
SYNCHRONIZED DATA DISTRIBUTION MANAGEMENT IN
DISTRIBUTED SIMULATIONS

Ivan Tacic
Richard M. Fujimoto
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

KEYWORDS
High Level Architecture, Run-Time Infrastructure, time management

ABSTRACT
A considerable amount of effort in the DIS community has been devoted to developing efficient,
scaleable, mechanisms for distributing state updates and interaction information in distributed
simulations. By contrast, this question has not received as much attention for distributed simulations
using logical time (e.g., analytic simulations). It is observed that data distribution management (DDM)
mechanisms used for real-time training simulations such as DIS are insufficient to meet the requirements
of logical time-based simulations, and may result in errors such as messages not being delivered to
federates that have subscribed for them, even if the network provides reliable delivery. An approach to
achieving properly synchronized data distribution is described, and is applied to the data distribution
management mechanisms based on routing spaces that has been proposed for the HLA.

1. INTRODUCTION

Data distribution management (DDM)
mechanisms are necessary to provide efficient,
scalable support for large-scale distributed
simulations. Early work in distributed simulation
environments in the SIMNET (SIMulator
NETworking) project[1] and early DIS systems
broadcast each state update to all simulators in
the exercise. It is well known that this approach
does not scale because the amount of
communications increases by O(N2) where N is
the number of processors. CPUs become bogged
down processing incoming messages, most of
which are discarded (for large N) because they
are not relevant to the simulator(s) within the
processor. Further, communication bandwidth
requirements become excessively large as N
increases. It is estimated that 375 MBits per
second per platform would be required for a
simulation exercise including 100,000 players[2].

Several approaches to attacking this problem have
been proposed (see [3] for a survey on this
subject). Virtually all use some mechanism to
only send messages to the destinations that have
need of the information rather than broadcast it to
everyone. For example, in the Joint Precision
Strike Demonstration (JPSD) [4], federates

indicate what information they wish to receive by
specifying predicates on entity attributes. Many
simulators, e.g., ModSAF[5], CCTT[6], and
NPSNET[2] use grid cells to filter information. A
two-level hierarchical filtering scheme used in an
optimistic parallel simulation is described in [7],
and a generalization of grid cells using a
construct called routing spaces is used in
STOW[8]. Routing spaces are also used in the
HLA, and are discussed in greater detail later.
The focus on the work described here is on the
routing space approach that has been incorporated
into the baseline definition of the High Level
Architecture (HLA), though many of the
techniques and mechanisms are applicable in
other contexts.

Thus far, most of the DDM work has focused on
large-scale, real-time training simulations. By
comparison, only a limited amount of work on
this subject has been concerned with distributed
logical time simulations[7, 9]. The RTI and the
underlying communication infrastructure must
maintain some representation of a database
indicating which federates should receive what
messages. For example, this information might
be represented by the memberships of the
multicast groups used in the simulation. In
training simulations, changes to this database

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.9406&rank=1

(e.g., a vehicle might come within the range of a
sensor, requiring that future state updates by the
vehicle simulator be transmitted to the sensor
simulator) take effect at the instant in wallclock
time when this condition is detected. By contrast,
in logical time simulations, such changes take
effect at a specific point in logical time. At any
instant during the execution of a distributed
simulation, different simulators (federates) will be
at different points in logical time. Directly
applying DDM mechanisms based on wallclock
time semantics to logical time simulations will
lead to errors, e.g., some simulators will not
receive messages that they should, and
unrepeatable executions. This paper is concerned
with DDM mechanism for logical time
simulations, and specifically, DDM in the High
Level Architecture.

The rest of the paper is organized as follows.
Section 2 describes HLA issues relevant to data
distribution. The synchronization problem in data
distribution is described in section 3. A two level
architecture for DDM mechanisms consisting of
an interest management and a distribution list
management layer is described in section 4.
Sections 5 and 6 describe the functionality of
these two layers and implementation issues.
Finally, conclusions and future work are
discussed in section 7.

2. DDM IN THE HLA

The HLA provides a common architecture for
modeling and simulation within the Department
of Defense (DoD). This architecture spans both
logical time-based simulations (e.g., analytic
simulations) and real time simulations (e.g., for
training) such as DIS. HLA’s Run Time
Infrastructure (RTI) is a software component that
provides commonly required services to
simulation systems in a way that is analogous to
the services a distributed operating system
provides to applications. HLA services are
grouped into six categories[10]:
• Federation Management (FM)
• Declaration Management (DM)
• Object Management (OM)
• Ownership Management (OWM)
• Time Management (TM)
• Data Distribution Management (DDM)

DM and DDM in the HLA are used to specify
which federates should receive messages for each

attribute update and interaction. The declaration
management (DM) services Publish and
Subscribe allow a federate to update and receive
updates to object attributes based solely on object
class. The RTI uses information provided in
publish/subscribe calls to set up filters that direct
data among federates that need them. The object
management’s (OM) Update Attribute Values
service call notifies the RTI that one or more
attributes have been modified. For example, an
object might subscribe to the attribute ‘location’
of all tanks in the battlefield. However, such
filtering will only be appropriate for relatively
small federations. DDM services provide more
powerful data distribution services enabling
value-based filtering[11]. For example a tank
might want to receive data from other tanks only
if they are in its visible range. Note that since the
RTI does not know the meaning of object
attributes it cannot provide range-based filtering
in this example. Federates must agree on a
filtering strategy to do this.

In order to simplify the discussion that follows,
only attribute updates are considered. However,
the concepts described below also apply to
interactions.

The fundamental concept used in the HLA to
support value-based DDM is the routing space. A
routing space is a normalized (coordinate values
range from 0.0 to 1.0) multidimensional
coordinate system in which federates indicate
interest in receiving or providing updates via
subscription and update regions. Subscription and
update regions are rectangular (in N dimensions)
and are specified by indicating extents, with one
extent for each dimension. Each extent indicates
the portion of that dimension covered by the
region. For example, the extents [0.0,0.5][0.0,1.0]
specify the left half of a two dimensional routing
space. Federates express their interest in
receiving updates from other federates through
subscription regions defined over a routing space,
and are called subscribers (to a specific attribute).
On the other hand, federates that are providing
updates define their update regions over the
routing space, and are called publishers (of a
specific attribute). The RTI detects when
subscription and update regions associated with
an attribute overlap, and provides data transfer
from the publisher to all subscribers for all
updates to that attribute.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.9406&rank=1

Figure 1 shows a two-dimensional routing space
with one update U1 and two subscription regions
S2 and S3 that belong to federates F1, F2 and F3
respectively. Since U1 and S2 overlap, the RTI
will transmit updates to attributes by F1 that are
associated with this update region to subscriber
F2, but not to F3. Regions can be changed
dynamically by invoking the Modify Region
service.

U1

S2

S3

Figure 1. Update region U1 and subscription
regions S2 and S3 in a two dimensional routing
space.

3. PROBLEM DESCRIPTION

DDM in logical time-based federations must
satisfy two principal requirements:
• federates should receive all messages for

information to which they had specified
interest, and ideally, no others, and

• the RTI must deliver messages in time stamp
order and must not deliver messages to a
federate with time stamp less than the current
logical time of the federate.

The first requirement can be relaxed somewhat in
practice because federates could simply ignore
extra messages.

At present, DM and DDM services (e.g., changes
in subscription and update regions) take effect
throughout the federation at an instant in
wallclock time, ignoring delays to actually realize
the change. In real-time simulations not using
logical time (e.g., DIS exercises), federate time is
essentially the same as wallclock time.1 Thus, all

1 Actually, federate time is derived from wallclock time
using an offset and scale factor, however, this is of little
consequence in the present discussion.

federates are at approximately the same federate
time at any instant during the execution. Figure 2
shows a scenario where a blue tank approaches a
red tank. The red tank becomes visible to the
blue tank at wallclock time 10. This might be
realized in the simulation by the blue tank
modifying its subscription region at time 10 to
overlap the red tank’s update region. The RTI
will immediately add the blue tank to the list of
federates to receive position updates by the red
tank. In this scenario, moments after the
subscription region has been changed, the
simulator for the red tank issues a position update
that is then (correctly) received by the simulator
for the blue tank.

federate time
(= wallclock time)

Fed. B: blue tank

Fed. A: red tank

10

Figure 2. Two tanks approaching each other in
a DIS exercise.

Errors result if this same mechanism is used for
logical time federations. This is because at any
instant during the federation execution, different
federates will typically be at different logical
times. DDM changes should take effect at a
specific instant in logical time. This may result in
situations where federates do not receive
messages they should have received (or they may
receive messages they shouldn’t have received).
Figure 3 depicts the previous scenario with the
blue tank approaching the red tank, but the red
tank reaches logical time 10 before the blue tank.
The red tank should become visible to the blue
tank, however, the blue tank has not yet reached
logical time 10, so it has not yet modified its
subscription region to receive the state update
made by the red tank at time 10.2 Thus, the
simulator for the blue tank fails to receive this
message. The blue tank will later modify its
subscription region, however, this is too late
because the red tank’s message has already
flowed through the system.

2 Actually, the time stamp 10 message is generated by
the red tank before it reaches logical time 10 because of
lookahead constraints.

federate time
(= logical time)

Fed. B: blue tank

Fed. A: red tank

10

Figure 3. Two tanks approaching each other in
a logical time execution, resulting in a lost
message.

One approach to solving this problem is to have
the RTI maintain a log of messages, and send
them to new subscribers as needed (see Figure 4).
Here, the position update made by the red tank
with time stamp 10 is captured in the log, and re-
sent to the blue tank when it subscribes for this
information at logical time 10.

federate time
(= logical time)

Fed. B: blue tank

Fed. A: red tank

10

Fed. B: blue tank

Fed. A: red tank

10

Later in the execution:

log

log

federate time
(= logical time)

Figure 4. Use of a log to avoid losing messages
in logical time federations.

The second problem, receiving a message in a
federate’s past, is depicted by the scenario shown
in Figure 5. This scenario differs from the
previous one in that we change the publication
region of the red tank at logical time 10 to cause
the blue tank to begin receiving its position
updates. Here, the blue tank reaches logical time
10 before the red tank, and subscribes to a new
region of the battle space. Because the red tank is
not publishing any messages that the blue tank
could receive, nothing prevents the blue tank
from progressing forward in logical time. Later,
the red tank advances to logical time 10, updates
its publication region so the blue tank will receive
its messages, and performs a position update that

is sent to the blue tank. This update arrives in the
past of the blue tank.

In order to avoid receiving messages in a
federate’s past, one may conservatively assume
any federate using logical time may send a
message to any other logical time federate. This
would prevent the blue federate from advancing
too far ahead of the red federate, regardless of the
update and subscriptions made by the federates.
This solution is currently implemented in the RTI
prototypes that have been developed. This
problem is not discussed further in this paper.

Later in the execution:

federate time
(= logical time)

Fed. B: blue tank

Fed. A: red tank

10

Fed. B: blue tank

Fed. A: red tank

10

federate time
(= logical time)

Figure 5. Scenario where a message is received
by a federate in its past.

4. A LAYERED ARCHITECTURE

It is convenient to view the DDM system as
logically being composed of two layers of
software (see Figure 6). The upper layer provides
the interface to the federate for specifying its
“interests” via interest expressions (portions of
the routing space). This interest management
software receives and processes interest
expressions produced by federates and generates
for the lower layer Add and Delete operations to
change the database indicating which federates
receive attribute updates and interactions. At this
lower layer, distribution list software performs
changes to the database and ensures that these
changes are properly synchronized with attribute
updates and interactions so that each federate
receives all of the messages it is supposed to
receive, and no others.

Federate

Interest Management

Distribution List
Management

Add, Delete

Interest expressions
Update Attribute
Values and Send
Interaction requests

Figure 6. DDM Organization.

The current HLA Interface Specification[10] does
not include a time stamp parameter for services
that modify subscription and update regions. It is
clear that such a specification is necessary for
logical time federations to indicate when the
changes should take effect, so here, a time stamp
parameter has been added for this purpose.

A federate publisher may issue the following
operations to the interest management layer:
• Modify_Region (region_handle H,

new_region R, time_stamp T): informs the
RTI that the update region H has been
changed to a new region (set of extents) R as
of logical time T. The region handle is
passed to the federate when the region is
created.

• Update_Attribute_Values(attribute A,
new_value V, time_stamp T): informs the
RTI a new value V has been assigned to
attribute A at logical time T.3

A federate subscriber may issue:
• Modify_Region(region_handle H,

new_region R, time_stamp T): informs the
RTI that the subscription region H has been
changed to a new region (set of extents) R as
of logical time T.

Federates may also issue DM operations (Publish
and Subscribe). These are also processed in the
interest management layer, but are not discussed
further.

Logically, the RTI can be viewed as maintaining
a collection of distribution lists indicating which
federates should receive attribute updates. The
distribution lists collectively form the database
mentioned earlier. The distribution lists may not
be explicitly represented by the RTI, i.e., they

3 This is a simplification of he HLA interface where
multiple attributes may be updated in a single
invocation of this service.

could be realized by the composition of multicast
groups in the underlying network. Each change
to a distribution list has a logical time associated
with it indicating when the change takes effect.
Thus, one may conceptually view each
distribution list as evolving, one change at a time,
over successive logical times.

D(id,T) denotes a distribution list (the id field
specifies a particular list) corresponding to
federate time T. When an update to an attribute
occurs with time stamp T, the interest
management layer will map this attribute to one
or more distribution lists, and the RTI will send a
message to each federate in D(id,T) of all selected
lists. The following operations may be performed
on a distribution list (see Figure 6):
• Add(F,id,T): add federate F to the

distribution list identified by id to take effect
at logical time T.

• Delete(F,id,T): remove federate F from the
distribution list identified by id as of logical
time T.

• Update(id, V, T): send messages to all
federates that belong to the distribution list id
at logical time T. V indicates the value of
the message. This primitive would be
invoked when the federate invokes the
Update Attributed Values (or Send
Interaction) service.

These operations are invoked within the RTI by
the interest manager. They may be invoked when
a change in the filter specification occurs that
changes the set of federates that should receive
messages, when an object becomes “discovered”
(or removed), when a new object is instantiated
(or removed), or when an attribute is updated or
an interaction sent. The semantics of these
operations are defined as follows:
• Composing the operations Add(F,id,T) and

Delete(F,id,T) with the same parameter
values has the same effect as if neither
operation were performed. In this case, the
two operations are said to be canceled.

• Add (F,id,T): let TD be the smallest time
stamped Delete operation (ignoring canceled
operations) by federate F on distribution list
id such that TD > T. F will receive a message
for every update to this distribution list with
time stamp in the interval [T, TD).

• Delete (F, id, T): let TA be the smallest time
stamped Add operation (ignoring canceled

operations) by federate F on distribution list
id such that TA > T. F will not receive any
messages for updates to this distribution list
with time stamp in the interval [T, TA).

5. FUNCTIONALITY OF THE INTEREST
MANAGEMENT LAYER

Here, we describe one approach to implementing
the interest management layer based on
partitioning the routing space into non-
overlapping cells. In general, the cells need not be
the same size, but we will assume identical cells
here to simplify the presentation. Using this
approach, a distribution list is created for each
cell of each routing space. As stated earlier, the
IM layer must convert calls by the federate (to
modify regions and update attribute values) into
calls to the distribution list layer to add federates
to (or delete federates from) the distribution lists
for individual cells. Update and subscription
regions may cover many cells.

Each attribute has a publication region associated
with it, indicating the set of cells (distribution
lists) that receive update operations when the
attribute is updated. Implementing the DDM
functionality for publishers is straight-forward. A
publisher will issue Update_Attribute_Values
operations which in turn causes invoking Update
in the distribution list layer for each cell that
includes a portion of the update region for the
modified attribute. This may result in some
messages being sent to federates whose
subscription region lies outside the update region
(but includes one or more cells in common with
the update region), however, such messages can
be filtered at the destination. The
Modify_Region operation causes no action to be
performed on the distribution list layer, and the
only actions necessary in the IM layer are to
record the new update region.

When a subscriber issues the Modify_Region
operation at logical time T, it may cause a change
in the distribution lists. This implies a new
version of the distribution list is created at logical
time T. In general, there may already be another
version of the distribution list that has already
been created at a logical time greater than T,
because Modify_Region operations need not be
issued in time stamp order across the entire
federation.

previous subscription region
new subscripiton region

no action for these cells.

Add operations
are issued for
these cells

Delete operations
are issued for
these cells

Figure 7. Add and delete operations issued
when a subscription region moves if this is the
latest (in logical time) change.

If there are no versions of the distribution list at
logical times greater than T, the IM simply
invokes Add and Delete operations on cells
(distribution lists) to define the new subscription
region. For example, in the two dimensional
routing space shown in Figure 7, the federate is
added to five distribution lists, and deleted from
five others.

later subscription region @ t2.

New subscription region @ T.

earlier subscription region @ t1.

Figure 8. A new subscription region is added,
but is not the latest.

More generally, if a version already exists at a
time t2 (greater than T), the set of Add and Delete
operations that must be issued is more complex.
This situation is depicted in Figure 8. The actions
that must be performed depend on whether or not
the federate is subscribed to the cell at logical
time t1, the time corresponding to the most recent
version of the distribution list prior to T, as well
as whether or not the federate is subscribed at
logical times T and t2.

The actions taken for each of the eight possible
cases are indicated in Table 1. A ‘1’ in this table
indicates the federate is subscribed at the
specified time, and a ‘0’ indicates it is not
subscribed. For example, the third row in the
table indicates that if the federate is not
subscribed to a cell at t1 and t2, but is in the new
subscription region at T, the IM layer will issue
one Add operation @ T and one Delete operation
@ t2. This ensures the federate will receive

updates at logical times in the interval from T to
t2.

If a federate’s subscription region and the update
region for an attribute have more than one cell in
common, the federate will receive multiple copies
of update messages. The IM must therefore
eliminate duplicates at the receiving federate.

6. FUNCTIONALITY OF THE
DISTRIBUTION LIST LAYER

We now discuss the implementation of the Add,
Delete, and Update operations in the DLM layer.
If Add, Delete, and Update operations for each
attribute were issued sequentially to the RTI in
time stamp order, data distribution would be
trivial. In that case, Add and Delete operations
would simply update the distribution list, and
Update operations would transmit messages to the
destinations in the list. Because the operations do
not arrive in time stamp order, the RTI must
maintain different versions of the distribution list
corresponding to different points in logical time.
An Update operation at logical time T reads the
version of the distribution list corresponding to
time T for each of the cells in its update region,
and Add or Delete operations at logical time T
create a new version of the list effective at time
T.

Table 1. Actions for a new subscription region
at time T

region@t1 region@T region@t2 IM actions
0 0 0 no action
0 0 1 no action
0 1 0 Add@T,

Delete@t2
0 1 1 Add@T
1 0 0 Delete@T
1 0 1 Delete@T

Add@t2
1 1 0 no action
1 1 1 no action

The distribution list for cell id corresponding to
time T is constructed by determining which
federates have subscribed via the Add operation
to receive updates with time stamp T.
Specifically, define the “subscription function” as
follows:

S(F, id, T)

= TRUE if an uncanceled operation Add (F,
id, TA) exists such that TA �� 7� DQG� QR
uncanceled operation Delete (F, id, TD)
exists such that TA < TD < T.

= FALSE otherwise

D(id,T) is defined as the set of federates Fi such
that S(Fi, id, T) is true.

As discussed earlier, update attribute messages
are logged by the RTI so they can be sent to
“late” subscribers. A log L(id) for distribution list
id is defined for this purpose. This log is defined
as a sequence of tuples <Vi, Ti> where Vi is the
new value contained in the update message sent
for an attribute update with time stamp Ti.

Consider the sequence of Add and Delete
operations performed by a single federate on a
single cell. In general, these operations need not
arrive at the processor managing the distribution
list for that attribute in time stamp order. This is
because the federate may not issue these
operations in time stamp order, or even if it did,
the relative order of the operations may not be
preserved as the associated messages are
transmitted through the network. Thus, at any
instant, there need not necessarily be a perfect
pairing of Add and Delete operations. For
example, Figure 9 shows a situation where a
Delete operation with time stamp 20 has been
delayed in the network, giving the temporary
appearance that there is an extra Add operation.
In this snapshot (i.e., prior to receiving the time
stamp 20 Delete operation), the extra Add
operation at time 25 is, in effect, a null operation
because the federate already subscribed to the
attribute at time 15. Because Add and Delete
operations with the same parameters cancel, the
federate is subscribed to receive updates
containing a time stamp in the intervals [5,10)
and [15,35).

It is convenient to view the history of Add/Delete
operations to an attribute by a federate according
to a diagram such as that shown in Figure 9.
Consider a new Add or Delete operation with
time stamp T. The status of the federate
(subscribed or unsubscribed) at time T only
depends on the largest time stamped uncanceled
Add or Delete operation with time stamp smaller
than T. For example, in Figure 9 when the Delete
operation with time stamp 20 arrives, the Add

operation at time 15 indicates the federate is
subscribed to the attribute at time 20, independent
of what other Add or Delete operations occurred
with time stamps less than 15. Similarly, the
effect of the new operation at time 20 only
persists until the next higher time stamped
uncanceled Add or Delete operation. In Figure 9,
the effect of the new operation at time stamp 20
only persists until time 25. No operation with
time stamp larger than 25 is affected by this new
operation.

A DD A A

A

D

Add operation

Delete operation

Federation
Time Axis

5 10 15 20 25 30 35

D

A

Figure 9. Snapshot of Add and Delete
operations by a single federate. The federate is
subscribed to receive updates in the intervals
[5,10) and [15,35).

A AD

Federation Time Axis

Acase 1

A AD

Dcase 3 retract

D AD

Acase 2 send

D AD

Dcase 4

A

D

Add operation

Delete operation

AD Add or Delete operation

 T1 T T2
Federation Time Axis

 T1 T T2

Federation Time Axis
 T1 T T2

Federation Time Axis
 T1 T T2

Figure 10. Possible cases when a new Add or
Delete operation arrives.

Based on the above observations, one can see that
when a new Add or Delete operation arrives with
time stamp T, the “effect” of the operation only
spans the interval from the time stamp of the
immediately preceding (in time stamp order)
Add/Delete operation to the immediately
following operation. In the discussion that
follows, only uncanceled Add and Delete
operations are considered. One can enumerate all
possible situations. There are eight possible
combinations. The first four cases correspond to
a newly arriving Add operation. It can be

preceded (followed) by an Add or a Delete
operation (see cases 1 and 2 in Figure 10).
Actually, of these four cases, only two are
different because the processing of the new
operation does not depend on whether an Add or
Delete operation follows. Case 1 in Figure 10
corresponds to a new Add operation preceded by
another Add operation, and case 2 corresponds to
the new Add preceded by a Delete operation.
Similarly, there are effectively two cases to
consider when a new Delete operation arrives: it
may be preceded by an Add operation (case 3 in
Figure 10) or it may be preceded by a Delete
operation (case 4 in Figure 10). To account for
the smallest and largest time stamped Add/Delete
operations (which do not have a preceding or
following operation, respectively), we implicitly
assume there are Delete operations at times -�

and +�� WR� UHSUHVHQW� WKH� IDFW� WKDW� WKH� IHGHUDWH� LV

not included in any distribution list initially, nor
after the end of the execution.

Correct realization of the Add and Delete
operations can be derived from the case analysis
shown in Figure 10. First consider Add
operations. Case 1 corresponds to a new Add
operation where the federate is already subscribed
to the attribute. This situation of two consecutive
(in federate time) Add operations could arise if
the Delete operation for the earlier Add operation
had been delayed. The new Add operation is not
unlike that at time stamp 25 in Figure 10, i.e., this
operation has no effect because the federate is
already subscribed to the attribute. Therefore, no
further action is required other than noting that
the Add operation has occurred. Case 2
corresponds to the situation where the federate is
not subscribed to the attribute. The federate
should, but has not yet received any attribute
updates with time stamp in the interval [T, T2),
where T2 is the time stamp of the following
Add/Delete operation, so messages for these
updates must be sent to the federate. Updates
with time stamp larger than T2 have already been
correctly processed by the operation at time T2.

Now consider Delete operations. Case 3
corresponds to a Delete operation when the
federate is subscribed to the attribute. In this
case, the federate has been sent messages with
time stamp in the interval [T, T2), where T2 is the
time stamp of the following Add/Delete
operation, so these messages must be retracted
(canceled). The retractions are unnecessary if it

is permissible to receive additional messages
beyond what the federate had subscribed to
receive. Case 4 corresponds to a Delete operation
occurring when the federate is not subscribed to
receive updates. Like case 1 for the Add
operation, no additional messages (or retractions)
need to be sent.

Update operations do not directly affect the status
(subscribed or unsubscribed) of a federate, so do
not impact the Add or Delete operations.

Based on this case analysis, the Add, Delete, and
Update operations can be realized as follows:

I. Update (id,V,T):

A. send V to all federates in D(id,T)
B. record <V,T> in L(id)

II. Add(F,id,T):
A. record F has been added to D(id) at time T
B. if not S(F,id,T) then /* case 2 */

1. let AD be the smallest time stamped
uncanceled Add or Delete operation for F
on id with time stamp greater than T, and
let T2 be the time stamp of AD.

2. For each tupple <V,Tv> in L(id) where T
��7v < T2, send V to F

III. Delete (F,id,T):

A. record F has been deleted from D(id) at time
T

B. if S(F,id,T) then /* case 3 */
1. let AD be the smallest time stamped Add

or Delete operation for F on A with time
stamp greater than T, and let T2 be the
time stamp of AD.

2. For each tupple <V,Tv> in L(A) where T
��7v < T2, send a retraction of V to F

6.1. Memory Reclamation

In addition to the above operations, a mechanism
is required to reclaim memory used by the
distribution lists and logs. The current logical
time of the owner of the attribute plus that
federate’s lookahead provides a lower bound on
the time stamp of any future Update Attribute
Values service request. Assuming Add and
Delete operations also adhere to lookahead
constraints, the current time of any federate that
can Add/Delete the attribute (i.e., any federate in
the federation) plus its lookahead gives a lower
bound on the logical time of future add and delete

requests that will be generated by that federate.
Thus, the minimum of these values across all
federates (analogous to Global Virtual Time in
Time Warp simulations) gives a lower bound on
the time stamp of any Add, Delete, or Update
operations that will be made on the distribution
list in the future. If this minimum time stamp
value is T, then all tuples with time stamp less
than T can be discarded, provided the RTI retains
a copy of the distribution list of the attribute A at
time T, i.e., some representation of D(id,T) is
required. Value tuples with time stamp less than
T may be discarded and their storage reclaimed.

6.2. Simplifications

The mechanism described above requires a
message log. This log can be eliminated if
certain restrictions are made on federate behavior.
Recall that the log was required because Update
messages containing a time stamp T may be
generated before a subsequent Add or Delete
operation containing a time stamp smaller than T.
If one makes the restriction that at each instant in
the federation execution, a global time stamp
value Tbound exists such that no update messages
with time stamp larger than Tbound can be sent, and
no Add or Delete operation with time stamp less
than Tbound can be generated, this situation cannot
occur. Realization of this mechanism requires a
protocol to advance Tbound because all federates
must agree to an advance of Tbound before it can
take effect.

6.3. Multicast Groups

Multiple versions of distribution lists are needed
corresponding to different logical times. A form
of an abstraction called space-time memory can
be used to realize the distribution list[12]. Space-
time memory is similar to ordinary memory
except a time stamp is specified each time the
data structure is read or modified. A read
operation returns the most recent version of the
data structure as of the time stamp of the read,
providing a convenient means for accessing the
correct version.

If multicast groups are exploited, however,
multiple versions of the distribution list cannot be
easily used because the lists are represented
within the network infrastructure by membership
to multicast groups. This problem can be solved
by including in the multicast groups the union of
all distribution lists that are currently active. Add

operations result in immediate joins to the
multicast group. Delete operations are delayed
until the memory reclamation mechanism
advances to the time of the operation.

7. FUTURE WORK

A mechanism is described to realize properly
synchronized data distribution in distributed
simulations using logical time. A two-layer
architecture is proposed that includes a
distribution list manager that ensures data is
routed to subscribers based on logical time
semantics, and an interest manager layer that
maps interest expressions to the distribution list
manager. The DLM is applicable to a variety of
data distribution schemes. An approach to
implementing the IM layer for routing spaces
such as those defined in the HLA is described.

An implementation of the synchronized data
distribution mechanisms described here has been
developed. Performance measurements of this
implementation are just beginning. Future work
will concentrate on completing a detailed
evaluation of this approach.

8. ACKNOWLEDGMENTS

Work on this project was funded under a contract
from DMSO. Comments from the HLA time
management and data distribution management
working groups are acknowledged.

9. REFERENCES

[1] C. Kanarick, “A Technical Overview and
History of the SIMNET Project,” in
Advances in Parallel and Distributed
Simulation, vol. 23: Society for Computer
Simulation, 1991, pp. 104-111.

[2] M. Macrdonia, M. Zyda, D. Pratt, and P.
Brutzman, “Exploiting Reality with
Multicast Groups: A Network Architecture
for Large-Scale Virtual Environments,” in
1995 IEEE Virtual Reality Annual
Symposium, 1995, pp. 11-15.

[3] K. Morse, “Interest Management in Large
Scale Distributed Simulations,” University
of California, Irvine Technical Report TR
96-27, 1996.

[4] E. T. Powell, L. Mellon, J. F. Watson, and
G. H. Tarbox, “Joint Precision Strike
Demonstration (JPSD) Simulation
Architecture,” in 14th Workshop on
Standards for the Interoperability of
Distributed Simulations. Orlando, Florida,
1996, pp. 807-810.

[5] K. L. Russo, L. C. Shuette, J. E. Smith,
and M. E. McGuire, “Effectiveness of
Various New Bandwidth Reduction
Techniques in ModSAF,” in Proceedings
of the 13th Workshop on Standards for the
Interoperability of Distributed
Simulations, 1995, pp. 587-591.

[6] T. W. Mastaglio and R. Callahan, “A
Large-Scale Complex Environment for
Team Training,” IEEE Computer, vol. 28,
pp. 49-56, 1995.

[7] J. S. Steinman and F. Wieland, “Parallel
Proximity Detection and the Distribution
List Algorithm,” in Proceedings of the 8th
Workshop on Parallel and Distributed
Simulation. Edinburgh, Scottland, 1994,
pp. 3-11.

[8] D. J. Van Hook, J. O. Calvin, M. K.
Newton, and D. A. Fusco, “An Approach
to DIS Scalability,” in Proceedings of the

11th Workshop on Standards for the
Interoperability of Distributed
Simulations, 1994, pp. 347-356.

[9] T. D. Blanchard, T. W. Lake, and S. J.
Turner, “Cooperative Acceleration: Robust
Conservative Distributed Discrete Event
Simulation,” in Proceedings of the 1994
Workshop on Parallel and Distributed
Simulation. Edinburgh, Scotland, 1994, pp.
58-64.

[10] Defense Modeling and Simulation
Organization, “HLA Interface
Specification, V. 1.0,” U.S. Department of
Defense, Washington D.C. August 1996.

[11] Defense Modeling and Simulation
Organization, “Data Distribution and
Management Design Document, V. 0.2,”
U.S. Department of Defense, Washington
D.C. December 1996.

[12] R. M. Fujimoto, “The Virtual Time
Machine,” in International Symposium on
Parallel Algorithms and Architectures,
1989, pp. 199-208.

