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Abstract

In this communication Simulated Annealing and Genetic Algorithms, are applied to the
graph partitioning problem. These techniques mimic processes in statistical mechanics and
biology, respectively, and are the most popular meta-heuristics or general-purpose
optimization strategies. A hybrid algorithm for circuit partitioning, which uses tabu search to
improve the simulated annealing meta-heuristics, is also proposed and compared with pure
tabu search and simulated annealing algorithms, and also with a genetic algorithm. The
solutions obtained are compared and evaluated by including the hybrid partitioning algorithm
in a parallel test generator which is used to determine the test patterns for the circuits of the
frequently used ISCAS benchmark set.

1 Introduction

As general-purpose parallel computers are increasingly being used to speed up
different VLSI applications, the development of parallel algorithms for circuit
testing, logic minimization and simulation, HDL-based synthesis, etc. is currently a
field of increasing research activity. The circuit partitioning problem arises in many
VLSI applications [1,2]. Due to the increasing complexity of VLSI circuits, the NP-
complete [3] character of many VLSI CAD problems makes a "divide and conquer"
approach more attractive to solve these problems in reasonable periods of time, and
so circuit partitioning has become an important previous step in this kind of
applications.

Several approaches for circuit partitioning have been reported [5-11]. They can
be classified as move-based approaches [5], and cluster-based approaches [6]. The
move-based procedures build the solution iteratively by applying a move or
transformation to the current solution. The set of possible transformations that can
be applied to a given solution defines the neighbourhood structure of the solution
space, which is explored repeatedly by moving from the current solution to a
neighbouring one. The move-based procedures are simple to describe and
implement, and thus, are the most frequently used. These procedures include
iterative improvement methods [5,7-8], which move from the current solution to the
best solution in its neighbour, and stochastic meta-heuristics, such as Simulated
Annealing (SA) [10,12], Tabu Search (TS) [9,13], and Genetic Algorithms (GA)
[11,14], which allow movements towards solutions worse than the current one in
order to escape from local minima. Hybrid algorithms that mix the previous meta-
heuristics are also possible. In [11], a heuristic based on Tabu Search and Genetic
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Algorithms is applied to the circuit partitioning problem, and a classification of
hybrid algorithms is also provided. In this paper, we also present a hybrid algorithm
that inserts elements of a Tabu Search into a Simulated Annealing algorithm, the
Mixed Simulated Annealing and Tabu Search (MSATS) algorithm. The results
provided by MSATS are compared with those obtained with a Tabu Search, a
Simulated Annealing, and a Genetic Algorithm, respectively.

In the following, Section 2 gives a more precise definition of the circuit
partitioning problem and presents the cost function associated with the circuit
partitioning problem. The description of MSATS is provided in Section 3. In
Section 4, a brief description of the Genetic Algorithm implemented to solve the
circuit partitioning problem is provided. Finally, the experimental results provided
by the different meta-heuristics are compared in Section 5, and Section 6 gives the
conclusions of the paper.

2 The Circuit Partitioning Problem

The circuit partitioning problem consists of finding a decomposition of the target
circuit into non-overlapping subcircuits with at least one logical gate in each
subcircuit. Among the different objectives that may be satisfied by the desired
partitioning are (i) the minimization of the number of cuts, (ii) the minimization of
the number of subcircuits, and (iii) the minimization of the deviation in the number
of  elements (inputs, logical gates, outputs and fanout points) assigned to each
partition. As our goal is to use all the available processors in the multicomputer to
process the circuit in parallel while trying to keep all the processors working during
the whole run time, the number of subcircuits is fixed to be equal to the number of
available processors in the machine, and the objectives correspond to criteria (i) and
(iii). This means obtaining subcircuits with similar sizes to balance the workload of
the processor (considered as proportional to the number of nodes), and minimizing
the number of cuts. In the following, a formulation of the problem is provided.

Let G = (X, A) be the directed acyclic graph associated with a combinational
circuit C, where X denotes the set of components  (inputs, logical gates, and outputs)
and A the set of lines used for signal propagation. The nodes of X can be classified
as inputs, logical gates and outputs of circuit C. Thus X is the union of three disjoint
sets, the set of inputs E, the set of logical gates P (nodes), and the set of outputs S.

The problem is to find a partition of X into a fixed number of K subsets Xk,
k=1,...K, such that each induced subgraph Gk (Xk, Ak) satisfies the following
conditions:

1. X X X k h k hkk
K

k hX= = ∅ ∀ ≠ ∈=1U and � , , ( , )  {1,...,K} 2

 2.  pk Xk P k K= ≠ ∅ ∀ =� 1,...,

3. Li7 ≤pk ≤Lu,  with Li =  n K/  - n K/  *θ  and  Lu = n K/  + n K/  *θ,

∀k=1,...,K; where n=P; n K/  represents the number of gates that should
be included in each subcircuit to obtain a partition of similar sized subcircuits;
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and θ is the parameter representing the proportion of gates that is tolerated as
a deviation with respect to n K/ . In this work, θ has been set to values
between 0.2 and 0.3.

4. Gk (Xk, Ak) is a connected graph, ∀k = 1,...,K.

In this way, given a circuit graph G=(X,A), the problem is formulated as a
combinatorial optimization problem in which the cost function c(s) to minimize is
defined as:

c(s) = α.n_cuts(s) +β. 2
1

deviation k

k

K ( )

=
∑ (1)

where:

deviation(k) = maximum { 0,  |Xk � P| -Lu , Li - |Xk � P|},

n_cuts(s) is the number of cuts of the solution, and s is any solution to the circuit
partitioning problem, feasible or not, i.e. verifying the above condition 3 or not.
Thus, whenever for all k=1,..,K, in a given partition s, the deviation in the number
of gates of Gk with respect to n K/  is less than θ. /n K , the solution is feasible

and the cost is c(s) = α.n_cuts(s) + βK, since deviation(k) = 0 (k=1,..,K). The second
term in (1) penalizes the deviation from the feasible solution space and its
magnitude is determined by the constant β. Nevertheless, according to the relative
magnitude of α and β, a transition to a solution s determining a deviation greater
than 3. n K/  in the number of gates of any subcircuit still decreases the cost
function if the reduction in the number of cuts is sufficiently large.

3  The MSATS Algorithm

The MSATS (Mixed Simulated Annealing Tabu Search) procedure is a hybrid
method that uses the best features of the two meta-heuristics, Simulated Annealing
and Tabu Search [12-14], to outperform the results provided by each. At each
iteration of MSATS, admissible moves are applied to the current solution, allowing
transitions that increase the cost function as in Simulated Annealing. When a move
increasing the cost function is accepted, the reverse move is forbidden during some
iterations in order to avoid cycling, as in Tabu Search. The restrictions in the
admissible moves are implemented by using a short term memory function which
determines how long a tabu restriction will be enforced and the admissible moves at
each iteration.

In MSATS, the temperature t is used as a parameter to control the probability of
accepting a new solution, as in Simulated Annealing. At a given temperature, only
the solutions which are selected by the SA cooling schedule are considered as
candidates to produce a transition. Thus, a certain randomness is introduced into a
pure TS, in order to explore zones of the solution space that do not appear very
promising at first. As the algorithm also has the characteristics of a Tabu Search, it
avoids the cycles around local minima, allowing a more efficient exploration of the
solution space without revisiting solutions, as may occur in a pure SA.
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Two different initial solutions, s1 and s2, have been used in our experiments.
They are obtained by fast algorithms that assign n/K nodes to each partition. The
initial solution s1 is obtained by an algorithm named Input Partitioning, in which the
circuit graph is traversed in a depth-first way, starting from the inputs. Solution s2 is
provided by an algorithm called Output Partitioning which processes the graph in a
depth-first manner from the output nodes. These fast partitioning algorithms take
O(n) time to obtain partitions in which strongly connected components of the graph
are assigned  to the same partition.

MSATS stops when one of the following conditions is verified: (i) the
temperature is equal to a final value (in this paper a temperature equal to zero has
been used as final temperature), (ii ) the number of moves applied  without
improving the best solution found so far (n_failures) reaches a maximum bound of
consecutive iterations (max_failures), and (iii ) the number of iterations reaches the
value max_iteration.

4 Genetic Algorithm

A Genetic Algorithm simultaneously examines and manipulates a set of possible
solutions. Each candidate solution is represented by a string of symbols called a
chromosome. The set of solutions, Pj, is referred to as the population of the jth

generation. The population evolves for a prespecified total number of generations
under the application of evolutionary rules called Genetic Operators

GENETIC  Algorithm
Begin

Select popu_size, max_gen, num_gen=0
Initialize Population
while (num_gen < max_gen) do

Evaluate Fitness
for (i=1 to popu_size)

Select (mate1,mate2)
if (rnd(0,1) leq cross_rate) then

child = Crossover(mate1, mate2)
if (rnd(0,1) leq mutate_rate) then

child = Mutation( )
end_for
Add offsprings to new generation
num_gen=num_gen+1

end_while
Return best chromosomes
End_Genetic_Algorithm

Fig. 1. Genetic Algorithm for circuit partitioning .

The Genetic Algorithm implemented is shown in Fig. 1. It begins with an
encoding and initialization phase during which each string in the population is
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assigned a uniformly distributed random point in the solution space. Each iteration
of the genetic algorithm begins by evaluating the fitness of the current generation of
strings. A new generation of offspring is created by applying crossover and mutation
to pairs of parents who have been selected according to their fitness. The specific
characteristics of the GA implemented are described below.

Solution Representation: Let K be the number of subcircuits into which the circuit
with graph G is divided, and let n (n=|P|) be the number of logic gates of the original
circuit; then each solution is represented by an array S of n elements as

S=A1, A2,A3,...,An  with AiU [1,...,K], [i U {1,...,K}

where the Ai element in array S represents the subcircuit to which the logic gate i
belongs. Then, for the circuit partitioning problem, the representation is based on an
integer array of length M.

Once the coding has been fixed, the next step is to initialize the population. Let
N be the population size. The algorithm has been run by using solutions s1 and s2,
indicated in Section 3, and random solutions as initial ones.

Fitness function: The fitness function is obtained directly from the cost function
described in (1).

Reproduction or selection: The fitness value ci of the best string i of  Generation T is
compared with the fitness value cj of the worst string j of generation T+1. If ci>cj,
then string j is replaced by string i. This strategy ensures that the maximum fitness
value of the population does not decrease as the process of evolution continues.

Crossover: Several crossover procedures have been tried in order to achieve an
efficient search of the solution space. These crossover operators should generate
feasible solutions when applied to a given population in order to implement an
efficient search in the solution space. It begins by randomly choosing a cut point b
where 17b7L, where L  is the string length; an interval is then generated with b and
b+rank. The elements of the string that correspond to boundary gates in the two
selected solutions  will be exchanged.

Mutation: The operation of mutation involves the perturbation of a string position
which has been randomly chosen. The perturbation involves changing the string
position to one of its possible positions taking into account the pseudo-inputs and
pseudo-outputs.

Stop condition: The algorithm terminates either (i) when convergence is reached,
i.e., all the strings in the population have nearly equal values for their fitness
function, or (ii) when a previously specified number of generations is reached.

5 Experimental Results

In this section we summarize the results obtained by using the algorithms
MSATS, SA, TS and GA for circuit partitioning. The algorithms are programmed in
C and executed on a Power Challenge XL (Silicon Graphics). The benchmark
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circuits used to evaluate the performances are those included in the ISCAS´85 [23],
which is the set of circuits usually considered to evaluate test-pattern generation
procedures.

The values of the parameters are set to their best values according to previous
experimental results obtained. These values for the MSATS, SA and TS algorithms
are the following. Max_failures is set to 0.25*(max_iterations), and tfactor to 0.99.
The value of max_iterations is usually taken as 1000, and the initial temperature, t0
as 100. For these values, the cost function reaches a stable final value at the end of
the 1000 iterations. The parameters that produced the best experimental results in
the GA algorithm are the following: Population size: Among the population sizes
checked, the value producing best experimental results was 100. Probability of
crossover: Good performance is associated with a crossover probability from 0.8 to
0.9. Probability of mutation: The probability of mutation varies from 0.01 to 0.09.

  Table 1 presents the best results obtained by SA, TS, GA, and MSATS compared
with the initial solution s1 for partitions of 2, 4, 8, and 16 subcircuits. The row cuts
reduction indicates the average of the reduction in the number of cuts obtained by
MSATS with respect to the best solution of those provided by SA, TS, and GA, in
each case. As can be seen, the results obtained by MSATS outperform those
obtained with TS, SA, and GA in most cases. As the circuit size increases, the
neighbourhood of a given solution also grows, and the effect of considering tabu
transitions is more important in MSATS. Table 1 compares the computing times for
the different algorithms. As can be seen the times for MSATS are similar to those of
Simulated Annealing and lower than those of TS.

The MSATS algorithm has been used as a first step in a parallel test-pattern
generator. It starts by applying MSATS to partitioning the circuit under test, and
after this each processor receives one of the subcircuits obtained. Thus, it is possible
for all the processors to concurrently apply the test generation algorithm to
determine the test patterns for the stuck-at faults in the nodes of the corresponding
subcircuit [16]. Thus, one way to demonstrate the performance of MSATS is to
consider the increase in the speedup provided by the parallel test-generator when the
number of processors grows. If the speedup grows proportionally to the number of
processors, the performance of MSATS is adequate according to the conditions
given in Section 2.  Speedup results for the ISCAS´85 circuits are provided in Table
2. The parallel test generator has been run in a multicomputer Intel Paragon. The
speedups obtained with K processors are given in the columns labeled S_K and the
number of cuts produced when the circuit is partitioned into K subcircuits are given
in the columns C_K in Table 2.
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Table 1. A summary of results with the best obtained solutions and the times for the
algorithms: initial solution (s1), Simulated Annealing (SA), Tabu Search (TS), Genetic
Algorithm (GA), and MSATS.

Circuit Algorithmm  K=2  K=4 K=8 K=16

cuts sec. cuts sec. cuts sec. cuts sec.

s1 66 0,2 106 0,3 158 0,4 186 0,5

SA 23 2,0 45 2,2 68 2,8 93 3,9

c432 TS 22 6,1 41 9,2 62 11,2 87 13,6

GA 26 10,6 42 15.8 73 23,8 96 29,7

MSATS 20 2,1 40 2,3 61 2,8 85 3,7

cut red% 10 3 2 3

s1 44 0,3 100 0,4 155 0,6 222 0,7

SA 19 3,0 41 3,8 98 5,1 129 6,3

c880 TS 19 18,1 43 28,5 89 35,7 129 42,3

AG 22 21,3 54 32,5 92 40,8 135 48,7

MSATS 17 3,1 37 3,9 80 4,9 129 6,1

cut red% 11 10 11 0

s1 123 0,6 210 0,7 298 0,9 450 1,2

SA 55 8,0 74 9,5 125 11,5 168 12,9

c1908 TS 50 54,2 76 60,2 120 68,5 156 78,5

GA 50 65,4 70 72,4 108 81,8 143 89,1

MSATS 35 8,2 71 9,5 108 10,9 125 12,1

cut red% 30 -2 0 13

s1 116 0,8 333 0,9 535 1,2 771 1,5

SA 67 15,0 156 16,2 250 20,9 375 26,5

c3540 TS 96 49,2 179 83,2 259 76,4 377 90,7

GA 60 69,2 149 91,6 225 99,8 295 106,3

MSATS 46 15,1 132 16,9 221 20,1 298 25,4

cut red% 24 12 2 2

s1 60 1,4 155 1,8 334 2,3 671 2,9

SA 48 28,1 135 30,8 315 35,1 450 44,8

c6288 TS 46 115,3 157 145,7 320 168,5 550 211,8

GA 46 126,7 112 187,4 243 234,3 470 254,6

MSATS 46 28,4 102 30,6 301 34,2 355 42,6

cut red% 0 9 -20 22
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Table 2.  Speedups, number of cuts and fault coverages obtained with the parallel test-
pattern-generator.

Circt. faults S_2 C_2 S_4 C_4 S_8 C_8 S_16 C_16 Cover.

c432 864 1.69 20 3.70 40 6.23 61 10.34 85 98%

c499 998 1.78 16 3.85 54 6.34 78 11.43 119 99%

c880 1760 1.82 17 3.87 37 7.05 80 12.56 129 100%

c1355 2710 1.90 17 2.93 45 6.25 70 11.65 98 98%

c1908 3816 1.97 35 2.50 71 6.86 108 10.26 125 98%

c3540 7080 1.78 46 3.67 132 6.40 221 10.20 298 98%

c6288 12570 1.67 46 2.75 102 6.53 301 10.45 355 97%

6 Conclusions

In this communication, the circuit partitioning problem is considered in the
framework of parallel VLSI CAD applications. Specifically, the use of circuit
partitioning in a parallel test pattern generator has been presented. The circuit
partitioning problem has been formulated as a combinatorial optimization problem
by using a cost function comprising the contribution of the number of cuts and the
deviation with respect to a balanced distribution of the gates among the different
subcircuits. Some general-purpose optimization algorithms such us Simulated
Annealing and Genetic Algorithms, which are physically and biologically-based
heuristics, respectively, and Tabu Search have been applied to solve the
optimization problem considered. We have also developed a new algorithm, called
MSATS, which reduces the possibility of cycles in the search process by applying
the Tabu Search characteristics to a Simulated Annealing algorithm.

MSATS outperforms the TS and SA algorithms when applied to the same cost
function. In a shorter time, MSATS not only provides a lower number of cuts, but
also a more balanced distribution of gates among subcircuits. Compared with a
Genetic Algorithm, MSATS is able to provide solutions with similar qualities in
most cases, and better solutions, but requires less time. Indeed, the obtention of
sufficiently good solutions in a short time is very important in order to achieve good
efficiencies in the parallel test pattern generator.
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