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Abstract

In this study, a recurrent neural network compensator for suppressing mechanical vibration in a permanent magnet linear synchronous

motor (PMLSM) is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible

mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are

used to avoid the local minimum problem, and estimate the states of system, respectively. The proposed control method is firstly designed

by using a nonlinear simulation model built in Matlab Simulink and then implemented in a practical test rig. The proposed method

works satisfactorily and suppresses the vibration successfully.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Neural networks have been studied in many areas from
finance to technology for many years. The first innovations
in this area were made in the early 1940s, and after that a
number of different neural network structures and teaching
algorithms have been developed (Haykin, 1994). Nowa-
days the development of computers and algorithms allows
the application of neural networks to practical problems.

The linear motor is an old invention but it is only
recently that, as a result of the development of permanent
magnets and their decreased costs, permanent magnet
(PM) linear motors have become a viable alternative to
rotating motors fitted with linear transmissions. The linear
motor simplifies the mechanical structure, eliminating the
contact-type nonlinearities caused by backlash, friction,
and compliance. Linear motors are used in applications
where accurate positioning and fast dynamics are needed.
e front matter r 2007 Elsevier Ltd. All rights reserved.
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A great deal of attention is paid to the control of the
linear motor itself (Otten, de Vries, van Amorengen,
Rankers, & Gaal, 1997) where a neural network controller
is implemented for a linear motor motion control. In that
case the vibration of the tool mechanism, reel, gripper or
any apparatus connected to the motor is not taken into
account. This might reduce the capability of the machine
system to carry out its assignment and impair the lifetime
of the equipment. Nonetheless, it is usually more important
to know how the load of the motor behaves. The load
control of these motors has been less studied. The aim of
the load controller is to drive the flexible load to a reference
value in such a way that the load follows the reference
value as accurately as possible, but without awkward
vibration. One of the most traditional methods to suppress
resonance in the electromechanical system is to allow only
slow changes in the reference command. For example,
different kinds of filters are used in a reference signal to
suppress mechanical vibration. Dumetz, Vanden Hende,
and Barre (2001) have studied bi-quad and low pass filters
in a control loop but also as a reference filter. The closed
loop filter makes it possible to compensate poles and zeros
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of the transfer function from the motor side, and the
reference filter compensates poles of the transfer function
on the load side. Another widely used filter for vibration
suppression is the Notch filter (Ellis & Lorenz, 2000). The
drawbacks of the filtering are the low sensitivity to
parameter variations, and the reduction of the dynamical
properties of a servo system.

The state feedback control is another widely used
method in vibration suppression. The method needs not
only the values of the measured states, but also the
information of unknown states. One possibility to get all of
these values is to use an estimator. One example of this
kind of control system is in Jun-Keun and Seung-Ki (1995),
where a LQ-based speed controller with a Kalman filter in
a two-mass motor drive system is studied. In the method,
the motor is controlled by a simple PI controller and load
acceleration can be measured or estimated and used as a
compensation feedback. Kang and Sul (2000) and Lee,
Kang, and, Sul (1999) have used this kind of a method
successfully in the vibration control of elevators. Mon-
tanaro and Beale (1998) have combined the LQG method
and acceleration compensation.

In the study, the idea of acceleration compensation of a
flexible mechanism has been extended so that the
compensation signal is produced by a neural network.
The advantage of neural networks is their ability to pick up
dependency even from noisy signals and the drawbacks are
they increase the computational time and are considered as
Fig. 1. Two axial model of the
a black box in the establishment of the model, hiding any
information between the input and the output.
Therefore, neural networks cannot be used in the

systems where sufficient measurement data are not avail-
able. One possibility to reduce the calculation time is to
teach the network in the simulation model, and after that
finalise the teaching by using measurement data from a
physical system. In the study by using the differential
evolution, the final weights of neural network have been
found. After the weights are finalised, they are transferred
to the neural network compensator in the experimental
setup. The states for the neural network compensator are
estimated using the Kalman filter.
The paper is organised as follows. In Section 2, system

model is presented. Section 3 presents controller design
steps. The technical details of applying current controller,
back propagation algorithm, differential evolution (DE)
strategy, reference model and state estimation are pre-
sented in Section 3. Section 4 describes results for
evaluating the reliability and performance of neural
network. In Section 5 the conclusions are summarised.

2. System model

The modelling of the dynamics of the linear synchronous
motor examined in this paper is based on the space-vector
theory. The time-varying parameters are eliminated and all
the variables are expressed on orthogonal or mutually
linear synchronous motor.
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Fig. 2. Comparison of measured and simulated detent forces.
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decoupled direct and quadrature axes, which move at a
synchronous speed of os. The d- and q-axis equivalent to
the circuit of the permanent magnet linear synchronous
motor (PMLSM) are shown in Fig. 1, and the correspond-
ing equations are (1) and (2), respectively.

The voltage equations for the synchronous machines are

ud ¼ Riad þ
dcd

dt
� oscq, (1)

uq ¼ Riaq þ
dcq

dt
þ oscd, (2)

where ud and uq are the d- and q-axis components of the
terminal voltage, iad and iaq the d- and q-axis components of
the armature current, R is the armature winding resistance
and cd, cq are the d- and q-axis flux linkage components of
the armature windings. The synchronous speed can be
expressed as os ¼ pvs/t, where vs is the linear synchronous
velocity, i.e. the velocity in which the motor moves, and t
the pole pitch, i.e. the length of the pole pair of permanent
magnets. Although the physical system does not contain a
damper, which in PMLSM usually takes the form of an
aluminium cover on the PMs, virtual damping must be
included in the model due to eddy currents. The voltage
equations of the short-circuited damper winding are

0 ¼ RDiD þ
dcD

dt
, (3)

0 ¼ RQiQ þ
dcQ

dt
, (4)

where RD and RQ are the d- and q-axis components of the
damper winding resistance and iD and iQ the d- and q-axis
components of the damper winding current. The armature
and damper winding flux linkages in the above equations
are

cd ¼ Ladiad þ LmdiD þ cpm, (5)

cq ¼ Laqiaq þ LmqiQ, (6)

cD ¼ Lmdiad þ LDiD þ cpm, (7)

cQ ¼ Lmqiaq þ LQiQ, (8)

where Lad and Laq are the d- and q-axis components of the
armature self-inductance, LD and LQ the d- and q-axis
components of the damper winding inductance, Lmd and
Lmq the d- and q-axis components of the magnetising
inductance and cpm the flux linkage per phase of the
permanent magnet. By solving the flux linkage differential
equations from (1) to (4) and substituting the current
equations from (5) to (8) into these equations, the equations
for the simulation model of the linear motor can be derived.
The electromagnetic thrust of a PMLSM is

Fdx ¼
pe

vs
¼

3p

2

p
t
ðcdiaq � cqiadÞ, (9)

where pe is the electromechanical power and p represents
the number of pole-pairs.
2.1. Non-idealities of PMLSM

The force ripple ripple in an iron-core PM linear motor
has been studied by Zhao and Tan (2005). The force ripple
of the PMLSM is larger than that of rotary motors because
of the finite length of the stator or mover and the wide slot
opening. In the PMLSM, the thrust ripple is caused mainly
by the detent force generated between the PMs and the
armature. This type of force can be divided into two
components: tooth and core-type detent force. The core-
type detent force can be efficiently reduced by optimising
the length of the moving part or smooth forming the edges
of the mover and the tooth-type detent force can be
reduced by skewing the magnets and chamfering the edges
of the teeth (Hyun, Jung, Shim, & Yoon, 1999; Inoue &
Sato, 2000; Jung & Jung, 2002).
The ripple of the detent force produces both vibration

and noise and reduces controllability (Chun, Jung, & Jung,
2000). The force ripple is dominant at low velocities and
accelerations. At higher velocities, the cogging force is
relatively small and the influence of dynamic effects
(acceleration and deceleration) is more dominant (Otten
et al., 1997). The force ripple can be described by sinusoidal
functions of the load position, x, with a period of j and
amplitude of Ar, i.e.

F ripple ¼ K sAr1 sinðj1xÞ½Ar1 þ Ar2 sinðj2xÞ�, (10)

where Ks is a scaling factor. In Fig. 2, the results of the
simulation are compared with those measured in the
reference system.
The model also takes into account the effect of friction.

Friction is highly nonlinear and may result in steady-state
errors, limit cycles and poor performance (Olsson, Åström,
de Wit, Gäfvert, & Olsson, 1998). The friction model took
into account the Coulomb (static) and viscous (dynamic)
components

Fm ¼ signðvÞ½F coulomb þ absðvÞF viscous�, (11)
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Fig. 3. Two-mass model of the system.
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where v is the velocity of the motor. The main disadvantage
when using highly nonlinear models for simulations or
control purposes is high discontinuity at near-zero speed,
which gives rise to problems such as numerical chatter.
The total disturbance force equation can be described using
the equations of detent force and friction force; i.e. the
disturbance force Fdist is

Fdist ¼ F ripple þ Fm, (12)

This resultant disturbance force component is added to
the electromotive force to influence the dynamical beha-
viour of the linear motor system.

The effect of load variation was also taken into
consideration. The mechanism in this study is made
according to the ACC Benchmark Problem (Wie &
Bernstein, 1990), i.e. a two-mass model, Fig. 3. The ACC
Benchmark Problem consists of two masses attached by a
single spring, moving on a friction-free horizontal surface.
The control input is the force applied to the first mass, and
the output is the position or velocity of the second mass.

The motion equations of this system are

mM €xM ¼ kDxþ bD _xþ FT,

mL €xL ¼ �kDx� bD _x, ð13Þ

where k is the spring constant, b is the damping factor, mM

and mL are motor and load masses, FT is the summation of
the controller force, F, and the disturbance force, Fdist, xM

and xL are motor and load positions and Dx and D _x are
compression of the spring and the velocity difference
between masses, respectively.

3. Controller design

3.1. Current controller of the linear motor

The current control of the system is implemented in the
form of vector control. Vector control is based on the space
vector theory of electrical machines and, therefore, can
easily be implemented in the motor model that is also based
on the space vector theory. Generally in the vector control
theory, the force and flux components are analysed
separately from the motor currents using the mathematical
model of the machine, and control algorithms control these
components separately. In the vector control used in this
study, the direct axis current iad is set to zero (iad ¼ 0)
assuming that it does not influence the generation of force;
i.e. Eq. (9) transforms to

Fdx ¼
3p

2

p
t
ðcdiaqÞ. (14)

This means that angle y, between the armature current
and q-axis, always remains at 01 and that the thrust is
proportional to the armature current ia ¼ iaq.

3.2. The neural network design

In this study, the aim of the controller is velocity tracking
of a flexible load. Classical approaches, such as P or PI
regulators, do not provide satisfactory results. For this
reason, a hybrid recurrent neural network controller is used
to improve the response of the system. The aim of a neural
network compensator is to increase the damping of the
system. Compensation is achieved by cancellation of the
vibration applying alternative force (against the ripple force).
The structure of the hybrid controller is presented in Fig. 4.
One of the earliest recurrent neural networks was the

Jordan network. The Jordan networks use input of the past
output like a memory for a neural network. In the Jordan
network, the activation values of the output units are
feedback into the input layer through a set of extra input
units called the state units. The numbers of state units are
equal to the number of network outputs. The connections
between the output and state units have a fixed weight of
+1; learning takes place only in the connections between
input and hidden units as well as hidden and output units.
In this study, the back propagation algorithm with a

momentum term to online update the weights and biases of
a neural network was used (Rumelhart, Hinton, &
Williams, 1986). The back propagation algorithm is a
learning scheme in which the error is back propagated layer
by layer and used to update the weights. The algorithm is a
gradient descent method that minimises the error between
the desired outputs and the actual outputs calculated by the
multi-layer perceptron (MLP).
The back propagation training process requires that the

activation functions be bounded, differentiable functions.
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Fig. 4. Proposed neural network hybrid controller.
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One of the most commonly used functions satisfying these
requirements is the hyperbolic tangent function as follows:

f ðxÞ ¼
ex � e�x

ex þ e�x
. (15)

The learning procedure requires only that the change in
weights and biases are proportional to qEp=qw. True
gradient descent requires that infinitesimal steps be taken.
The constant of proportionality is the learning rate in the
procedure. The higher the learning rate the greater the value
changes in the weights of the neural network. One way to
increase the learning rate without leading to oscillation is to
modify the general delta rule to include a momentum term.
This can be accomplished by the following rule:

Dwjiðnþ 1Þ ¼ ZðdpjopiÞ þ aDwjiðnÞ, (16)

where n indicates the presentation number. The parameter
of Z is the learning rate, and a is a constant which
determines the effect of past changes on the current
direction of movement in weight space, and Dw(n) is the
change in the weight in step n.

The training procedure can be determined from Fig. 4.
When calculating the error, there is no target for the output
of the neural network, so the error of the neural network
cannot be updated from its output directly. To solve the
problem, the error was defined based on the control target
and it was defined as the difference between the reference
velocity and the load velocity. Updating of the neural
network is based on the extended back propagation
method. The structure of updating is the same as the back
propagation, but it has only one extra term (kc).

The extra term is defined as follows:

kc ¼
aload

_Un

, (17)

where kc is the extra gain for online updating of the neural
network. There are two parameters in order to find the
amount of kc. The first parameter, aload, is estimated by the
Kalman filter directly, and the second parameter is
calculated using the following equation:

_Un ¼
UnðnÞ �Unðn� 1Þ

T s
, (18)
where Ts is the sampling time. The kc is bounded, because the
term of ðUnðnÞ �Unðn� 1ÞÞ cannot be zero during online
training. The term is the difference between the two successive
outputs of the neural network. Following, the only two
probable cases where the term will be zero are discussed.
The first case occurs when the neural network is saturated

and the output of the neural network does not change with
varying inputs. The saturation problem happens when the
initial weights of the neural network are not selected
correctly (local minimum) or the extent of the learning rate
for online training is too great. These two conditions did not
occur in this study, because the saturation problem was
avoided. The DE algorithm is used to find the best values for
the weights (global minimum) and during online training;
the learning rate must be sufficient enough.
The second case happens when the system approaches to

steady state condition (the error and the term of ðUnðnÞ �

Unðn� 1ÞÞ approach zero). In this case the online updating
of weights is stopped, because in a practical application of
a neural network, the online update only happens when the
error is bigger than the tolerance chosen by the designer
(the neural network is trained until the error reaches a level
of tolerance), so as is discussed, the term of kcis bounded
and it can be used in online training.
The new online updating for the neural network as the

compensator can be defined as

Dwjiðnþ 1Þ ¼ ZðdpjopiÞkc þ akcDwjiðnÞ. (19)

Neural network parameters are updated online by learning
rate and momentum factors. As shown in Fig. 5, the
proposed recurrent neural network has three hidden, one
input and one output layers. The inputs of the neural
network are two normalised accelerations of load mass
(aLðkÞ, aLðk � 1Þ) and the state unit, unðk � 1Þ. The absolute
value of network output is equal or less than one, so the
network gain, Gn is used to get the proper compensation.
Several kinds of structures with one or two hidden layers
were tested. The proposed structure emulates the acceleration
feedback and improves the dynamic behaviour of the system.
Choosing the weights is important in the back propaga-

tion algorithm. To avoid the local minimum problem, the
DE algorithm is used to find the offline weights (Storn &
Price, 1995).
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Fig. 5. The structure of the proposed recurrent neural network.

Table 1

Parameters for differential evolution

Symbol Parameter Value

D Number of parameters 91

NP Number of population 120

Fs Scale factor 0.8

R Crossover control constant 0.7

H. Yousefi et al. / Control Engineering Practice 16 (2008) 787–797792
3.3. Differential evolution (DE) strategy

Global optimisation methods are under continuous
development, and lately, genetic algorithms and evolution
strategies have been found to be promising stochastic
optimisation methods (Ilonen, Kamarainen, & Lampinen,
2003). DE is a simple and powerful population based,
direct-search algorithm for globally optimising functions
defined especially on functions with real-valued para-
meters. The schematic procedure of a class of DE is as
follows (Corne, Dorigo, & Glover, 1999):

The DE inputs areas are as follows:

D;Gmax;NPX4;F s 2 ð0; 1þÞ;CR 2 ½0; 1�;xðloÞ; xðhiÞ, (20)

where D is the number of parameters, NP is the population
size, Fs is the scale factor, CR is the crossover control
constant, Gmax is the maximum number of generation, and hi,
lo are upper and lower initial parameter bounds, respectively.

Initialize:

8ipNP ^ 8jpD :

xj;i;G¼o ¼ x
ðloÞ
j;i þ rand½0; 1�ðxðhiÞ

j � x
ðloÞ
j Þ

8<
: ð21Þ

while G4Gmax

8ipNP :

Mutate and recombine :

r1; r2; r3 2 f1; 2; . . . ;NPg;

randomly selected ðr1ar2ar3aiÞ

jr randomly selected once each i

8jpD;

if ðrandj ½0; 1ÞoCR _ ðj ¼ jrÞÞ

uj;i;Gþ1 ¼ xj;r3;G þ F s:ðxj;r1;G � xj;r2;GÞ;

otherwise

uj;i;Gþ1 ¼ xj;i;G

Select :

~xi;Gþ1 ¼
~ui;Gþ1 if FCoðui;Gþ1ÞpFCoðxi;GÞ

~xi;G otherwise

(

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

G ¼ G þ 1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

.

(22)
Here, the number of initial weights for each neural network is
91 (for all layers except the output layer, a bias is considered).
The selected parameters for this strategy are in Table 1.
The cost of the system is considered as a summation of

absolute errors for one period (one second with a one
millisecond sampling time) so the cost is a summation of
absolute errors for one thousand points. The initial upper
and lower bounds are [1,�1], respectively. Note that
generally the number of the population (NP) is five times
the number of parameters (D). Here, because of a memory
saturation problem, the maximum NP was 120. The results
show that DE can find the global minimum cost for the
system. Depending on the expected value of the cost, the
DE will find the proper weights. The cost of the system is
defined as follows:

FCoðxi;GÞ ¼
XK¼1000

k¼1

jeðkÞj, (23)

where

jeðkÞj ¼ jV ref ðkÞ � V loadðkÞj. (24)

The reference velocity V ref in Eq. (24) is from the
reference model introduced in Eq. (25) and V load is the
estimated load velocity. The minimum cost for the system
was 5.6 and the related weights are used as initial values of
weights for the feed forward neural network with a back
propagation algorithm. Fig. 6 is the plot of the cost when
the DE algorithm is used to search for the global minimum
of the weights. Fig. 7 shows the amount of one of the
network sample weights (first weight of the first layer)
versus the iterations. It is clear that the weights approach
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Fig. 6. Cost of the system against the number of its iterations.

Fig. 7. A sample weight connecting the input layer to the first hidden layer

of network verses the number of iterations.
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(�0.43) after 52,000 iterations and then it remains at the
final value. Therefore, the results show that the weights
that converge to the specific amounts and network in the
condition of offline working are stable.

3.4. Reference model

The desired linear, second order reference model was
selected to run parallel with the nonlinear system. There
are different kinds of methods that can be used to find a
reference model, such as the ITAE or the Bessel transfer
functions. In this study, the Bessel function is used
(Franklin, Powell, & Emami-Naeini, 1994). The natural
frequency of the system was chosen so that the response of
the system is as fast as possible. The chosen damping ratio
provides the minimum overshoot of the reference model.
The natural frequency on of this model is set to equal
100 rad/s with a damping ratio z of 1.732. The reference
model is

Gref ðsÞ ¼
o2

n

s2 þ 2zonsþ o2
n

. (25)

3.5. State estimation

States for the controller were estimated using the
Kalman filter. In deriving the Kalman filter equations,
the objective is to find an equation that computes a
posterior state estimate x̂k as a linear combination of
a prior estimate x̂

�
k and a weighted difference between

a measurement yk and a measurement prediction Hx̂
�
k

(Leleux, Claps, Chen, Tittel, & Harman, 2001). The linear
difference equations for the discrete Kalman Filter are

xkþ1 ¼ Uxk þ Cuk þ wk, (26)

yk ¼ Hxk þ vk, (27)

where U, C, and H are discretized state, input, and output
matrices, respectively, wk is a random process that accounts
for the noise present due to mismodelling, and vk is a
random noise process accounting for measurement noise.
The first step in calculation estimations of the real-time

Kalman filter is to initialise the process by suitable
conjectures for the estimate state vector x̂k and the
estimation error covariance Pk. This procedure is called
the time update:

x̂
�
k ¼ Ux̂k�1 þ Cuk�1, (28)

P�k ¼ UPk�1U
T þQ. (29)

The next step is to calculate the Kalman gain and update
the state estimation with measurements. This procedure is
called the measurement update:

Kk ¼ P�k H
TðHP�k H

T þ RÞ�1, (30)

x̂k ¼ x̂
�
k þ Kkðyk �Hx̂

�
k Þ, (31)

Pk ¼ ðI� KkHÞP
�
k , (32)

where I is an n� n identity matrix. The estimated error
covariance Pk is independent of the measurement. It could
even be pre-calculated before any measurements are made.
This is a direct consequence of the underlying assumption
that the noise covariance matrices Q and R might be
measured prior to operation of the filter (Stansfield, 2001).
For the Kalman filter, a linear state-space model of the

mechanical system (13) is derived. The friction and other
nonlinearities are assumed to be system noise, which the
Kalman filter handles as a random process. The estimated
states of the system are the velocity of the motor vM,
velocity of the load vL, and spring force Fs, i.e. the state
vector is

x ¼

x1

x2

x3

2
64

3
75 ¼

vM

vL

F s

2
64

3
75. (33)
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Table 2

Mechanical parameters

Symbol Parameter Value

mM Motor mass 20 kg

mL Load mass 4 kg

K Spring constant 13700Nm�1

Table 3

Linear motor data

Symbol Parameter Value

FN Nominal force 675N

AN Nominal current 7.2A

Km Motor constant 94NA�1

RP Electric resistance 4.8O
LP Winding inductance 20mH

Vn Maximum speed at nominal thrust 2.1m s�1

tM Pole pitch (1801) 15mm

PN Nominal power 3910W

L Stroke 1000mm

Kp P gain of vel. controller 10000Nsm�1

Ki I gain of vel. controller 0.01Nm�1

Fig. 8. The principle of PMLSM.

H. Yousefi et al. / Control Engineering Practice 16 (2008) 787–797794
The state matrix A, input matrix B and output matrix C

are described as

A ¼

0 0 �
1

mM

0 0
1

mL

k �k 0

2
66664

3
77775; B ¼

1

mM

0

0

2
664

3
775; C ¼ 1 0 0

� �
,

(34)

where k is the spring constant. Damping constant b is
assumed to be negligible in respect of system dynamics.
The control input u in the state space model is the motor
thrust, FT. The process noise covariance Q in this
application is

Q ¼

100 0 0

0 10 0

0 0 1

2
64

3
75, (35)

and the measurement covariance R ¼ 0.01 is scalar due to
one input for the Kalman filter. In Table 2, mechanical
parameters in the state space model are presented.

The acceleration estimation €̂xL used in the controller is
defined from the estimated spring force F̂ s by dividing it by
a mass of the load mL, i.e. the acceleration estimation is

€̂xL ¼
F̂ s

mL
. (36)

4. Results

4.1. Verification of the simulation model

The simulation model was implemented and analysed in
the MatLab/Simulinks software. The PWM inverter is
modelled as an ideal voltage source and common Simulink
blocks are used for the model. The time step of the
integrator in the analysis was 10 ms, except for the velocity
controller, which had a time step of 1ms. The parameters
used in the simulation are introduced in Table 3.

The simulation results were compared with those
measured in the physical linear motor. Fig. 8 shows the
schematic diagram of motor. The motor is a commercial
three-phase linear synchronous motor application with a
rated force of 675N. The moving part (the mover) consists
of a slotted armature, while the surface permanent magnets
are mounted along the whole length of the path (the
stator). The permanent magnets are slightly skewed (1.71)
in relation to the normal. Skewing the PMs reduces the
detent force (Gieras & Piech, 2001). The moving part is set
up on an aluminium base with four recirculating roller
bearing blocks on steel rails. The position of the linear
motor was measured using an optical linear encoder with a
resolution of approximately 1 mm.
The physical linear motor application was driven in such

a way that the PI velocity controller was implemented in
Simulink to gain the desired force reference. The derived
algorithm was transferred to C code for the dSPACEr

digital signal processor (DSP) to use in real time. From the
DS1103 card the force command F� was fed into the drive
of the linear motor. The computational time step for the
velocity controller was 1ms, while the current controller
cycle was 31.25 ms.
The measured and simulated velocity responses and

force generating quadrature currents are compared in
Fig. 9. The sine function is used as a reference velocity.

4.2. Neural network compensator

The merits of the neural network compensator are its
flexibility, intelligence and acceptable vibration suppres-
sion. The neural network compensator is tested in several
test runs of the nonlinear simulation model and the
laboratory setup. Fig. 10 represents the convergence of
the load in the simulation model towards zero after an
initial displacement of 0.02m in the case of free vibration
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Fig. 9. A comparison of the measured and simulated velocity responses and quadrature currents in the case of a sine velocity reference.

Fig. 10. Phase-plane figure of the load in the case of free vibration (thin),

and a neural network-based controller (thick) when the initial displace-

ment is 0.02m.
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of the load, and when the hybrid controller is used. This
representation is called the phase-plane plot of the system,
and it is usually used to analyse the stability of nonlinear
systems. Parameters x2 and dx2 are load displacement and
velocity, respectively. Figs. 11 and 12 show a comparison
of the velocity responses in the case of PI controller with
proposed compensator and without any compensator,
respectively. The velocity of the load follows the reference
command accurately; even the system stiffness is relatively
loose. In this case, the reference has been a pulse function,
the amplitude of which is 0.2m s�1 and the frequency 1Hz.
The small ripple in the response in Fig. 11 is due to a small
inaccuracy of the state estimator and linear PI motor
control.

5. Conclusions

In the study, a recurrent neural network hybrid
controller for a PMLSM is introduced and successfully
implemented in the physical linear motor application.
The motor velocity is controlled by a conventional
PI controller and the vibration of the load is suppressed
by using the recurrent neural network compensator.
The DE algorithm proved to be an efficient tool for
finding initial weights for the recurrent neural network.
More traditional teaching methods might have a local
minimum problem due to their gradient-based calculation,
i.e. they frequently lead to local optimums. DE is not
based on the gradient method, and therefore, the local
minimum problem is avoided. The problem of DE is its
speed in approaching the global minimum, and therefore, it
is useful only in offline training. The combination of a
neural network hybrid controller and a state estimator
reduces the vibration of the load considerably, and the
proposed controller is perceived to be stable in all
conditions.
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Fig. 11. Measured velocity of the load, and the driving force of the motor in the case of a neural network compensator and under a step excitation.

Fig. 12. Simulation of mass load velocity using PI controller without any

compensator.
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