
In Proceedings of the 1996 Winter Simulation Conference, ed. J. M. Charnes and D. J. Morrice

1

PERILS AND PITFALLS OF PARALLEL DISCRETE-EVENT SIMULATION

Rajive L. Bagrodia

Computer Science Department

University of California, Los Angeles

Los Angeles, California 90095, U.S.A.

ABSTRACT

The design of efficient parallel discrete-event simulation

(PDES) models often appears to be a mysterious art prac-

ticed primarily by academic researchers who have been

rigorously ordained in this task. This tutorial attempts to

unravel some of the mysteries. It describes the process of

generating an efficient parallel implementation of a dis-

crete-event simulation (DES) model. Common pitfalls in

the parallel execution of the models are described together

with suggestions on their avoidance.

1 INTRODUCTION

Parallel (or distributed) discrete-event simulation refers to

the execution of a discrete-event simulation program on a

parallel (or distributed) architecture (Fujimoto 1990). In

recent years, interest in exploiting parallelism in the

execution of discrete-event simulations in a number of

domains including network design and configuration,

personal communication systems, parallel programs,

digital battlefields, and digital circuits has been growing.

This demand has been fueled both by the increasing

availability of parallel computers (PCs with multiple

processing units have become widely available!) and by

the increasing complexity and scalability of systems that

is making sequential model execution computationally

intractable.

The focus of many PDES studies remains on the de-

sign of a parallel simulation model rather than on the

design of a discrete-event simulation (DES) model for

which parallelization can be explored as one execution

option. Part of the reason for this is that it is harder to

use parallel model execution as an ‘afterthought.’ Unless

a modeler pays careful attention to some of the complex

issues that must be addressed to support parallel execu-

tion from the initial stages of model design, subsequent

parallelization efforts may prove to be overwhelming. In

this regard, there is a close analogy between the design of

general purpose parallel programs and PDES: it is much

harder to port a ‘dusty deck’ FORTRAN or C program to

a parallel machine than it is to port a program that was

designed for eventual migration to a parallel architecture.

This tutorial describes the process of generating an

efficient parallel implementation of a DES model. It

outlines some of the common pitfalls in the design of

the initial DES model that can make subsequent parallel-

ization considerably harder, if not impossible. A com-

panion paper in this volume (Liu et al. 1996) describes a

case study in porting a model for wireless network simu-

lation to a distributed memory architecture. The next

section is an overview of parallel synchronization proto-

cols. Section 3 discusses the role of simulation lan-

guages in the design of a PDES. Section 4 addresses the

range of issues that must be addressed in preparing a

DES model for parallel execution. Section 5 is the con-

clusion.

2 PARALLEL SIMULATION PROTOCOLS

Three primary types of synchronization protocols have

been described in the literature: conservative (Misra

1986), optimistic (Jefferson 1985), and mixed (Jha and

Bagrodia 1994), where the latter may include sub-models

that execute in either conservative or optimistic modes.

This section gives an overview of the synchronization

problem in PDES and presents an algorithm for its solu-

tion.

2. 1 Model

A typical simulation is assumed to consist of a collec-

tion of logical processes (or LPs), where each LP models

some physical process in the system. Many papers in the

PDES literature use an LP to represent the sequential

unit of computation in a model. However the decomposi-

tion of a model into LPs may be driven by issues of

modularity and software design rather than by concerns of

parallel performance. In this paper, we view a PDES as a

collection of Sequential Discrete Event Simulation

(SDES) models. Each SDES models a subsystem of the

physical system and executes on a unique processor; the

processor may represent a machine in a network of work-

stations or a single node of a shared or distributed mem-

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.526&rank=1

2

ory parallel architecture. Each SDES consists of one or

more LPs and uses a sequential synchronization algo-

rithm (for example, the Global Event List algorithm) to

schedule local events in their correct timestamp order.

Some mechanism must be defined to allow the SDES

models to communicate with each other. These con-

structs may be provided in the form of explicit messages,

remote procedure calls, or other mechanisms that depend

on the conceptual framework that is used by the lan-

guage. In this paper, we do not make any assumptions

about the language or notation used by an analyst to

describe the SDES. For simplicity and uniformity of

exposition in this paper, we will assume that SDES

models communicate with each other using time-stamped

messages, and any simulation algorithm must execute

the model as if all events were executed in their times-

tamp order.

We assume that the following set of variables are de-

fined for each SDES (Jha and Bagrodia 1994):

• Earliest Output Time (EOT): For a given SDES s,

EOTs refers to the (lower bound) on the future time

at which s will cause an event to be scheduled at an-

other SDES. For some s, if EOTs is infinity, the

remaining SDES can be executed independently of s.

A sink process is an example of such an SDES.

• Earliest Input Time (EIT): EITs of an SDES s refers

to the earliest (future) event that may be scheduled

on s by another SDES. (An SDES may contain un-

processed messages with timestamp smaller than its

EIT). The EIT of an SDES is infinity if all events

scheduled on that SDES are generated locally; a

source process is an example.

• Lookahead: At any simulation time t, the lookahead

of an SDES is a lower bound on the duration after

which it will schedule an event at another SDES.

The lookahead is used by an SDES to compute its

EOT.

We use a simple closed queuing network model to

illustrate the preceding concepts. The network consists of

three FIFO servers. A job arriving at a server, waits for

service, and after completion of the service proceeds with

equal probability to any of the other servers in the net-

work (Figure 1). We are interested in measuring the aver-

age and maximum time that is spent by a job at any

server. Each server may be viewed as an SDES; interest-

ing events in the system are the arrival of a job at a

server (henceforth called the arrival event) and departure

of a job from a server. The jobs in the system are ab-

stracted via the events and need not be modeled as ex-

plicit logical processes. The arrival (and departure) events

are modeled by sending messages among the correspond-

ing servers.

j 2 , 8 j 1 , 6 j 0 , 2S 1. . .

S 3. . .

S 2. . .

Figure 1: Closed Queuing Network

Assume that the service time at each server is 6 time

units. Consider a server that is busy servicing a job: its

EOT is the departure time of the current job. For install

server, in Figure 1, s1 is busy servicing job j0. EOTs1 is

2 + 6 = 8 (we assume that the job began service as soon

as it arrived at the server). If the server is idle, its EOT

will be its EIT plus its lookahead.

2. 2 Synchronization

Traditionally, a PDES model was either optimistic (all

SDES executed in the optimistic mode) or conservative

(all SDES executed in a conservative mode). A conserva-

tive SDES cannot tolerate causality errors; hence it will

only process events with timestamps less than its EIT.

An optimistic SDES may additionally process events

with timestamps greater than its EIT; however, the un-

derlying synchronization protocol must detect and correct

violations of the causality constraint. The simplest

mechanism for this is to have the SDES (or each LP)

periodically save (or checkpoint) its state. Subsequently,

if it is discovered that the LP processed messages in an

incorrect order, it can be rolled back to an appropriate

checkpointed state, following which the events are proc-

essed in their correct order. An optimistic algorithm is

also required to periodically compute a lower bound on

the timestamp of the earliest global event, also called the

Global Virtual Time or GVT. All checkpoints times-

tamped earlier than GVT can be reclaimed. Using our

model, it is sufficient for an optimistic SDES to pre-

serve at least one checkpointed state with a timestamp

smaller than its EIT. (The minimum of the EIT of all

optimistic SDES is a reasonable lower bound on the

GVT of the model). Given appropriate mechanisms to

advance the EIT and EOT of the conservative or optimis-

tic SDES, it is possible to implement a PDES model

which contains sub-models that are executed using opti-

mistic, conservative, or sequential synchronization me-

chanisms (Jha and Bagrodia 1994).

For a given SDES s, we define two sets INs and OUTs

respectively as the set of SDES from which s can either

receive or send event messages (in the case when the

communication topology is not known precisely, the

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.526&rank=1

3

sets can be constructed conservatively; in the default

case, each set may contain every SDES). SDES s com-

putes EITs as the minimum of the EOT of all SDES in

INs. Given its EIT, an SDES can compute its EOT lo-

cally. The frequency and method used by an SDES to

compute its EIT and the frequency with which it com-

municates its EOT to other SDES can have a significant

impact on the performance of the PDES model.

In general, any of the GVT computation algorithms,

conservative algorithms, or even a combination of the

preceding algorithms can be used by a PDES to compute

the EIT of each SDES (regardless of the execution mode

of the individual SDES in the model). The choice of a

specific algorithm for a given scenario is an efficiency

rather than a correctness issue. We outline an aggressive

null message based scheme: whenever the EOT of an

SDES, say s, changes, EOTs is sent using a null mes-

sage to all SDES in OUTs; the null message may of

course be piggy backed on a regular message when feasi-

ble. On receipt of a new EOT from an SDES in INs, the

SDES s recomputes its EIT (and perhaps its EOT) and

propagates changes to OUTs. It is easy to show that

given a model with no zero delay cycles, such an algo-

rithm will eventually advance the EIT of every SDES.

Consider the queuing network example. For a server

process s, OUTs and INs both consist of all server proc-

esses in the system, other than s. Consider the computa-

tion of EIT for a server using the null message scheme

described earlier. The EOT of a server changes every time

a job departs from a busy server or a job arrives at a

server. When a server say s1 forwards a job to s2 it also

sends a null message to s3 (the null message to s2 can

be piggy backed with the job message) possibly allow-

ing it to advance its EIT as explained earlier. Other tech-

niques to improve the computation of EIT and lookahead

are discussed subsequently.

3 SIMULATION MODEL DESIGN

A number of factors govern the choice of the specific

programming language that is used by an analyst to de-

scribe the model. Among many others, these include the

conceptual framework or world view adopted by the lan-

guage (Evans 1988), the availability of, or familiarity of

the analyst with specific languages, and perhaps the

simulation libraries and support facilities provided by the

language. From the perspective of this paper, an impor-

tant concern in choosing a simulation language is its

support for parallel execution of the model. Henceforth

we refer to a language that supports parallel execution of

the model as a Parallel Simulation Language (or PSL).

(Bagrodia 1994) is a recent survey of languages and soft-

ware to develop PDES models.

3. 1 Parallel Simulation Languages

Most extant PSLs provide a set of DES primitives

(scheduling events, advancing simulation time, etc.) to-

gether with a set of parallel programming primitives for

thread (or object) definition, creation and interprocess (or

inter-object) communication and synchronization. We

use thread or process to refer to the basic unit of parallel-

ism that is provided by the language.

A parallel language (and by extension a PSL) can use

either a shared-nothing or a shared-everything model. In

the former case, the processes do not have access to any

shared variables; communication is entirely via messages

or procedure calls. In the latter paradigm, every data item

declared in the program is assumed to be accessible by

every process. Note that a shared-everything program-

ming model may be implemented on a distributed mem-

ory machine and similarly a shared-nothing model may

be implemented on a shared memory architecture. Some

parallel languages may also use a hybrid model, with

restricted forms of data sharing. A majority of existing

PSLs use the shared nothing programming model; hence-

forth we will use the term MP-PSL to refer to such a

language. Shared-everything and hybrid models are active

areas of research in PSL design. In particular, some

PSLs distinguish between processes on the same and

different processors allowing the former to access shared

variables.

Some PSLs additionally provide constructs to modify

the attributes of a model that can affect the synchroniza-

tion overheads and hence its parallel performance. For

instance, the Apostle (Wonnacott and Bruce 1996) simu-

lation language provides support for granularity control

of a simulation object to reduce overheads for event han-

dling, SPEEDES (Steinman 1991) requires user-directed

checkpointing as a way to provide incremental state sav-

ing, Maisie (Bagrodia and Liao 1994) and U.P.S. (Nicol

and Heidelberger 1996) support user-specified lookahead

specification, and Maisie also provides a variety of other

constructs to monitor and optimize parallel performance

including dynamic topology information, a set of con-

structs to reduce rollback costs, and modifying the state

saving interval or time window.

PSLs also differ in their support for specific synchro-

nization protocols. Many existing PSLs support only

optimistic protocols — Sim++ (Baezner, Lomow, and

Unger 1990), ModsimII (West and Mullarney 1988),

Apostle, and SPEEDES to name a few. Relatively few

support only conservative protocols; and even fewer, like

Maisie, support conservative, optimistic, and mixed pro-

tocols. Even though conservative implementations are

considerably easier to develop and have relatively few

operating parameters to tune, optimistic protocols are

generally perceived to be more widely applicable. How-

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.526&rank=1

4

ever, with aggressive exploitation of lookahead in mod-

els, it has been possible to extract significant speedups

from a variety of applications using conservative proto-

cols.

3. 2 Parallel Simulation Overheads

There are three primary sources of overheads in the paral-

lel execution of a simulation model:

• Partitioning related overheads: Specific decomposi-

tions of a model into its component SDES modules

sets an upper bound on the speedup that can be ob-

tained from parallel execution of the model. The al-

location of LPs to SDES determines the contribu-

tion to the overhead by load (im)balance, message

communications, and related factors.

• Synchronization protocol overheads: These are the

overheads that are contributed by the specific proto-

col that is used to synchronize the execution of the

SDES. For instance, a conservative protocol intro-

duces null message or blocking overheads whereas

an optimistic protocol may introduce rollback or

checkpointing overheads.

• Target architecture overheads: These costs include

architecture-specific costs like message latency and

context switching overheads that, in many cases, are

beyond the direct control of the modeler.

As described in the next section, the analyst must rec-

ognize and reduce these overheads for successful paralleli-

zation of the DES model.

4 PARALLEL MODEL EXECUTION

The use of a PSL is a necessary, though hardly suffi-

cient, condition for the corresponding model to run effi-

ciently on a parallel architecture. In this section, we out-

line common pitfalls that must be overcome by an ana-

lyst to design a efficient parallel implementation. As

with any parallel program, there is no guarantee that

parallel execution of a model will yield performance

benefits; however following the guidelines in this sec-

tion will certainly increase those chances.

Pitfall 1 – Shared Variables: Even though a

MP-PSL uses a shared-nothing programming model, it

may not be possible (or efficient) for the compiler to

detect uses of shared variables. Shared variables may not

pose a problem for sequential implementations, but can

have a serious consequence when porting the model to a

parallel architecture. Consider the implementation of

global variables: as the language assumes a shared-

nothing model, no attempt is made to maintain consis-

tency among the copies of the global variables stored on

multiple processors.

In general, shared variables may be eliminated from a

program by transforming it such that the variables are

stored in one or more SDES, and all read and write opera-

tions to the corresponding data are implemented via mes-

sages or other mechanisms provided by the language for

interprocess communication. However such a transforma-

tion might create a significant bottleneck in the program.

In many cases, efficient alternatives are available. For

instance, a common use of global variables is as write-

once variables that are used to store input data like con-

nectivity matrices or boundary values that are input to

the model and are not modified subsequently. In this

case, global variables can be eliminated by replicating

the initialization code on each processor or by suspend-

ing all SDES until the initial values have been broad-

cast.

Some languages like Maisie allow the programmer to

use write-once globals by providing an explicit library

routine for synchronous broadcasts of initialized global

variables. Other languages like Apostle allow variables

to be shared among processes on the same processor.

However, indiscriminate use of shared or global variables

in a DES model is likely to present serious obstacles in

its migration to a parallel architecture.

Pitfall 2 – Pointer Data Structures: The use of

pointer data structures is similar to the issue of shared

variables. An MP-PSL must not pass pointers among

SDES (or logical processes) as there is no logical shar-

ing of data between them. For PDES models that are

synchronized using optimistic algorithms, even local use

of pointer data structures may complicate checkpointing.

Many optimistic systems use copy-state checkpointing

where the entire state of a process is copied and stored in

a time-stamped queue. Dynamic data structures like

queues and trees make it hard to use copy-state check-

pointing.

Elimination of pointers in interprocess communication

typically requires that all data be passed by value. For

large structured data types, this might significantly in-

crease the communication overhead and hence program

execution time. A common solution is to allow pointer

passing among processes mapped to a common proces-

sor, although this adversely affects maintainability.

Pitfall 3 – Zero Delay Cycles: A model is said

to contain a cycle if there is a sequence of SDES ei, ei+1,

ei+2, ..., ei+n, ei, n >= 0, such that each SDES may send a

message to the next SDES in the sequence. The model is

said to contain a zero-delay cycle if the sequence of mes-

sages exchanged in the cycle have the same timestamp.

A simple example of a model with a cycle is shown in

Figure 2. The merge process simply outputs messages

received from its inputs in increasing timestamp order. If

a path exists in the model from the merge process to a

server process, and the server process has a lookahead of

zero, the model could include a zero-delay cycle. A PDES

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.526&rank=1

5

model cannot contain zero-delay cycles as they can cause

deadlocks in a conservative simulation (Misra 1986) or

instabilities in an optimistic system.

Server
Processes

Merge
Process

Figure 2: Merging Processes

Some parallel simulation environments (e.g. TWOS)

avoid zero-delay cycles by requiring that the receive

timestamp of a message be strictly greater than the

(simulation) time at which it is sent (Jefferson, Beckman

and Wieland 1987). This might be a significant restric-

tion on the modeler particularly because sequential lan-

guages do not impose such constraints. A somewhat less

restrictive approach is to ensure that at least one process

in every cycle in the model has a non-zero lookahead

(Misra, 1986).

Pitfall 4 – Poor Lookahead: Assume that a mes-

sage with timestamp ts arrives at an SDES at physical

time tr and is processed by the SDES at physical time tp,

tp >= tr (for optimistic systems, tp refers to the time at

which the corresponding message was processed and not

canceled subsequently). The duration [tr, tp] represents

simulation overhead if the corresponding SDES was con-

servative and its processor was idle in the duration, or if

it was optimistic and the computation performed during

the duration was subsequently canceled. It follows that to

reduce synchronization overheads, the EIT of an SDES

should be as high as possible. The EIT of an SDES is

determined by the number and EOT of its predecessors.

Given a model with a specific connectivity, we first ex-

amine techniques that improve the lookahead (Fujimoto

1988) for each component of the model. Subsequently

we look at techniques to improve the performance of a

model by reducing its connectivity. Traditionally, supe-

rior lookahead is assumed to impact the performance of

only conservative SDES; however if an optimistic

SDES processes a message with a timestamp smaller

than its EIT, it can assert that corresponding messages

with a lower timestamp can never be canceled and hence

reduce its checkpointing overheads.

A commonly used technique to improve lookahead for

stochastic models is to presample random distributions

that are used to model various temporal intervals (Nicol

1988). For instance, consider a FIFO server that is idle at

simulation time t1. In the absence of presampling, its

EOT will only be t1 + ε , where ε is some minimum

value that can be generated by the corresponding random

distribution. However, if the idle server presamples the

next random value from the specified distribution, it can

use that to advance its EOT. This technique is also used

to improve the performance of a priority-preemptible

server which would otherwise have a poor lookahead

even when it was busy serving a low priority job. Lan-

guage level facilities have been developed to allow the

runtime system to extract the lookahead from the model

or to allow a programmer to directly express the looka-

head in the model (Jha and Bagrodia 1993, Nicol and

Heidelberger 1996, Cota and Sargent 1989).

Compile and run time analyses of a model have also

been shown to be useful in improving the application

lookahead. Consider the simulation of asynchronous

parallel programs where the tasks or threads communi-

cate with each other using explicit send and receive

commands. The lookahead for these applications is typi-

cally the time between two consecutive communication

commands, referred to as the local block time (LBT). A

common approach to estimating the LBT is by direct

execution where the physical time needed to execute the

code is measured by the processor clock and used to ad-

vance the local simulation clock. Techniques like predic-

tive barrier scheduling (Legedza and Weihl 1996) use

compile and run-time analysis of the program to estimate

a lower bound on the time between successive communi-

cation statements in a program. Further, semantic infor-

mation can be used to identify the source of an incoming

message in the receive statement allowing a thread to

proceed as soon as the corresponding message is avail-

able locally rather than waiting for all messages to be

synchronized (Prakash and Bagrodia 1995).

Pitfall 5 – High Connectivity: Improving the

connectivity information available for each SDES can

improve the performance of a conservative SDES. By

default, the runtime system assumes that the model is

fully connected, requiring each SDES to send informa-

tion about its EOT to all other SDES in the system,

considerably increasing the synchronization overhead. By

providing dynamic connectivity information to the

model, this overhead can be reduced significantly (Jha and

Bagrodia 1993).

It may also be possible to tailor the decomposition of

the entities in a model to improve its connectivity. For

instance, it is often possible to use clustering in network

and VLSI simulations to collapse strongly connected

sub-models into a single SDES and reduce the connectiv-

ity among the SDES (Gerasoulis and Yang 1993).

Pitfall 6 – Load Imbalance: Traditional tech-

niques to decompose parallel programs (and hence paral-

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.526&rank=1

6

lel models) typically try to balance the computation

among the partitions while minimizing the message

communications among them (Sarkar and Hennessy

1988). The assignment of processes to processors may

be accomplished using either static or dynamic algo-

rithms. The primary advantage of static scheduling algo-

rithms is the absence of any run time overheads in dis-

tributing the computation. The primary drawback of

static algorithms is the difficulty in accurately estimating

the computation and communication costs for each LP at

compile time. For instance, in a gate-level circuit simu-

lation, the computation load may be approximated by the

number of gates in each partition and the communication

load by the number of 'nets' that are cut between two

partitions. A static partitioning algorithm may use these

metrics to generate a statically-balanced decomposition.

Clearly the level of dynamic circuit activity (which is a

function of the input vectors that are fed to the circuit)

among the different partitions may not be correlated well

with the number of gates.

In the case of dynamic partitioning algorithms, the

load at each processor is monitored at runtime. When the

load is determined to be unbalanced based on the criteria

specified by the system (e.g. CPU utilization, number of

LPs in the scheduled queue, etc.) LPs are selected for

transfer based on a specific transfer policy. The selected

LPs are subsequently moved from one SDES to another

at runtime based on specific placement policies that may

be specified for the system. The primary advantage of

dynamic techniques is that they can be much more re-

sponsive and accurate in identifying and rectifying load

imbalance in a computation. However the techniques

may impose a significant overhead for monitoring the

load and transferring LPs. Because of the significant run-

time overhead of migrating objects, extant PDES sys-

tems generally use static model decompositions to assign

LPs to an SDES.

Although a significant amount of research has been

undertaken in the area of load balancing for parallel and

distributed computing (Shirazi, Hurson, and Kavi 1996),

there has been significantly less exploration of this issue

in the context of PDES (Wilson and Nicol 1996). A

majority of the load balancing research in PDES has

been dedicated to VLSI simulations (Bailey, Briner, and

Chamberlain 1994). A parallel program is typically par-

titioned in a manner that minimizes message communi-

cations among the components. However, for a parallel

simulation other factors may be more important: for

instance, the communication topology has been found to

have a significant impact on performance where models

with an acyclic communication topology perform sig-

nificantly better than ones that contain cycles (Cong, Li,

and Bagrodia 1994). In addition, although it may not be

possible to eliminate cycles completely from a model,

reductions in the number of cycles can also have a sig-

nificant impact on the performance. Thus from a PDES

perspective, it may be preferable to use a partitioning

that has a higher total communication cost that another

provided that the former also has a smaller number of

cycles among the partition.

Pitfall 7 – High Message Traffic: This factor

is related closely to the load imbalance issue in that the

decomposition of a model should be aimed at reducing

the message traffic among the partitions. In addition it is

often possible to aggregate messages from one SDES to

another, particularly when multiple processes may be

mapped to an SDES. As a large number of small mes-

sages typically contribute greater communication over-

head than a small number of large messages, appropriate

use of message aggregation or piggy-backing can reduce

this overhead.

Pitfall 8 – Low Event or Computation

Granularity: Context-switching costs can be a signifi-

cant contributor to simulation overheads when a large

number of processes are mapped to a single SDES. A

number of factors including cache behavior, task switch-

ing times, and processes scheduling costs contribute to

this overhead. Some of these costs, e.g. the scheduling

policy, are determined by the design choices that have

been made by the language designer and may be beyond

the control of the programmer. For instance, the tradi-

tional Global Event List (GEL) algorithm schedules

events across different LPs mapped to an SDES in the

order of their timestamps. It is typically possible to re-

duce the scheduling overheads by using a parallel simula-

tion algorithm: compute the EIT for each LP; select an

LP that has the largest number of pending safe events

(i.e. events with timestamps smaller than its EIT) and

process all safe events for that LP before switching to

another LP. Although this policy will cause some events

to be scheduled out of their timestamp order, it is easy to

show that causality will not be violated. For queuing

network and network simulation benchmarks (Jha and

Bagrodia 1993), this form of local scheduling has been

shown to significantly improve overall execution times

for a model.

In general, the overhead costs tend to increase with the

number of LPs. However it is often possible to hide the

communication latency of a parallel program by multi-

processing the LPs mapped to an SDES. This behavior

has been observed for parallel programs in many applica-

tions and has led to the design of numerous thread pack-

ages. The support for multiple processes at an SDES can

similarly improve the performance of a PDES model.

Pitfall 9 – Low Inherent Parallelism: It may

sometimes be the case that the parallel implementation

of an application fails to yield significant performance

improvements because the application itself or a specific

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.526&rank=1

7

decomposition contains a low degree of inherent parallel-

ism. As an example of such a scenario consider the

simulation of a network containing a large number of

nodes but a very small number of jobs. As the parallel

activity is determined by the processing associated with

each job, there will be insufficient parallelism in the

model. In general, it is a non-trivial problem for an ana-

lyst to identify the extent of parallelism that is present in

a PDES model.

Theoretical metrics like critical path have been used to

provide a loose lower bound on the parallel execution

time of a model (Lin 1990). The critical path has limited

practical utility because it ignores many common and

often unavoidable sources of overhead including message

latency, load imbalance etc. Recently, the notion of an

Ideal Simulation Protocol or ISP (Jha and Bagrodia

1996) has been suggested to experimentally compute a

realistic lower bound on parallel execution time. This

protocol includes all overheads that arise in the parallel

execution of a model other than those that are directly

attributed to the synchronization protocol. In other words

ISP allows an analyst to compute the speedup that could

be obtained from the parallel execution of a PDES

model, if the synchronization overheads were zero. ISP

could thus be used by an analyst to determine the paral-

lelism potential of a model (or a specific decomposition)

before expending significant effort in trying to tune other

simulation-specific parameters.

Pitfall 10 – High Checkpointing Overheads:

Checkpointing is used in optimistic protocols to support

rollbacks to cancel incorrect computation. The simplest

technique is copy-state checkpointing which copies the

entire state of an SDES or LP before processing each

event. It is often more efficient to use interval check-

pointing where the state of an SDES is saved after proc-

essing multiple events. Periodic or interval check-

pointing reduces the total state saving time; however it

increases the computation time because some correct

events must now be recomputed. The checkpointing fre-

quency that will yield optimal performance is a tradeoff

between the preceding factors and is typically applica-

tion-dependent. An analytical formulation to select an

optimal checkpointing interval has been described in (Lin

et al. 1993). The preceding paper also describes an algo-

rithm that can be used to select an ‘optimal’ checkpoint

interval during the execution of a model. Subsequent

work has extended these results to use adaptive check-

pointing intervals.

For many applications including circuit and battlefield

simulations, the state of an SDES or even an LP can be

very large. Further it is often the case that only a small

fraction of its total state space is modified when an event

is processed. For such applications the use of copy-state

checkpointing can increase the synchronization overheads

sufficiently to offset any performance benefits of parallel

execution. An alternative is to use incremental state sav-

ing, where only the portion of the object’s state that is

modified by an event is saved. Incremental state saving

can either be programmer-directed or system-directed. In

the latter case, two possibilities exist: the run-time sys-

tem can explicitly compare the old and new states of an

object and only save the modified portions, or save a

history of all modifications as they are made to an ob-

ject. Incremental state saving can reduce checkpointing

costs but considerably increase rollback costs because the

previous state of the object must now be reconstructed

using the modification history or the incrementally saved

states. Comparison of the two methods for check-

pointing is an ongoing research area (Palaniswamy and

Wilsey 1993).

5 CONCLUSIONS

The increasing complexity of many DES models has led

to an increased the demand for PDES. However, the

process of developing an efficient parallel model, even in

languages that support PDES, remains a challenging

task. This tutorial described some of the more common

pitfalls that analysts need to be aware of when embarking

on the journey to parallelize a DES model.

ACKNOWLEDGMENTS

This work was supported by the U.S. Advanced Research

Projects Agency ARPA-CSTO, Air Force Contract F-

30602-94-C-0273, ‘Scalable Systems Software Meas-

urement and Evaluation’ and Dept. of Defense Contract

DABT-63-94-C-0080, ‘Transparent Virtual Mobile Envi-

ronment.’ The author would like to thank Vikas Jha, Yu-

an Chen, Jay Martin, Rich Meyer, Brian Park and others

in the UCLA Parallel Computing Laboratory, for their

role in the many useful discussions that led to this paper.

REFERENCES

Bagrodia, R. 1994. Language support for parallel dis-

crete-event simulations. In Proc. 1994 Winter Simula-

tion Conference, ed. J. D. Tew, S. Manivannan, D.

Sadowski, and A. Seila, 1324-1331.

Bagrodia, R. and W.-T. Liao. 1994. MAISIE: A lan-

guage for the design of efficient discrete-event simula-

tions, IEEE Trans. Software Eng., 20(4), 225-238.

Baezner, D., G. Lomow, and B. W. Unger. 1990.

Sim++: The transition to distributed simulation. In

Proc. 1990 SCS Multiconference on Distributed

Simulation, 211-218.

Bailey, M. L., J. V. Briner, Jr. and R. D. Chamberlain.

1994. Parallel logic simulation of VLSI systems.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.526&rank=1

8

ACM Computing Surveys (26) 3:255-294.

Cong, J., Z. Li, and R. Bagrodia. 1994. Acyclic multi-

way partitioning of boolean networks. In Proc.

ACM/IEEE Design Automation Conf., 670-675.

Cota, B. A. and R. G. Sargent. 1989. Automatic looka-

head computation for conservative distributed simula-

tion. Technical Report CASE Center 8916, Simula-

tion Research Group and CASE Center, Syracuse Uni-

versity, Syracuse, NY.

Evans, J. B. 1988. Structures of discrete event simula-

tion: an introduction to the engagement strategy. Elis

Horwood Ltd.

Fujimoto, R. 1988. Lookahead in parallel discrete event

simulation. Int’l Conference on Parallel Processing.

Fujimoto, R. 1990. Parallel discrete event simulation.

CACM, 33(10):30-53.

Gerasoulis, A. and T. Yang. 1993. On the granularity

and clustering of directed acyclic task graphs. IEEE

Trans. on Parallel and Distributed Systems, 686-701.

Jefferson, D. 1985. Virtual Time, ACM TOPLAS,

7(3):404-425.

Jefferson, D., B. Beckman, and F. Wieland. 1987. Dis-

tributed simulation and the time warp operating sys-

tem. In Symposium on Operating Systems Principles.

Jha, V. and R. Bagrodia. 1993. Transparent implementa-

tion of conservative algorithms in parallel simulation

languages. In Proc. 1993 Winter Simulation Confer-

ence, ed. G. W. Evans, M. Mollaghasemi, E. C. Rus-

sell, and W. E. Biles, 677-686.

Jha, V. and R. Bagrodia. 1994. A unified framework for

conservative and optimistic distributed simulation. In

Proc. 8th Workshop on Parallel and Distributed Simu-

lation, ed. D. K. Arvind, R. Bagrodia, J. Y. Lin, 12-

19, IEEE Computer Society Press.

Jha, V. and R. L. Bagrodia. 1996. A performance evalua-

tion methodology for parallel simulation protocols. In

Proc. 10th Workshop on Parallel and Distributed

Simulations, 180-183, IEEE Computer Society Press.

Legedza, U. and W. E. Weihl. 1996. Reducing synchro-

nization overhead in parallel simulation. In Proc.

Tenth Workshop on Parallel and Distributed Simula-

tion, 86-95, IEEE Computer Society Press.

Lin, Y. 1990. Understanding the limits of optimistic and

conservative parallel simulation. PhD thesis, Univer-

sity of Washington, Seattle.

Lin, Y., B. R. Preiss, W. M. Loucks, and E. D. La-

zowska. 1993. Selecting the checkpoint interval in

time warp simulation. In Proc. Seventh Workshop on

Parallel and Distributed Simulation, ed. R. Bagrodia

and D. Jefferson, 3-10. IEEE Computer Society Press.

Liu, W., C. Chiang, H. Wu, V. Jha, M. Gerla, and R.

Bagrodia. 1996. Parallel simulation environment for

mobile wireless networks. In Proc. 1996 Winter

Simulation Conference, ed. J. Charnes and D. Morice.

Misra, J. 1986. Distributed discrete-event simulation,

ACM Computing Surveys 18 (1): 39-65.

Nicol, D. M. 1988. Parallel discrete event simulation of

FCFS stochastic queuing networks. In Parallel pro-

gramming: experience with applications, languages

and systems, 124-137. ACM SIGPLAN.

Nicol, D. M. and P. Heidelberger. 1996. On extending

more parallelism to serial simulators. In Proc. Tenth

Workshop on Parallel and Distributed Simulation,

202-205, IEEE Computer Society Press.

Palaniswamy A. C. and P. A. Wilsey. 1993. An analyti-

cal comparison of periodic checkpointing and incre-

mental state saving. In Proc. Seventh Workshop on

Parallel and Distributed Sim., ed. R. Bagrodia and D.

Jefferson, 127-134. IEEE Computer Society Press.

Prakash, S. and R. Bagrodia. 1995. Parallel simulation

of data parallel programs. In Proc. Eighth Workshop

on Languages and Compilers for Parallel Computing.

Sarkar V. and J. Hennessy. 1988. Compile-time parti-

tioning and scheduling scheme of parallel programs. In

Proc. SIGPLAN ‘88 Symposium on Compiler Con-

truction, 17-26.

Shirazi, B., A. R. Hurson, K. Kavi. 1996. Scheduling

and Load Balancing in Parallel and Distributed Sys-

tems. IEEE Computer Society Press.

Steinman, J. 1991. SPEEDES: synchronous parallel

environment for emulation and discrete event simula-

tion, In Advances in Parallel and Distributed Simula-

tion, 95-103. SCS Multiconference, Anaheim, CA.

West, J. and A. Mullarney. 1988. ModSim: a language

for distributed simulation. In Proceedings of 1988

SCS Multiconference on Distributed Simulation, San

Diego, CA, 155-159.

Wilson, L. F. and D. M. Nicol. 1996. Experiments in

automated load balancing. In Proc. Tenth Workshop

on Parallel and Distributed Simulation, 4-11, IEEE

Computer Society Press.

Wonnacott, P. and D. Bruce. 1996. The APOSTLE

simulation language: granularity control and perform-

ance data. In Proc. Tenth Workshop on Parallel and

Distributed Simulation, 114-123, IEEE Computer So-

ciety Press.

AUTHOR BIOGRAPHY

RAJIVE L. BAGRODIA is an Associate Professor

of Computer Science at UCLA. He obtained a Bachelor

of Technology in Electrical Engineering from the Indian

Institute of Technology, Bombay, in 1981, and the M.A.

and Ph.D. degrees in Computer Science from the Univer-

sity of Texas at Austin, in 1983 and 1987 respectively.

His research interests include distributed algorithms, par-

allel languages, programming methodology and perform-

ance evaluation. Email: rajive@cs.ucla.edu.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.526&rank=1

