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INTRODUCTION

S
ince January, 1993, ‘Progress in Photovoltaics’ has published 6 monthly listings of the highest

confirmed efficiencies for a range of photovoltaic cell and module technologies.1–3 By providing guide-

lines for the inclusion of results into these tables, this not only provides an authoritative summary of the

current state of the art but also encourages researchers to seek independent confirmation of results and to report

results on a standardised basis. In the present article, new results since July, 2005 are briefly reviewed.

The most important criterion for inclusion of results into the tables is that they must have been measured by a

recognised test centre listed in an earlier issue.2 A distinction is made between three different eligible areas:

total area; aperture area and designated illumination area.1 ‘Active area’ efficiencies are not included. There are

also certain minimum values of the area sought for the different device types (above 0.05 cm2 for a concentrator

cell, 1 cm2 for a one-sun cell, and 800 cm2 for a module).1

Results are reported for cells and modules made from different semiconductors and for sub-categories within

each semiconductor grouping (e.g. crystalline, polycrystalline and thin film).

NEW RESULTS

Highest confirmed cell and module results are reported in Tables I, II and IV. Any changes in the tables from

those previously published3 are set in bold type. Table I summarises the best measurements for cells and sub-

modules, Table II shows the best results for modules and Table IV shows the best results for concentrator cells

and concentrator modules. Table III contains what might be described as ‘notable exceptions’. While not
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conforming to the requirements to be recognised as a class record, the cells and modules in this Table have

notable characteristics that will be of interest to sections of the photovoltaic community with entries based

on their significance and timeliness. In most cases, a literature reference is provided that describes either the

result reported or a similar result.

To ensure discrimination, Table III is limited to 10 entries with the present authors having voted for their

preferences for inclusion. Readers who have suggestions of results for inclusion into this Table are welcome

to contact any of the authors with full details. Suggestions conforming to the guidelines will be included on the

voting list for a future issue. (A smaller number of ‘notable exceptions’ for concentrator cells and modules

additionally is included in Table IV, as are results under a recently proposed low aerosol optical depth

direct-beam spectrum4).

Table I. Confirmed terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000Wm� 2)

at 25�C

Classificationa Effic.b Areac Voc Jsc FFd Test Centree Description

(%) (cm2) (V) (mA/cm2) (%) (and Date)

Silicon

Si (crystalline) 24.7� 0.5 4.00 (da) 0.706 42.2 82.8 Sandia (3/99) UNSW PERL9

Si (multicrystalline) 20.3� 0.5 1.002 (ap) 0.664 37.7 80.9 NREL (5/04) FhG-ISE10

Si (thin film transfer) 16.6� 0.4 4.017 (ap) 0.645 32.8 78.2 FhG-ISE (7/01) U. Stuttgart (45mm thick)11

III–V Cells

GaAs (crystalline) 25.1� 0.8 3.91 (t) 1.022 28.2 87.1 NREL (3/90) Kopin, AlGaAs window12

GaAs (thin film) 24.5� 0.5 1.002 (t) 1.029 28.8 82.5 FhG-ISE (5/05) Radboud U., NL13

GaAs (multicrystalline) 18.2� 0.5 4.011 (t) 0.994 23.0 79.7 NREL (11/95) RTI, Ge substrate14

InP (crystalline) 21.9� 0.7 4.02 (t) 0.878 29.3 85.4 NREL (4/90) Spire, epitaxial15

Thin film chalcogenide

CIGS (cell) 18.4� 0.5f 1.04(ap) 0.669 35.7 77.0 NREL (2/01) NREL, CIGS on glass16

CIGS (submodule) 16.6� 0.4 16.0 (ap) 2.643 8.35 75.1 FhG-ISE (3/00) U. Uppsala, 4 serial cells17

CdTe (cell) 16.5� 0.5f 1.032 (ap) 0.845 25.9 75.5 NREL (9/01) NREL, mesa on glass18

Amorphous/

nanocrystalline Si

Si (amorphous)g 9.5� 0.3 1.070 (ap) 0.859 17.5 63.0 NREL (4/03) U. Neuchatel19

Si (nanocrystalline) 10.1� 0.2 1.199 (ap) 0.539 24.4 76.6 JQA (12/97) Kaneka (2 mm on glass)20

Photochemical

Nanocrystalline dye 10.4� 0.3 1.004(ap) 0.729 21.8 65.2 AIST (8/05) Sharp5

Nanocrystalline dye 4.7� 0.2 141.4 (ap) 0.795 11.3 59.2 FhG-ISE (2/98) INAP

(submodule)

Multijunction devices

GaInP/GaAs/Ge 32.0� 1.5 3.989(t) 2.622 14.37 85.0 NREL (1/03) Spectrolab (monolithic)

GaInP/GaAs 30.3 4.0 (t) 2.488 14.22 85.6 JQA (4/96) Japan Energy

(monolithic)21

GaAs/CIS (thin film) 25.8� 1.3 4.00 (t) — — — NREL (11/89) Kopin/Boeing (4 terminal)

a-Si/CIGS (thin film)h 14.6� 0.7 2.40 (ap) — — — NREL (6/88) ARCO (4 terminal)22

a-Si/mc-Si (thin submodule)i 11.7� 0.4 14.23(ap) 5.462 2.99 71.3 AIST (9/04) Kaneka (thin film)23

aCIGS¼CuInGaSe2; a-Si¼ amorphous silicon/hydrogen alloy.
bEffic.¼ efficiency.
c(ap)¼ aperture area; (t)¼ total area; (da)¼ designated illumination area.
dFF¼fill factor.
eFhG-ISE¼Fraunhofer-Insitut für Solare Energiesysteme; JQA¼ Japan Quality Assurance; AIST¼ Japanese National Institute of

Advanced Industrial Science and Technology.
fNot measured at an external laboratory.
gStabilised by 800 h, 1 sun AM1.5 illumination at a cell temperature of 50�C.
hUnstabilised results.
iStabilised by 174 h, 1-sun illumination after 20 h, 5-sun illumination at a sample temperature of 50�C.
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The first new result is in Table I where an efficiency of 10.4% is reported for a 1 cm2 nanocrystalline dye cell

fabricated by Sharp and measured at the Japanese National Institute of Advanced Industrial Science and Tech-

nology (AIST).

The second new result is for a large area, commercial-size multicrystalline silicon cell and is reported in

Table III as a ‘notable exception’. An efficiency of 18.1% has been confirmed by the Fraunhofer Institute

for Solar Energy Systems (FhG-ISE) for a large area (137.7 cm2) laser grooved, buried contact cell fabricated

by the University of Kontanz, improving substantially on the University’s earlier 17.6% result.6

Three new concentrator results are reported in Table IV. Record single-junction concentrator cell

performance of 27.6% is reported in Table IV for a back contacted cell fabricated by Amonix7 and

measured at the Fraunhofer Institute for Solar Energy Systems (FhG-ISE) under a concentrated low aerosol

Table II. Confirmed terrestrial module efficiencies measured under the global AM1.5 spectrum (1000W/m2) at a cell

temperature of 25�C

Classificationa Effic.b Areac Voc Isc FFd Test Centre Description

(%) (cm2) (V) (A) (%) (and Date)

Si (crystalline) 22.7� 0.6 778 (da) 5.60 3.93 80.3 Sandia (9/96) UNSW/Gochermann24

Si (multicrystalline) 15.3� 0.4e 1017 (ap) 14.6 1.36 78.6 Sandia (10/94) Sandia/HEM25

Si (thin-film polycrystalline) 8.2� 0.2 661(ap) 25.0 0.318 68.0 Sandia (7/02) Pacific Solar (1–2 mm on glass)25

CIGSS 13.4� 0.7 3459 (ap) 31.2 2.16 68.9 NREL (8/02) Showa Shell (Cd free)27

CdTe 10.7� 0.5 4874 (ap) 26.21 3.205 62.3 NREL (4/00) BP Solarex28

a-Si/a-SiGe/a-SiGe (tandem)f 10.4� 0.5 905 (ap) 4.353 3.285 66.0 NREL (10/98) USSC (a-Si/a-Si/a-Si:Ge)29

aCIGSS¼CuInGaSSe; a-Si¼ amorphous silicon/hydrogen alloy; a-SiGe¼ amorphous silicon/germanium/hydrogen alloy.
bEffic.¼ efficiency.
c(ap)¼ aperture area; (da)¼ designated illumination area.
dFF¼fill factor.
eNot measured at an external laboratory.
fLight soaked at NREL for 1000 h at 50�C, nominally 1-sun illumination.

Table III. ‘Notable exceptions’: ‘Top ten’ confirmed cell and module results, not class records (Global AM1.5 spectrum,

1000Wm� 2, 25�C)

Classificationa Effic.b Areac Voc Jsc FF Test Centre Description

(%) (cm2) (V) (mA/cm2) (%) (and Date)

Cells (Silicon)

Si (MCZ crystalline) 24.5� 0.5 4.0 (da) 0.704 41.6 83.5 Sandia (7/99) UNSW PERL, SEH MCZ

substrate 30

Si (moderate area) 23.7� 0.5 22.1(da) 0.704 41.5 81.0 Sandia (8/96) UNSW PERL24, FZ substrate

Si (large FZ crystalline) 21.5� 0.6 148.9(t) 0.678 39.5 80.3 NREL (9/03) Sunpower FZ substrate31

Si (large CZ crystalline) 21.5� 0.3 100.3(t) 0.712 38.3 78.7 AIST (12/04) Sanyo HIT, n-type CZ substrate32

Si (large CZ crystalline) 18.3� 0.5 147.5(t) 0.625 36.3 80.6 FhG-ISE (9/02) BP Solar, laser grooved33

Si (large multicrystalline) 18.1� 0.5 137.7(t) 0.636 36.9 77.0 FhG-ISE (8/05) U. Konstanz, laser grooved6

Cells (Other)

GaInP/GaInAs/Ge tandem) 31.3� 1.5 4.0 (t) 2.392 16.0 81.9 NREL (1/03) Spectrolab, monolithic

metamorphic

CIGS (thin film) 19.5� 0.6 0.410(ap) 0.693 35.3 79.4 FhG-ISE (9/04) NREL, CIGS on glass34

a-Si/a-Si/a-SiGe (tandem) 12.1� 0.7 0.27 (da) 2.297 7.56 69.7 NREL (10/96) USSC stabilised (monolithic)35

Photoelectrochemical 11.0� 0.5 0.25(ap) 0.795 19.4 71.0 FhG-ISE (12/96) EPFL, nanocrystalline dye36

aCIGS¼CuInGaSe2.
bEffic.¼ efficiency.
c(ap)¼ aperture area; (t)¼ total area; (da)¼ designated illumination area.
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density AM1.5 direct-beam spectrum.4 Two further improvements are reported for multiple junction cells.

The first is the demonstration of 39% efficiency at 236 suns concentration for a 0.27 cm2 GaInP/GaInAs/Ge

triple junction cell fabricated by Spectrolab8 and measured at the US National Renewable Energy Laboratory

(NREL), again under the low aerosol density AM1.5 spectrum. Metamorphic cells with the same nominal

structure but with 8% indium in the middle cell, producing 0.5% lattice mismatch, gave nearly identical results

with efficiencies up to 38.8% demonstrated under the same spectrum8 and recorded in Table IV as a ‘notable

exception’.

Finally, Figure 1 shows, for several key cell categories, the evolution of the efficiency values reported in these

Tables over the 1993–2006 period. The monolithic III–V stacked concentrator cells have shown the largest

gains, with efficiency increasing from below 30% to close to 40% over this period. CIGS technology also

showed very rapid progress over the first part of this period, with good recent progress shown for nanocrystal-

line dye cells of a qualifying size (at least 1 cm2).

Table IV. Terrestrial concentrator cell and module efficiencies measured under the direct beam AM1.5 spectrum at a cell

temperature of 25�C

Classification Effic.a Areab Intensityc Test centre Description

(%) (cm2) (suns) (and Date)

Single cells

GaAs 27.6� 1.0 0.126 (da) 255 Sandia (5/91) Spire37

GaInAsP 27.5� 1.4d 0.075 (da) 171 NREL (2/91) NREL, Entech cover

Si 26.8� 0.8 1.60 (da) 96 FhG-ISE (10/95) SunPower back-contact38

InP 24.3� 1.2d 0.075 (da) 99 NREL (2/91) NREL, Entech cover39

CIGS (thin film) 21.5� 1.5d 0.102 (da) 14 NREL (2/01) NREL

2-cell stacks

GaAs/GaSb (4 terminal) 32.6� 1.7 0.053 (da) 100 Sandiae (10/89) Boeing, mechanical stack40

InP/GaInAs (3 terminal) 31.8� 1.6d 0.063 (da) 50 NREL (8/90) NREL, monolithic41

GaInP/GaInAs (2-terminal) 30.2� 1.2 0.1326 (da) 300 NREL/FhG-ISE (6/01) Fraunhofer, monolithic42

GaInP/GaAs (2 terminal) 30.2� 1.4 0.103 (da) 180 Sandia (3/94) NREL, monolithic43

GaAs/Si (large) (4-terminal) 29.6� 1.5d 0.317 (da) 350 Sandiae (9/88) Varian/Stanford/

Sandia, mech. Stack44

3-cell stacks

GaInP/GaAs/Ge (2-terminal) 34.7� 1.7 0.2665(da) 333 NREL (9/03) Spectrolab, monolithic

Submodules

GaInP/GaAs/Ge 27.0� 1.5 34 (ap) 10 NREL (5/00) ENTECH45

GaAs/GaSb 25.1� 1.4 41.4 (ap) 57 Sandia (3/93) Boeing, 3 mech. stack units46

Modules

Si 20.3� 0.8d 1875 (ap) 80 Sandia (4/89) Sandia/UNSW/

ENTECH (12 cells)47

Low-AOD spectrumf

GaInP/GaInAs/Ge 39.0� 2.3f 0.2691 (da) 236 NREL (5/05) Spectrolab, low-AOD spectrum8

(2-terminal)

Si 27.6� 1.0 1.00 (da) 92 FhG-ISE (11/04) Amonix back-contact7

‘Notable exceptions’

GaInP/GaInAs/Ge 38.8� 2.3f 0.254(da) 241 NREL (5/05) Spectrolab, metamorphic8

(2-terminal)

Si ( large) 21.6� 0.7 20.0 (da) 11 Sandiae (9/90) UNSW laser grooved48

GaAs (Si substrate) 21.3� 0.8 0.126 (da) 237 Sandia (5/91) Spire37

InP (GaAs substrate) 21.0� 1.1d 0.075 (da) 88 NREL (2/91) NREL, Entech cover49

aEffic.¼ efficiency.
b(da)¼ designated illumination area; (ap)¼ aperture area.
cOne sun corresponds to an intensity of 1000Wm� 2.
dNot measured at an external laboratory.
eMeasurements corrected from originally measured values due to Sandia recalibration in January, 1991.
fLow aerosol optical depth direct beam AM1.5 spectrum.
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DISCLAIMER

While the information provided in the tables is provided in good faith, the authors, editors and publishers cannot

accept direct responsibility for any errors or omissions.
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