущества этой технологии проявляются при использовании в крупных парогазотурбинных установках с внутрицикловой газификацией БМ. В этом случае не требуется дополнительного сжатия ГГ перед подачей в камеру сгорания газовой турбины.
          Установка с двумя реакторами КС позволяет получить ГГ с более высокой теплотворной способностью, чем в случае одного КС с воздушным дутьем. Первый реактор по своей функции близок к пиролизе. Теплота привносится в него горячим песком, циркулирующим между двумя ректорами. Смесь генераторного газа, угстого вещества, золы и песка из газификатора поступает в циклон, где твердая фракция отделяется и попадает во второй реактор с КС (камеру сгорания). Углистое вещество сгорает, а нагретый песок возвращается в первый реактор. Произведенный генераторный газ имеет высокую тепотворную способность, однако содержит много смол, поскольку процесс конверсии сырья близок к пиролитическому.
          При газификации в потоке частицы сыья захватываются потоком окислителя (обычно кислорода или пара). Образующаяся суспензия проходит по всей длине ректора, где и происходит процесс газификации. При газификации в потоке генеторный газ содержит мало смол. До настоящего времени имеется небольшой опыт работы с БМ в таких установках. Среди других видов реакторов можно выделить [1]:
• Реактор с движущимся слоем (горионтальный слой, наклонный слой, многокамерная печь, печь со шнеком): механическое перемещение слоя сыья. Газификация в таком реакторе обычно является низкотемпературной.
• Вращающаяся печь: в основном исользуются для переработки отходов ввиду хорошего контакта газа и твердых частиц и хорошего перемешивания сырья. Необходима тщательно продуманная конструкция для избежания уноса твердых частиц.
• Циклонные и вихревые реакторы: высокие скорости движения частиц обесечивают высокие скорости протекания реакций. Циклонные газификатоы отличаются простотой конструкции. Однако они лишь недавно стали применяться для конверсии биомассы, и технология еще не до конца отработана.
[1].A.V. Bridgwater. Thermal conversion of biomass and waste: the status. Proc. of Conference “Gasification: the Clean Choice for Carbon Management”, 8-10 April 2002, Noordwijk, the Netherlands, pp. 1-25.
[2].Гелетуха Г.Г., Железная Т.А. Обзор технологий газификации биомассы //Экотехнологии и ресурсосбережение. – 1998. – N 2, с. 21-29.

вернуться назад
© Poltavskyi Ie., 2010