

Anti-Debugging – A Developers View
Tyler Shields

tshields@veracode.com

Veracode Inc., USA

 4 Van de Graaff Drive, Burlington, MA 01803

Abstract— Anti-debugging is the implementation of one or more

techniques within computer code that hinders attempts at

reverse engineering or debugging a target binary. Within this

paper we will present a number of the known methods of anti-

debugging in a fashion that is easy to implement for a developer

of moderate expertise. We will include source code, whenever

possible, with a line by line explanation of how the anti-

debugging technique operates. The goal of the paper is to educate

development teams on anti-debugging methods and to ease the

burden of implementation.

Keywords— anti-debugging, security, debugging, copy

protection, anti-piracy, reverse engineering.

I. INTRODUCTION

Anti-debugging, when implemented properly, can be a

significant deterrence to would be reverse engineers and

software pirates. There is no foolproof solution to thwart the

dedicated reverse engineer; however, making the task as

arduous and difficult as possible increases the time and

expertise required for full analysis of the binary application.

Application developers should not be required to spend

significant amounts of time understanding and examining the

specifics of a software protection scheme. Straight forward

implementation of a best of breed solution helps to achieve the

aforementioned goals while leaving the developer additional

time to implement features and other necessary application

components.

The majority of data on the topic of anti-debugging has

been presented from the vantage point of a reverse engineer.

Anti-debugging methods typically have been presented in

assembly language dumps with minimal explanation as to the

high level code constructs involved in the technique. Unless

the developer is adept at reading and comprehending assembly

language code, the anti-debugging method is

incomprehensible and thus will not be implemented.

The goal of this paper is to present a number of anti-

debugging methods in an easy to comprehend manner. The

average developer should be able to read this paper, grasp the

concepts described, and readily use the source code provided

to implement a myriad of different anti-debugging methods.

Education of the developer will lead to a stronger

understanding of the basic anti-debugging methods that can be

used to limit the effectiveness of a reverse engineer’s primary

tool, the debugger.

II. BACKGROUND TERMS AND DEFINITIONS

The definition of debugging is the act of detecting and

removing bugs in an application. Bugs exist in code due to

syntactic or logic errors that make the program operate

differently than intended. The vast majority of times,

debugging is done with obvious intentions. The intent is

typically to pinpoint the exact location that is causing an error

in the program.

Over time, debugging has become an overloaded term,

taking on additional meanings. In the reverse engineering

specialty of information security, debugging has come to

mean the act of using a debugging tool on a target process to

determine exactly what or how a piece of code operates.

Debugging is especially useful in the area of malware analysis

where a thorough understanding of how a piece of malicious

code operates can help to develop strategies for detection and

eradication.

Finally, practitioners in the area of software piracy must be

skilled at the nuances of reverse engineering and debugging.

When popular new software is released, it is immediately

attacked by reverse engineers in an attempt to remove any

copy protection that may have been put in place by the

development team. While there is no way to completely

protect software from a skilled reverse engineer, it is possible

to layer on defenses that can fill the road with potholes and

make the trip to cracking your software a much bumpier ride.

It is with these concepts in mind that we will discuss anti-

debugging. Anti-debugging is an implementation of one or

more techniques, within the code and thus compiled binary

file, which hinders the debugging or reverse engineering

process. These anti-debugging methods typically fall into one

of six major categories: API based anti-debugging, exception

based anti-debugging, direct process and thread detections,

modified code detection, hardware and register based

detection, and timing based anti-debugging.

We will not be describing anti-dumping via on-disk PE

modification techniques and will only focus on the Microsoft

Windows operating system in an attempt to limit the scope and

length of this paper. These additional areas of research may

be covered in a supplemental paper at a later date.

III. API BASED ANTI-DEBUGGING

API based detections use Win32 function calls to detect the

presence of a debugger and act accordingly. Specifically,

these detection mechanisms do not directly access memory

regions or index sections of memory, instead relying upon the

functionality of both documented and undocumented

Microsoft API function calls. The majority of the time, the

presented API based detection mechanisms will rely upon

underlying operating system calls to directly access memory

and as such there may be overlap between the methods

outlined in this section and other methods detailed later in the

document.

A. IsDebuggerPresent

The first anti-debugging method that most new reverse

engineers discover is the Microsoft API call,

IsDebuggerPresent. This function call analyses the running

process environment block (PEB) and looks at the

DebuggerPresent flag. The function returns the value located

at this flag. If the return value is zero, there is no debugger

present; however, if the value returned is non-zero, a debugger

is attached to our process.

if (IsDebuggerPresent()) {

 MessageBox(NULL, L"Debugger Detected Via

IsDebuggerPresent", L"Debugger Detected", MB_OK);

} else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

}

Appendix: isDebuggerPresent.sln

B. CheckRemoteDebuggerPresent

Conceptually similar to the IsDebuggerPresent method, the

CheckRemoteDebuggerPresent function checks the PEB

block of the target process for the BeingDebugged flag. The

CheckRemoteDebuggerPresent API call takes two parameters,

the first of which is a handle to the target process, and the

second being the return value indicating if the target process

has a debugger attached. This API call requires Windows XP

service pack one or later to be installed.

CheckRemoteDebuggerPresent(GetCurrentProcess(),

&pbIsPresent);

if (pbIsPresent) {

 MessageBox(NULL, L"Debugger Detected Via

CheckRemoteDebuggerPresent", L"Debugger Detected",

MB_OK);

} else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

}

Appendix: CheckRemoteDebuggerPresent.sln

C. OutputDebugString

The OutputDebugString anti-debugging method requires

Microsoft Windows 2000 or newer to operate. The

OutputDebugString function is sensitive to whether a

debugger is attached to the running process and will return an

error code if our process is not currently running under a

debugger. To detect the presence of a debugger we can make a

call to SetLastError() with an arbitrary value, followed by a

call to OutputDebugString(). If the arbitrary value remains

when we check GetLastError() then we know that the

OutputDebugString() was successful and the process is being

debugged.

DWORD Val = 666;

SetLastError(Val);

OutputDebugString(L"anything");

if (GetLastError() == Val) {

 MessageBox(NULL, L"Debugger Detected Via

OutputDebugString", L"Debugger Detected", MB_OK);

} else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger Detected", MB_OK);

}

Appendix: OutputDebugString.sln

D. FindWindow

The FindWindow detection method is different in that it

does not specifically detect the presence of a debugger

attached to our process; instead it retrieves a handle to the top-

level window whose class name matches a specified string.

The common debuggers can be checked for by executing

FindWindow with their class name as the parameter. The

debugger WinDbg can be detected by calling FindWindow

with a class name parameter of “WinDbgFrameClass”. In the

code example below, a FindWindow call is made passing the

string OLLYDBG, and the return handle is evaluated.

Hnd = FindWindow(L”OLLYDBG”, 0);

if (hnd == NULL) {

 MessageBox(NULL, L”OllyDbg Not Detected”, L”Not

Detected”, MB_OK);

} else {

 MessageBox(NULL, L”Ollydbg Detected Via OllyDbg

FindWindow()”, L”OllyDbg Detected”, MB_OK);

}

Appendix: FindWindow.sln

E. Registry Key

Searching through the registry is another method we can

used to detect the presence of a debugger. This method does

not detect the attaching of a debugger to a target process, nor

does it even indicate that a particular debugger is running.

Instead this method simply indicates to the program that

debugger is installed on the system. Since this technique has

limited effectiveness, one should only use it as a supporting

piece of information when deciding how to act upon other,

more definitive detection mechanisms. There are three registry

keys that can be used to indicate the installation of a debugger

on the system. If either of the first two keys exists, OllyDbg

has been configured as a shell extension to open target files by

right clicking them.

HKEY_CLASSES_ROOT\dllfile\shell\Open with

Olly&Dbg\command

HKEY_CLASSES_ROOT\exefile\shell\Open with

Olly&Dbg\command

If the final key has been set, the value of the Debugger

name/value pair represents the debugger that has been

configured as the just in time debugger for the system. In the

event of a program crash, this is the debugger that will be

called. Visual studio is represented as vsjitdebugger.exe while

OllyDbg will be OLLYDBG.EXE.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\AeDebug Debugger=

Appendix: Registry.sln

F. NtQueryInformationProcess (ProcessDebugPort)

 The NtQueryInformationProcess function is located

within ntdll.dll. This undocumented call is used to retrieve

information about a target process, including but not limited to,

debugging related data. The function takes five parameters,

the first two of which are of the most interest. The first

parameter is the handle of the process to interrogate. In our

example we use the value -1. This value tells the function to

use the current running process. The second parameter is a

constant value indicating the type of data we wish to retrieve

from the target process. A call to this function using a handle

to our currently running process, along with a

ProcessInformationClass of ProcessDebugPort (0x07) will

return the debugging port that is available. If the target

process is currently being debugged, a port will already be

assigned and that port number will be returned. If the process

does not have a debugger attached, a zero value will return

indicating that no debugger is currently attached. Since

NtQueryInformationProcess is intended to be internal to the

operating system, we have to use run time dynamic linking to

be able to call this functionality. This is achieved by calling

LoadLibrary and GetProcAddress and then executing the

returned function pointer.

hmod = LoadLibrary(L"ntdll.dll");

_NtQueryInformationProcess = GetProcAddress(hmod,

"NtQueryInformationProcess");

status = (_NtQueryInformationProcess) (-1, 0x07,

&retVal, 4, NULL);

if (retVal != 0) {

 MessageBox(NULL, L"Debugger Detected Via

NtQueryInformationProcess ProcessDebugPort",

L"Debugger Detected", MB_OK);

} else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger Detected", MB_OK);

}

Appendix: NtQProcessDebugPort.sln

G. NtQueryInformationProcess (ProcessDebugFlags)

The ProcessDebugFlags check also uses the

NtQueryInformationProcess function call to detect a debugger.

Instead of calling the function with a second parameter of

0x07 (ProcessDebugPort), we submit the call with a second

parameter value of 0x1f (ProcessDebugFlags). When calling

the function with this constant we are returned a value

indicative of the debug flags that are present on the target

thread. The function returns the inverse of the

NoDebugInherit value, which means that a return of 0

indicates that a debugger is currently attached to the process.

hmod = LoadLibrary(L"ntdll.dll");

_NtQueryInformationProcess = GetProcAddress(hmod,

"NtQueryInformationProcess");

status = (_NtQueryInformationProcess) (-1, 31,

&debugFlag, 4, NULL); // 31 is the enum for

DebugProcessFlags and = 0x1f in hex

if (debugFlag == 0x00000000) MessageBox(NULL,

L"Debugger Detected via ProcessDebugFlags",

L"Debugger Detected", MB_OK);

if (debugFlag == 0x00000001) MessageBox(NULL, L"No

Debugger Detected", L"No Debugger", MB_OK);

Appendix: ProcessDebugFlags.sln

H. NtSetInformationThread Debugger Detaching

 The NtSetInformationThread call is a wrapper around the

ZwQueryInformationProcess system call. This function takes

four parameters. Of interest to us for anti-debugging purposes

are the first and second parameters, which contain the target

handle and the ThreadInformationClass constant. By setting

this constant to 0x11 (ThreadHideFromDebugger) and

submitting the call we can disconnect a debugger from our

running process.

lib = LoadLibrary(L"ntdll.dll");

_NtSetInformationThread = GetProcAddress(lib,

"NtSetInformationThread");

(_NtSetInformationThread) (GetCurrentThread(), 0x11,

0, 0);

MessageBox(NULL, L"Debugger Detached", L"Debugger

Detached", MB_OK);

Appendix: NtSetInformationThread-Detach.sln

I. Self Debugging with DebugActiveProcess

One possible way that a process can determine if it is being

run under a debugger is to attempt to debug itself. A process

can only have one debugger attached to it at a time thus if a

process is successful at debugging itself, then it can be sure

that no other debugging tool is currently attached. To achieve

this goal, a process must first create a child process. This child

process can determine the process ID of its parent using any

of a number of methods, at which point it will attempt to call

DebugActiveProcess with its parent’s process ID as the target

parameter. If this is successful we can be sure that the parent

process is not currently being debugged. In our example code

we spawn a child process of ourselves and pass in the process

ID of the parent via command line arguments. The new

process then checks for a debugger on the parent and if no

debugger exists would continue to execute.

pid = GetCurrentProcessId();

_itow_s((int)pid, (wchar_t*)&pid_str, 8, 10);

wcsncat_s((wchar_t*)&szCmdline, 64,

(wchar_t*)pid_str, 4);

success = CreateProcess(path, szCmdline, NULL, NULL,

FALSE, 0, NULL, NULL, &si, &pi);

...

success = DebugActiveProcess(pid);

if (success == 0) {

 printf("Error Code: %d\n", GetLastError());

 MessageBox(NULL, L"Debugger Detected -

Unable to Attach", L"Debugger Detected", MB_OK);

}

if (success == 1) MessageBox(NULL, L"No Debugger

Detected", L"No Debugger", MB_OK);

Appendix: Self-Debugging.sln

J. NtQueryInformationProcess (ProcessDebugObjectHandle)

With the release of Windows XP, the debugging model was

modified to create a handle to a debug object when a process

is being debugged. It is possible to detect the existence of this

handle by calling NtQueryInformationProcess with a second

parameter of 0x1e. The 0x1e constant represents the value for

ProcessDebugObjectHandle. If this function call returns a

non-zero value we can be sure that the target process is being

debugged and can act accordingly.

hmod = LoadLibrary(L"ntdll.dll");

_NtQueryInformationProcess = GetProcAddress(hmod,

"NtQueryInformationProcess");

status = (_NtQueryInformationProcess) (-1, 0x1e,

&hDebugObject, 4, NULL); // 0x1e is the enum for

ProcessDebugObjectHandle

if (hDebugObject) MessageBox(NULL, L"Debugger

Detected via ProcessDebugFlags", L"Debugger

Detected", MB_OK);

if (!hDebugObject) MessageBox(NULL, L"No Debugger

Detected", L"No Debugger", MB_OK);

Appendix: ProcessDebugObjectHandle.sln

K. OllyDbg OutputDebugString() Format String

An interesting bug exists in the current version of OllyDbg
1
.

This particular debugger has a format string vulnerability

within its handling of the OutputDebugString() function.

When OllyDbg is attached to a process that calls

OutputDebugString with a parameter of %s, the debugger will

crash. To execute this vulnerability and anti-debugging

method we simply make a call to

OutputDebugString(TEXT(“%s%s%s%s%s%s%s”) within a

structured exception handler. We safely handle the exception

that is thrown within our code while simultaneously crashing

any attached OllyDbg instance.

__try {

OutputDebugString(TEXT("%s%s%s%s%s%s%s%s%s%s%s")

, TEXT("%s%s%s%s%s%s%s%s%s%s%s"),
TEXT("%s%s%s%s%s%s%s%s%s%s%s"),

TEXT("%s%s%s%s%s%s%s%s%s%s%s"));

}

__except (EXCEPTION_EXECUTE_HANDLER) {

 printf("Handled Exception\n");

}

Appendix: OllyDbgOutputDBString.sln

L. SeDebugPrivilege OpenProcess

When a process is run in or attached to by a debugger, the

SeDebugPrivilege token is given to the target process. Some

debuggers properly remove that permission and revert the

1
 At the time of authoring the current version of OllyDbg is

v1.10.

process back to its original privilege state, while other

debuggers fail to complete this step. If our process is being

debugged by a debugger that does not properly revoke this

privilege we can use this information to determine the

debugger’s existence.

To check for the existence of this privilege set the process

simply tries to open a process such as csrss.exe with

PROCESS_ALL_ACCESS rights. Normally our process

would not be allowed to execute an OpenProcess() call with

this as our target and the PROCESS_ALL_ACCESS rights;

however, with the elevated privilege set granted by the

debugger, we are able to open this file.

The first step in this process is determining the process

identifier for the csrss.exe process. This can be achieved a

number of ways. In our sample code we use an undocumented

function within ntdll called CsrGetProcessId(). By

dynamically loading the ntdll.dll library and then finding the

function address for this call we can execute this function.

This function returns the PID for the running csrss.exe process.

hmod = LoadLibrary(L"ntdll.dll");

_CsrGetProcessId = GetProcAddress(hmod,

(LPCSTR)"CsrGetProcessId");

pid = (_CsrGetProcessId)();

After we have the PID for the target process we attempt to

open this process using a call to OpenProcess() and a

permission set of PROCESS_ALL_ACCESS. If the result of

this function call is successful we know that we are running at

an elevated privilege level and most likely have a debugger

attached.

HANDLE Csrss = 0;

Csrss = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);

if (Csrss == 0) {

 printf("Result is 0 Error Code: %d\n",

GetLastError());

 MessageBox(NULL, L"No Debugger Detected or

Debugger Does Not Assign SeDebugPrivilege", L"No

Debugger", MB_OK);

}

if (Csrss != 0) MessageBox(NULL, L"Debugger Detected

via OpenProcess SeDebugPrivilege", L"Debugger

Detected", MB_OK);

Appendix: SeDebugPriv.sln

M. OllyDbg OpenProcess String Detection

All versions of OllyDbg contain a static DWORD at a static

offset within the running process. This is most likely

implemented to ensure that OllyDbg does not attempt to

debug itself by mistake. We can use this information to detect

running instances of OllyDbg. We begin this process by

walking the process list checking all images for the DWORD

0X594C4C4F at offset 0x4B064B from the main thread base.

There are numerous methods to list and analyze process on

a system. We chose to gain access to the process list via the

psapi library. This library can be included in the Visual Studio

project by adding a dependency for psapi.lib. Using a call to

EnumProcesses within this library we are able to enumerate

all processes currently running on the system. We then pass

each process in turn to the checkProcess() function.

if (!EnumProcesses(aProcesses, sizeof(aProcesses),

&cbNeeded)) return;

cProcesses = cbNeeded / sizeof(DWORD);

for (i = 0; i < cProcesses; i++) {

 flag = checkProcess(aProcesses[i]);

 if (flag == 1) { break; }

}

if (flag == 0) {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger Detected", MB_OK);

}

Appendix: OllyDbgStaticString.sln

The checkProcess function opens the target process and

checks the static offset for the DWORD that indicates a

running OllyDbg process. If the value exists it returns one

otherwise it returns zero.

HMODULE hMod = NULL;

HANDLE hProcess = OpenProcess(

PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE,

processID);

if (hProcess != NULL) {

 if (ReadProcessMemory(hProcess, (LPCVOID)0x4B064B,

&value, (SIZE_T) 4, (SIZE_T *)&read)) {

 if (value == 0x594C4C4F) {

 MessageBox(NULL, L"Debugger Detected via

Static OpenProcessString()", L"Debugger Detected",

MB_OK);

 return 1;

 }

 }

}

return 0;

Appendix: OllyDbgStaticString.sln

N. OllyDbg Filename Format String

 OllyDbg also contains a flaw in the way it parses the name

of the process it is attempting to debug. The parsing function

contains a format string vulnerability that can cause OllyDbg

to crash. By naming our process with a %s character we can

cause OllyDbg to be unable to load and parse our file. While

this is a simple method to implement, it is also trivial to

bypass. An attacker can simply rename the file before loading

it into the debugger. To combat this issue the process should

programmatically check its own process name and ensure that

it is the original file name that contains the format string

character.

To achieve the name check we use the function

GetModuleFileName() to get access to our current running

process name and then compare this against our expected

value using wcsncmp().

GetModuleFileName(0, (LPWCH) &pathname, 512);

filename = wcsrchr(pathname, L'\\');

if (wcsncmp(filename, L"\\%s%s.exe", 9) == 0) {

 MessageBox(NULL, L"No Debugger Detected - Original

Name Found", L"No Debugger Detected", MB_OK);

} else {

 MessageBox(NULL, L"Debugger Detected - File Name

Modification Occured", L"Debugger Detected", MB_OK);

}

IV. DIRECT PROCESS AND THREAD BLOCK DETECTIONS

When direct API calls are insufficient or an industrious

debugger is hooking the calls and returning falsified data, the

anti-debugging effort must go lower than the intervening

methods and directly query the process and thread block

information. Much of the results from the API models above

can be retrieved by directly accessing details about the

running process. Additionally, the lower and closer to the

operating system our anti-debugging effort resides, the more

difficult it will be to bypass.

A. IsDebuggerPresent Direct PEB

As described in section III. A., a basic anti-debugging

technique is to use the Microsoft API IsDebuggerPresent to

check for the existence of the BeingDebugged byte within the

process environment block (PEB). Please refer to the

reference section for a detailed listing of the PEB structure. A

similar method is to bypass the API call and directly access

the details of the running process block via the process

environment headers. When a process is executed, a copy of

the executable code as well as all associated header

information is stored in memory. This header information can

be queried directly, without the help of an API, to verify the

value within the BeingDebugged byte.

Multiple methods exist to access the information stored

within the PEB. The easiest way is to use built in Microsoft

API calls to retrieve a pointer to the data stored within the

PEB. A call to NtQueryInformationProcess with a second

parameter of ProcessBasicInformation will return a pointer to

the process information block (PIB) structure for the target

process. Again please refer to the references section for a link

to a detailed listing of the PIB structure. Once we have a

pointer to the PIB structure we reference the PebBaseAddress

member of the PIB structure to gain a pointer to the PEB

structure. Finally the BeingDebugged member of the PEB

structure is compared against a value of one to determine if

we are running within a debugger.

hmod = LoadLibrary(L"Ntdll.dll");

_NtQueryInformationProcess = GetProcAddress(hmod,

"NtQueryInformationProcess");

hnd = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,

GetCurrentProcessId());

status = (_NtQueryInformationProcess) (hnd,

ProcessBasicInformation, &pPIB,

sizeof(PROCESS_BASIC_INFORMATION), &bytesWritten);

if (status == 0) {

 if (pPIB.PebBaseAddress->BeingDebugged == 1) {

 MessageBox(NULL, L"Debugger Detected Using

PEB!IsDebugged", L"Debugger Detected", MB_OK);

 } else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger Detected", MB_OK);

 }

}

Appendix: IsDebuggerPresent-DirectPEB.sln

B. IsDebuggerPresent Set/Check

As noted in the IsDebuggerPresent method, the process

environment block holds a byte that indicates the debugging

status of the running process. This byte, called the

BeingDebugged byte, contains a non-zero value if the target

process is being debugged. Many debuggers and anti-

debugging detection plugins will hook the IsDebuggerPresent

API call and always return a zero value to the requesting

process. In this fashion a debugger can hide from the target

process IsDebuggerPresent calls. It is possible to detect these

hooks by setting the BeingDebugged byte to an arbitrary value

and then issuing an IsDebuggerPresent function call. If the

arbitrary value that was previously set is returned from

IsDebuggerPresent, then the function is not hooked, however

if we are returned a zero, we know that the process is running

under a debugger that is attempting to hide its existence.

hnd = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,

GetCurrentProcessId());

status = (_NtQueryInformationProcess) (hnd,

ProcessBasicInformation, &pPIB,

sizeof(PROCESS_BASIC_INFORMATION), &bytesWritten);

if (status == 0) {

 pPIB.PebBaseAddress->BeingDebugged = 0x90;

} // Sets the BeingDebugged Flag to arbitrary value

retVal = IsDebuggerPresent(); // Retrieve value

if (retVal != 0x90) {

 MessageBox(NULL, L"Debugger Detected Using

PEB!IsDebugged", L"Debugger Detected", MB_OK);

} else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger Detected", MB_OK);

}

Appendix: IsDebuggerPresent-SetCheck.sln

C. NtGlobalFlag

Processes, when started under a debugger, run slightly

differently than those started without a debugger attached. In

particular, debugged processes create memory heaps in a

different fashion than those not being debugged. The

information that informs the kernel how to create heap

structures is stored within the PEB structure at offset 0x68.

When a process is started from within a debugger, the flags

FLG_HEAP_ENABLE_TAIL_CHECK (0x10),

FLG_HEAP_ENABLE_FREE_CHECK (0x20), and

FLG_HEAP_VALIDATE_PARAMETERS (0x40) are set for

the process. We can use this information to determine if our

process was started from within a debugging tool by

referencing the value located at offset 0x68 within the PEB

structure. If the bits corresponding to 0x70 (the sum of the

above flags) are set then we can be certain of our debugging

status.

hmod = LoadLibrary(L"Ntdll.dll");

_NtQueryInformationProcess = GetProcAddress(hmod,

"NtQueryInformationProcess");

hnd = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,

GetCurrentProcessId());

status = (_NtQueryInformationProcess) (hnd,

ProcessBasicInformation, &pPIB,

sizeof(PROCESS_BASIC_INFORMATION), &bytesWritten);

value = (pPIB.PebBaseAddress);

value = value+0x68;

printf("FLAG DWORD: %08X\n", *value);

if (*value == 0x70) {

 MessageBox(NULL, L"Debugger Detected Using

PEB!NTGlobalFlag", L"Debugger Detected", MB_OK);

} else {

 MessageBox(NULL, L"No Debugger Detected",

L"No Debugger Detected", MB_OK);

}

Appendix: NtGlobalFlag.sln

D. Vista TEB System DLL Pointer

This anti-debugging technique is unique to Microsoft

Windows Vista. When a process is started without a debugger

present, the main thread environment block (TEB) contains a

pointer to a Unicode string referencing a system DLL such as

kernel32.dll. The pointer is located at offset 0xBFC in the

TEB structure and is followed directly by the Unicode string

at offset 0xC00. If the process is started under a debugger, that

system DLL name is replaced with the Unicode string

“HookSwitchHookEnabledEvent”.

To use this technique, the anti-debugging function should

first check that it is running on the Windows Vista operating

system. After confirming the operating system revision, the

technique should locate the thread information block (TIB) by

using the following code:

void* getTib()

{

 void *pTib;

 __asm {

 mov EAX, FS:[18h] //FS:[18h] is the location of

the TIB

 mov [pTib], EAX

 }

 return pTib;

}

Once the location of the TIB is found, the offset 0xBFC is

read and the pointer checked. If this value is 0x00000C00 we

then read the string at offset 0xC00 and compare this value to

the Unicode string “HookSwitchHookEnabledEvent”. We

check the pointer to ensure that we have a string located in the

pointed to address and as a second level of assurance for the

accuracy of this method. If we pass this final test we can be

sure that our process was started from within a debugger.

wchar_t *hookStr =

_TEXT("HookSwitchHookEnabledEvent");

strPtr = TIB+0xBFC;

delta = (int)(*strPtr) - (int)strPtr;

if (delta == 0x04) {

 if (wcscmp(*strPtr, hookStr)==0) {

 MessageBox(NULL, L"Debugger Detected Via Vista

TEB System DLL PTR", L"Debugger Detected", MB_OK);

 } else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

 }

} else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

}

Appendix: Vista-TEB-SystemDLL.sln

E. PEB ProcessHeap Flag Debugger

There are additional flags within the PEB structure that are

used to indicate to the kernel how heap memory should be

allocated. In addition to the NtGlobalFlag, the ProcessHeap

Flag can also be used to determine if a process was started

with a debugger attached. By dereferencing a pointer to the

first heap located at offset 0x18 in the PEB structure, we can

then locate the heap flags which are located at offset 0x10

within the heap header. These heap flags are used to indicate

to the kernel that the heap was created within a debugger. If

the value at this location is non-zero then the heap was created

within a debugger.

base = (char *)pPIB.PebBaseAddress;

procHeap = base+0x18;

procHeap = *procHeap;

heapFlag = (char*) procHeap+0x10;

last = (DWORD*) heapFlag;

if (*heapFlag != 0x00) {

 MessageBox(NULL, L"Debugger Detected Using PEB

Process Heap Flag", L"Debugger Detected", MB_OK);

 } else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger Detected", MB_OK);

}

Appendix: ProcessHeap.sln

F. LDR_Module

As described in the NtGlobalFlag and PEB ProcessHeap

Flag anti-debugging methods, processes that are created from

within a debugger use a modified heap creation algorithm

when compared to those processes created without a debugger

attached. When allocating a heap, while under a debugger, the

DWORD 0xFEEEFEEE is created within the memory

segment. This occurs because when heaps are created under a

debugger, an alternate heap creation algorithm is used that

allows for heap corruption detection and heap validation to

occur. This value can be used as a signature to determine if a

heap, and therefore a process, was created while under the

control of a debugger. The easiest method to analyze a heap

within a process is to look at the LDR_Module that is pointed

to by the PEB. The LDR_Module contains information

regarding the modules loaded by the binary. This module is

created inside of a heap when the process is started and should

exhibit the debugging DWORD if the process was created

within a debugger. Below is a memory dump of the end of the

LDR_Module in our sample code. The 0xFEEEFEEE

DWORD is repeated four times at the end of the heap block.

00252e98 abababab abababab 00000000 00000000

00252ea8 000d062b 00ee14ee 00250178 00250178

00252eb8 feeefeee feeefeee feeefeee feeefeee

To analyze the LDR_Module for this signature string we

locate the start of the LDR_Module by first accessing the PEB

base address and then looking at offset 0x0C from the start of

the PEB. The DWORD at 0x0C will be a pointer to the

LDR_Module for our process.

hmod = LoadLibrary(L"Ntdll.dll");

_NtQueryInformationProcess = GetProcAddress(hmod,

"NtQueryInformationProcess");

hnd = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,

GetCurrentProcessId());

status = (_NtQueryInformationProcess) (hnd,

ProcessBasicInformation, &pPIB,

sizeof(PROCESS_BASIC_INFORMATION), &bytesWritten);

base = (pPIB.PebBaseAddress);

ldr_module = base+0x0c;

ldr_module = *ldr_module;

After we have acquired the address of the LDR_Module we

scan for the DWORD 0xFEEEFEEE by walking memory one

byte at a time. We continue to scan until we have either found

the signature string or we trigger an exception. If we find the

signature we know the process was created with a debugger

attached and if we trigger an exception, we have not found the

signature and have walked past our allowable memory read

section. We can safely handle the exception and continue

execution of the program. When conducting the scan, we

actually compare the data pointed to by our variable against

the DWORD 0xEEFEEEFE to account for the little endian

byte ordering of our x86 system.

walk = ldr_module;

__try {

 while (*ldr_module != 0xEEFEEEFE) {

 printf("Value at pointer: %08X\n", *ldr_module);

 walk = walk +0x01; // walk is a byte

 ldr_module = walk;

 }

 }

__except (EXCEPTION_EXECUTE_HANDLER) {

 flag = 1;

 MessageBox(NULL, L"Debugger Not Detected", L"No

Debugger Detected", MB_OK);

}

if (flag == 0) MessageBox(NULL, L"Debugger Detected

via LDR_MODULE", L"Debugger Detected", MB_OK);

Appendix: LDR_Module.sln

V. HARDWARE AND REGISTER BASED DETECTION

Hardware and register based detections differ from API and

direct process and thread block detections in that the

information that indicates the existence of a debugger is stored

within the processors registers on the physical hardware itself.

Instead of relying upon software discrepancies to indicate the

existence of a debugger, one can directly query the hardware

for the required information.

A. Hardware Breakpoints

A breakpoint is a signal that tells the debugger to cease

operation of a process at a certain point. Debuggers can create

breakpoints in target applications in multiple ways.

Software breakpoints and hardware breakpoints facilitate

similar results but operate differently. When a software

breakpoint is inserted into a process, the debugger reads the

instruction at the breakpoint location, removes the first byte of

this instruction, and replaces it with a breakpoint opcode. The

original byte is saved in a table and replaced when the

breakpoint occurs, thus allowing the execution to continue.

Hardware breakpoints are implemented in the processor

hardware itself. The hardware contains registers dedicated to

the detection of specific addresses on the program address bus.

When the address on the bus matches those stored in the

debug registers, a breakpoint signal, interrupt one (INT 1), is

sent and the CPU halts the process. There are eight debug

registers on the x86 architecture referred to as DR0 through

DR7. Registers DR0 through DR3 contain the addresses on

which we wish to break while DR7 contains bits to enable or

disable each of the DR0 through DR3 breakpoints. DR6 is

used as a status register to permit a debugger to know which

debug register has triggered.

A call to GetCurrentThreadContext is used to read the

debug register information from the chip. We then compare

the value in the registers to 0x00 to ensure that no hardware

breakpoints are currently set in our process.

hnd = GetCurrentThread();

status = GetThreadContext(hnd, &ctx);

if ((ctx.Dr0 != 0x00) || (ctx.Dr1 != 0x00) ||

(ctx.Dr2 != 0x00) || (ctx.Dr3 != 0x00) || (ctx.Dr6

!= 0x00) || (ctx.Dr7 != 0x00))

{

 MessageBox(NULL, L"Debugger Detected Via DRx

Modification/Hardware Breakpoint", L"Debugger

Detected", MB_OK);

} else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

}

Appendix: HardwareBreakpoints.sln

B. VMware LDT Register Detection

Recent research into virtual machine monitors and in

particular VMware has yielded detection mechanisms that

allow code running in the guest operating system to determine

if it is running within a virtual machine or native on the

system. While these methods are not specific to anti-

debugging, they are pertinent to the discussion due to the fact

that a large portion of reverse engineering takes place within

an emulated environment for security purposes, specifically

malware related debugging and reverse engineering. Anti-

debugging code can be designed to only allow execution

within a native operating system, or at a minimum, to help

determine a heuristic value indicative of a debugging or

reverse engineering session.

Virtual machines must emulate certain hardware resources

in order for guest operating systems to boot and function as

expected. This includes emulating registers and other

processor specific components within the virtual machine

monitor. Of interest to the anti-debugging world is the fact

that VMware, and presumably other virtual machine monitors,

must emulate specific registers that can be read from an

unprivileged level. The Interrupt Descriptor Table Register

(IDTR), Global Descriptor Table Register (GDTR), and the

Local Descriptor Table Register (LDTR), all exhibit this

specific behavior. The data held in these registers is the

memory location that is specific to that particular data

structure. In other words a pointer to the required data is saved

for use within the register. Since the virtual machine monitor

must emulate these registers, the data pointers must point to

different locations. Based on the returned locations for the

interrupt, global, and local descriptor tables we are able to

determine if the operating system is running within a virtual

machine.

GDTR and IDTR are unreliable sources of virtual machine

detection due to the fact that multi-core processors, as well as

multi-processor systems, will return different values

depending on which of the processors is queried. The LDTR

register, however, remains static across all cores and

processors and is a reliable method of virtual machine

detection.

To determine if we are within a virtual machine we use the

assembly function sldt to store the value of the LDTR into a

variable. We then check the first two bytes of the return value

and compare them against 0x00. If the host is running as a

native operating system, these two bytes will always be 0x00.

If the host is running under a virtual environment, these two

bytes will differ as the local descriptor table is placed into a

different memory location.

unsigned char ldt_info[6];

int ldt_flag = 0;

__asm {

 sldt ldt_info;

}

if ((ldt_info[0] != 0x00) && (ldt_info[1] != 0x00))

ldt_flag = 1;

if (ldt_flag == 1) MessageBox(NULL, L"Vmware

Detected via ldt", L"Debugger Detected", MB_OK);

if (ldt_flag == 0) MessageBox(NULL, L"No VMware

Detected", L"No Vmware", MB_OK);

Appendix: VMWareSLDT.sln

C. VMware STR Register Detection

Very similar to the LDT Register method of VMware

detection is the STR method. This method uses the store task

register (STR) to detect the existence of a virtual operating

system. The STR, much like the LDT, GDT, and IDT contains

a pointer to a piece of data that is specific to the process

running on the hardware. Out of necessity, the virtual

operating environment must relocate this information so that it

does not overwrite the native system data. Once again this

information can be retrieved from an unprivileged level. We

can query the location of the stored task data and compare that

against the normal expected values when operating in a native

environment. When the data is outside of the expected bounds

we can be sure that we are operating within a virtual

environment.

To execute this detection mechanism we make an assembly

call to the str mnemonic and store the resultant data within the

variable mem. If the first byte is equal to 0x00 and the second

byte equal to 0x40, we can be confident that we are running

within a VMware instance.

unsigned char mem[4] = {0, 0, 0, 0};

__asm str mem;

printf ("\n[+] Test 4: STR\n");

printf ("STR base: 0x%02x%02x%02x%02x\n", mem[0],

mem[1], mem[2], mem[3]);

if ((mem[0] == 0x00) && (mem[1] == 0x40))

 MessageBox(NULL, L"VMware Detected", L"VMWare

Detected", MB_OK);

else

 MessageBox(NULL, L"No VMWare Detected", L"No

VMWare Detected", MB_OK);

Appendix: VMWareSTR.sln

VI. TIMING BASED DETECTIONS

Another class of anti-debugging is timing based detections.

These methods use timing based functions to detect latency in

the execution between lines or sections of code. When running

code within a debugger it is very common to execute the code

in a single step fashion. Single stepping is allowing the

debugger to execute a single line (step into) or single function

(step over) and then return control to the debugger.

When the debugger is executing the code via single

stepping, the latency in execution can be detected by using

functions that return time or tick counts to the application.

Two time function calls can be made in succession and the

delta compared against a typical value. Alternatively, a section

or block of code may be flanked by timer calls and again the

delta compared against a typical execution time value.

Four of the Microsoft windows primary time functions are

used to demonstrate how these detections work. In the

examples provided we have simply placed the timer calls

directly in succession and compared the return value against a

rough estimate of a reasonable latency time.

A. RDTSC

The time stamp counter is a 64 bit register that is part of all

x86 processors since the creation of the original Intel Pentium.

This register contains the number of processor ticks since the

system was last restarted. The x86 assembly language

Opcode RDTSC was formally introduced with the Pentium II

and was undocumented until then. To access this value from C

code we use the function __rdtsc. Our example takes the

results of the two calls to __rdtsc and compares the delta to a

constant value of 0xff. This is an arbitrary value that returned

results with a high level of accuracy when used to detect

single step debugging.

i = __rdtsc();

j = __rdtsc();

if (j-i < 0xff) {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

} else {

 MessageBox(NULL, L"Debugger Detected Via RDTSC",

L"Debugger Detected", MB_OK);

}

Appendix: RDTSC.sln

B. NTQueryPerformanceCounter

Modern processors also include hardware performance

counters. These performance counters are registers that store

counts of hardware related activities within the processor. The

value of the hardware performance can be queried using the

function QueryPerformanceCounter. We use a nearly identical

technique to other timing methods and compute a delta of two

calls to QueryPerformanceCounter. If this delta is within a

reasonable threshold amount our process is not running within

a debugger in single step mode. Again we use an arbitrary

value of 0xff for our latency threshold.

QueryPerformanceCounter(&li);

QueryPerformanceCounter(&li2);

if ((li2.QuadPart-li.QuadPart) > 0xFF) {

 MessageBox(NULL, L"Debugger Detected via

QueryPerformanceCounter", L"Debugger Detected",

MB_OK);

} else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

}

Appendix: NTQueryPerformanceCounter.sln

C. GetTickCount

The GetTickCount API functions provided by kernel32.dll

return the number of milliseconds that have elapsed since the

system was last restarted. This value wraps at 49.7 days. The

primary difference between this and other timing methods is

that due to the return value being in milliseconds, the

threshold value is much lower. In our example case we set the

threshold to 0x10 in order to detect single step debugging

efforts.

li = GetTickCount();

li2 = GetTickCount();

if ((li2-li) > 0x10) {

 MessageBox(NULL, L"Debugger Detected via

QueryPerformanceCounter", L"Debugger Detected",

MB_OK);

} else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

}

Appendix: GetTickCount.sln

D. timeGetTime

Like GetTickCount, the timeGetTime function call returns

a time value in milliseconds. In the case of timeGetTime we

are returned the system time as opposed to the elapsed time

since the last system restart. The timeGetTime function is part

of the WinMM library and must be added to a Visual Studio

project as a dependency. Again we use the same method of

comparing a delta to a reasonable threshold to detect single

stepping of our process.

li = timeGetTime();

li2 = timeGetTime();

if ((li2-li) > 0x10) {

 MessageBox(NULL, L"Debugger Detected via

QueryPerformanceCounter", L"Debugger Detected",

MB_OK);

} else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

}

VII. MODIFIED CODE DETECTION

Self referencing code can be used to determine if

modifications to our process have been made. When a

software based breakpoint is place into a process, a byte of the

operating code is overwritten with a special instruction that

causes the processor to trigger a break point exception that is

then trapped and handled by the debugger. By using self

referencing code to scan for instruction modifications, it is

possible to check for instances of software breakpoints on a

running process.

A. CRC Checking

The CRC checking method of anti-debugging uses

techniques similar to self modifying code; however instead of

modifying our code we simply take a CRC or hash value of

the target code block to ensure that no changes have taken

place. Using this method we can ensure that no software

breakpoints have been placed into our tested code segment at

the time of the CRC computation.

The CRC checking method is typically implemented via a

CRC function that takes as inputs pointers to locations within

memory. The first parameter is the address of the start of

memory, usually a function pointer, and the second address is

normally the range of memory to compute the CRC value for.

In our example, the memory range is computed by

subtracting the address of the function following our target

function from the address of our target function itself. The

result of this computation is the length of the function we wish

to determine a CRC value for. The line “original_crc =

CRCCCITT((unsigned char*) &antidebug,

(DWORD)&runmycode-(DWORD)&antidebug, 0xffff, 0);”

shows a call to the CRC function with a start address of the

function antidebug and a length computation resulting from

the delta between the address of runmycode() and antidebug().

Alternative hash or CRC algorithms could be used in place of

the CRCCCITT one chosen for our example.

void antidebug(int pass)

{

 printf("Location of runmycode = %08X and antidebug

= %08X\n", &runmycode, &antidebug);

 if (pass == 1) {

 original_crc = CRCCCITT((unsigned char*)

&antidebug, (DWORD)&runmycode-(DWORD)&antidebug,

0xffff, 0);

 } else {

 the_crc = CRCCCITT((unsigned char*) &antidebug,

(DWORD)&runmycode-(DWORD)&antidebug, 0xffff, 0);

 }

 return;

}

void runmycode()

{

 if (the_crc != original_crc) {

 MessageBox(NULL, L"Debugger Detected via CRC",

L"Debugger Detected", MB_OK);

 } else {

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger Detected", MB_OK);

 }

 return;

}

Appendix: CRCScan.sln

Once we have a working function to determine the CRC of

a target code region, we can run the method and compare the

results against an expected hardcoded CRC value.

Alternatively, our anti-debugging check can run the CRC scan

at multiple times throughout the program and compare the

results against the previous executions. If the CRC value

changes there is a high probablity that a software breakpoint

has been inserted into the target function or code range.

One point of note with regard to self referencing code is to

be sure that your Visual Studio project has the incremental

linking option disabled. Self referencial code using direct

function addressing, as in our model, will not work properly

when incrementally linked due to the use of “jump thunks”

that redirect program flow using a jump table to the actual

function code. Incremental linking uses a table of pointers to

reference functions and will cause the function as we have

written in our proof of concept to fail.

VIII. EXCEPTION BASED DETECTION

Exception handling based detection relies upon the fact that

a debugger will trap certain exceptions and not properly pass

them on to the process for internal consumption. In some

debuggers, there may be a configurable option to ignore or

otherwise return the exception handling to the process, but

many times this is not enabled by default. If the debugger

doesn’t pass the exception back to the process properly this

can be detected within the process exception handling

mechanism inside of the process and acted upon.

Microsoft Windows uses a chain of exception handlers

designed to trap exceptions before they cause a fatal crash of

the process or operating system. The exception chain consists

of one more vectored exception handlers, followed by the

structured exception handler chain, and finally the unhandled

exception filter is implemented to catch any exceptions that

have fallen through the other methods. The following figure,

created by Joe Jackson [3], graphically depicts the flow of

exceptions.

Figure 1: Exception Handling Chain [3]

A. INT 3 Exception (0XCC)

The basic operation of a general debugger is to use a call to

interrupt 3 (INT 3) to trigger a software breakpoint. Hardware

breakpoints, as discussed previously use a different interrupt

value to generate the breakpoint exception. INT 3 generates a

call to trap in the debugger and is triggered by opcode 0xCC

within the executing process. When a debugger is attached,

the 0xCC execution will cause the debugger to catch the

breakpoint and handle the resulting exception. If a debugger is

not attached, the exception is passed through to a structured

exception handler thus informing the process that no debugger

is present.

int flag = 0;

__try {

 __asm {

 int 3;

 }

}

__except (EXCEPTION_EXECUTE_HANDLER) {

 flag = 1;

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

}

if (flag == 0) MessageBox(NULL, L"Debugger Detected

Via Int3", L"Debugger Detected", MB_OK);

Appendix:INT3.sln

B. INT 2D (Kernel Debugger Interrupt)

Similar in method to INT3, the INT 2D mnemonic is used

to access the kernel debugging system. This call creates an

exception record and then raises an exception that is trapped

by kernel debuggers. We can use this method from ring 3 as

well since the call will eventually filter to a ring 3 debugger if

no kernel debugger exists. The code to execute this anti-

debugging check is identical to the INT 3 method listed above

with the only exception being the int 3 assembly call is

replaced with int 2dh. See appendix INT2d.sln for full source

code.

C. ICE Breakpoint

Yet another method in which a breakpoint can be triggered

and the resultant exception inspected is the ICE Breakpoint

method. This method uses an undocumented opcode

nicknamed the ICE Breakpoint to cause a break state in the

same fashion as the INT 3 and INT 2D methods. The ICE

Breakpoint is intended to be used with a specific subset of

microprocessors; this method is also identical to the previous

interrupt based methods. By executing the opcode 0xF1 we

can generate a breakpoint that will be trapped by an attached

debugger. Once again, we use a structured exception handler

to determine if the exception occurs or is handled by the

debugger. See appendix ICEBreak.sln for full source code.

D. Single Step Detection

When a process is executing, it is possible to tell the thread

to generate a single step exception

(EXCEPTION_SINGLE_STEP) after every executed

instruction. This indicator is stored within the trap flag bit of

the EFLAGS register. We can read this register by pushing the

EFLAGS onto the stack with a pushfd instruction. We then set

the trap flag bit using a logical OR instruction. Finally we

save the EFLAGS by popping the data off the stack with the

popfd instruction. When this series of commands is executed,

a single step exception will be generated after each

instruction. If a debugger is attached to our process, the

debugger will intercept the exception thus skipping our

structured exception handler and indicating to our process that

a debugger is attached.

int flag = 0;

//Set the trap flag

__try {

 __asm {

 PUSHFD; //Saves the flag registers

 OR BYTE PTR[ESP+1], 1; // Sets the Trap Flag in

EFlags

 POPFD; //Restore the flag registers

 NOP; // NOP

 }

}

__except (EXCEPTION_EXECUTE_HANDLER) {

 flag = 1;

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

}

if (flag == 0) MessageBox(NULL, L"Debugger Detected

Via Trap Flag", L"Debugger Detected", MB_OK);

Appendix: SingleStep.sln

E. Unhandled Exception Filter

When an exception occurs within a process executing on

the Microsoft Windows operating system, there is a pre-

defined set of exception handlers that may be executed. If

none of the exception handlers are configured to accept the

incoming exception, the final handler is called the unhandled

exception filter. This filter is the catch all for exceptions that

do not meet the criteria for any other handling mechanism.

Using a Microsoft supplied API, we can change the call back

function for the unhandled exception filter to a piece of code

of our choosing.

When a debugger is in place, it inserts itself above the

unhandled exception filter catching unhandled exceptions

prior to the final filter being executed. As such, the debugger

will intercept exceptions before our assigned call back

function allowing us to determine that a debugger is attached

to our process. In our example the exception that we generate

crashes the application when run under a debugger due to the

fact that the debugger does not handle the exception, instead

allowing it to execute. When the same code is run without a

debugger attached, the registered unhandled exception filter

will catch the exception and safely continue program

execution.

The first step in executing this anti-debugging method is to

set the call back function for an unhandled exception filter.

This call back function is registered by a call to the

SetUnhandledExceptionFilter() function as demonstrated

below. This is then directly followed by inline assembly code

that causes a divide by zero error to trigger.

int flag = 0;

SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_F

ILTER)exHandler);

__asm {

 xor eax, eax;

 div eax;

}

MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

Our callback function simply handles the exception, resets

the default unhandled exception filter and continues

execution. The function exHandler() is as follows:

LONG WINAPI exHandler(PEXCEPTION_POINTERS

pExecpPointers)

{

// Process will CRASH if a debugger is in place

SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_F

ILTER)pExecpPointers->ContextRecord->Eax);

pExecpPointers->ContextRecord->Eip += 2;

return EXCEPTION_CONTINUE_EXECUTION;

}

Appendix: UnhandledExceptionFilter.sln

F. CloseHandle

Another trivial way to create an exception that will be

trapped by a debugger is to generate an invalid handle

exception. To generate this exception a call to CloseHandle()

is executed with an invalid handle object. This call directly

executes the syscall ZwClose, which in turn generates the

exception. As is the case with most exception based anti-

debugging techniques, we encase the call within a __try and

__except clause to be sure that our program can safely handle

the exception. This particular anti-debugging mechanism is

slightly different in that the call to CloseHandle() only raises

the exception if a debugger is attached to the process. If a

debugger is not attached, the call simply returns an error code

and continues on. Due to this fact, if our code reaches the

except block, we have detected a debugger.

__try {

 CloseHandle((HANDLE)0x12345678);

}

__except (EXCEPTION_EXECUTE_HANDLER) {

 flag = 1;

 MessageBox(NULL, L"Debugger Detected via

kernel32!CloseHandle", L"Debugger Detected", MB_OK);

}

if (flag == 0) MessageBox(NULL, L"No Debugger

Detected", L"No Debugger", MB_OK);

Appendix: UnhandledExceptionFilter.sln

G. Control-C Vectored Exception

Vectored exception handlers are a recent feature addition to

the exception handling mechanism in the Microsoft Windows

operating system. Vectored exception handlers execute first in

the exception handling chain and any number of VEH

handlers can be chained together. Vectored exception handlers

are explicitly added to your code and do not rely upon the

__try and __except blocks. When creating vectored exception

handlers, a linked list structure is used, allowing the process to

install a theoretically unlimited number of exception handlers

between the SEH and the final unhandled exception filter.

When a console mode application is being executed under

the control of a debugger, typing control-c will create an

exception that can be detected and trapped using vectored

exception handling. Normally a console application will create

a signal handler to properly handle a call to control-c. If the

process is not running under the context of a debugger, this

signal handler is executed. By creating both a signal handler

and an exception handler, it is possible to determine if the

exception or the signal trap is executed. When running under

Visual Studio debugger, the exception is thrown and executed

within our process.

AddVectoredExceptionHandler(1,

(PVECTORED_EXCEPTION_HANDLER)exhandler);

SetConsoleCtrlHandler((PHANDLER_ROUTINE)sighandler,

TRUE);

success = GenerateConsoleCtrlEvent(CTRL_C_EVENT, 0);

Appendix: CNTRL-C.sln

In the above lines of code we see three function calls of

interest. In the first call we add a vectored exception handler

which calls back to our function exhandler(). We then add a

signal handler using SetConsoleCtrlHander() that calls back to

our function sighandler(). And finally we generate a control-c

call by executing GenerateConsoleCtrlEvent() with a first

parameter of CTRL_C_EVENT. In the signal handler we

simply handle the signal and continue executing, while in the

vectored exception handler we take action as if a debugger is

attached to our process. The code will operate differently

based on the existence of a debugger. If the debugger is

attached, the exception handler is triggered first and thus we

know the process is being debugged. If the VEH does not fire,

this is because no debugger is present and we handle the

control-c event with our signal handler and continue execution.

H. Prefix Handling

An interesting issue occurs when debugging an application

that uses inline assembly prefixes. Depending on which

debugger is in use, these prefixes may not be properly

executed. Some debuggers simply step over the byte

following a prefix such as rep (repeat) and never actually

execute the next instruction. This occurs in our example when

the debugger causes the interrupt to not be executed and thus

our exception is never run. In this manner we are able to

detect that a debugger is attached to our process and act

accordingly. Before implementing this anti-debugging method,

one should be sure that their target audience debugger will be

detected using this method.

int flag = 0;

__try {

 __asm {

 __emit 0xF3; // 0xF3 0x64 is PREFIX REP:

 __emit 0x64;

 __emit 0xF1; // Break that gets skipped if

debugged

 }

}

__except (EXCEPTION_EXECUTE_HANDLER) {

 flag = 1;

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

}

if (flag == 0) MessageBox(NULL, L"Debugger Detected

Via Prefixing", L"Debugger Detected", MB_OK);

Appendix: Prefix.sln

I. CMPXCHG8B and LOCK

The LOCK prefix in assembly is used to assert a special pin

on the processor during the execution of the subsequent

instruction. This pin is used to ensure that the processor is the

only processor with access to a shared memory area. The

LOCK prefix is used within multi-processor systems that may

be affected by processors simultaneously modifying shared

memory segments. There is a small subset of instructions that

can legally follow a LOCK prefix.

The CMPXCHG8B instruction is a compare instruction that

compares values stored in specific registers with a target

memory location. If the destination value matches the source

value, the source is moved into the targeted memory location,

if not, the destination memory data is loaded into the specific

registers.

The CMPXCHG8B and LOCK prefix instructions do not

operate properly together. If they are executed in succession

an invalid instruction error will be generated. If this code is

run under a debugger, the debugger will catch the invalid

instruction exception and terminate the running process.

However; if no debugger exists, we can trap this exception

and continue execution gracefully. To do this we set an

unhandled exception filter and then execute the instructions in

inline assembly.

void error()

{

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger", MB_OK);

 return;

}

...

SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_F

ILTER) error);

__asm {

 __emit 0xf0;

 __emit 0xf0;

 __emit 0xc7;

 __emit 0xc8;

}

Appendix: LOCKCMPXCHG8B.sln

J. OllyDbg Memory Breakpoint

The OllyDbg system handles some exceptions differently

than others. If we protect a memory page with the

PAGE_GUARD option and then try to execute within that

memory page, OllyDbg will interpret the results as a memory

breakpoint as opposed to a memory access exception. If

OllyDbg is attached to our code when we execute from the

protected memory region, a breakpoint will occur; however

since an exception does not actually occurs, our structured

exception handler will not be run. Without OllyDbg present,

our exception handler will execute thus informing us that we

are not inside of a debugger.

The first step is in this anti-debugging method is to allocate

a region of memory and fill it with return opcodes. This is

done by calling VirtualAlloc() followed by a call to

RtlFillMemory with a final parameter of 0xC3. We have to fill

the region of memory with the return opcodes so that when

OllyDbg continues after the breakpoint, it will execute from

the target memory and return back to the original function.

memRegion = VirtualAlloc(NULL, 0x10000, MEM_COMMIT,

PAGE_READWRITE);

RtlFillMemory(memRegion, 0x10, 0xC3);

Next we add the PAGE_GUARD permission to our target

memory region via a call to VirtualProtect().

success = VirtualProtect(memRegion, 0x10,

PAGE_EXECUTE_READ | PAGE_GUARD, &oldProt);

We then setup the structured exception handler and a

function pointer to point to our memory region. We call the

function pointer from within the __try part of our exception

handler and then handle the resultant exception which would

indicate we are not currently running under OllyDbg.

myproc = (FARPROC) memRegion;

success = 1;

__try {

 myproc();

}

__except (EXCEPTION_EXECUTE_HANDLER) {

 success = 0;

 MessageBox(NULL, L"No Debugger Detected", L"No

Debugger Detected", MB_OK);

}

Finally we determine if our exception handler was

executed, and if it was not, we know that OllyDbg had

executed the memory break point as opposed to the exception

handler. This indicates that we are running under the presence

of the debugger.

if (success == 1) MessageBox(NULL, L"Debugger

Detected Via OllyDbg Memory Breakpoint Detection",

L"Debugger Detected", MB_OK);

Appendix: OllyDbgMemoryBreakpoint.sln

K. VMware Magic Port

The virtual machine system VMware uses a “backdoor

communication port” to be able to pass data between the host

and the guest operating system. This communication port is

used to read and write clipboard information, drag and drop

between host and guest operating system, and allow file

sharing between the two running systems. Communication on

this port occurs by using two privileged x86 instructions, “IN”

and “OUT”. These two instructions cannot normally be run

from an unprivileged vantage point and would generate an

exception; however when running under VMware, the

emulation layer has implemented these particular instructions

differently allowing them to be executed from an unprivileged

vantage point. As such we can use these methods to detect if

we are in a VMware virtual environment.

In the inline assembly below we setup a call to the “IN”

instruction by pushing a number of static values onto the stack.

The first parameter of interest is the static string ‘VMXh’.

This string is the “magic” value that must be present for the

virtual machine to know that the request is legitimate. The

value 10 is the particular VMware backdoor function that we

wish to execute, while the value ‘VX’ is the default port that

the VMware backdoor IO listens for. Finally we execute the

“IN” call and analyze the return value. If the return value is

zero, and we have reached our exception handler, we know

that we are not running in a virtual session. If the return value

is non zero and we do not reach out exception handler we are

running inside of VMware.

int flag = 0;

__try {

 __asm {

 push edx;

 push ecx;

 push ebx;

 mov eax, 'VMXh';

 mov ebx, 0; // This can be any value except

MAGIC

 mov ecx, 10; // "CODE" to get the VMware Version

 mov edx, 'VX'; // Port Number

 in eax, dx; // Read port

 //On return EAX returns the VERSION

 cmp ebx, 'VMXh'; // is it VMware

 setz [flag]; // set return value

 pop ebx;

 pop ecx;

 pop edx;

 }

}

__except(EXCEPTION_EXECUTE_HANDLER) {

 flag = 0;

 MessageBox(NULL, L"No VMware Instance Detected",

L"No VMware", MB_OK);

}

if (flag != 0) { MessageBox(NULL, L"VMware

Detected", L"VMware Detected", MB_OK); }

}

Appendix: VMwareBackdoorIO.sln

IX. CONCLUSIONS

While we can be assured that this document has not

discussed every anti-debugging method in existence we hope

that a majority of the more useful methods have been

demonstrated. We believe that presenting the information in a

manner that is easy to digest for the mid-level developer will

help to ease the burden of implementation and increase the

frequency of use of techniques such as these. This information

will hopefully increase the barrier of entry for would be

software pirates and make the path to reverse engineering of

legitimate code more difficult.

ACKNOWLEDGMENT

The author would like to acknowledge Chris Eng and Chris

Wysopal for their support and review of this paper throughout

the writing process. Additional acknowledgement should be

given to Wesley Shields and Andreas Junestam, along with

the people on #uninformed who acted as a source of

knowledge and research data points.

REFERENCES

[1] PEB Structure break out:
http://undocumented.ntinternals.net/UserMode/Undocumented%20Fun

ctions/NT%20Objects/Process/PEB.html Last accessed March 1, 2009

[2] PIB Structure break out: Appendix PIB.txt

[3] Jackson, J., “An Anti-Reverse Engineering Guide”, Code Project

Publication, November 9, 2008.

http://www.codeproject.com/KB/security/AntiReverseEngineering.asp

x, Last Accessed December 11, 2008.

[4] Falliere, N., “Windows Anti-Debug Reference”, November 12, 2007,

http://www.securityfocus.com/infocus/1893, Last Accessed December
11, 2008.

[5] Gagnon, M. N., Taylor, S., and Ghosh, A. K. 2007. Software

Protection through Anti-Debugging. IEEE Security and Privacy 5, 3
(May. 2007), 82-84. DOI= http://dx.doi.org/10.1109/MSP.2007.71

[6] Ferrie, P., “Anti-Unpacker Tricks”, May 2008,

http://pferrie.tripod.com/papers/unpackers.pdf, Last Accessed
December 11, 2008.

[7] Website: “OpenRCE Anti Reverse Engineering Techniques Database”,

http://www.openrce.org/reference_library/anti_reversing, Last

Accessed December 11, 2008.

[8] Ferrie, P., “Attacks on More Virtual Machine Emulators”, October

2008, http://pferrie.tripod.com/papers/attacks2.pdf, Last Accessed

December 11, 2008.

[9] Brulez, N., “Anti-Reverse Engineering Uncovered”, March 7, 2005,

http://www.codebreakers-

journal.com/downloads/cbj/2005/CBJ_2_1_2005_Brulez_Anti_Revers

e_Engineering_Uncovered.pdf, Last Accessed December 11, 2008.

[10] Bania, P, “Antidebugging for the (m)asses - protecting the env.”,

http://www.piotrbania.com/all/articles/antid.txt, Last Accessed

December 11, 2008.
[11] Brulez, N., “Crimeware Anti-Reverse Engineering Uncovered”, 2006,

http://securitylabs.websense.com/content/Assets/apwg_crimeware_anti

reverse.pdf, Last Accessed December 11, 2008.
[12] “Lord Julus”, “Anti-Debugger and Anti-Emulator Lair”, 1998,

http://vx.netlux.org/lib/vlj03.html, Last Accessed December 11, 2008

[13] Liston, T., and Skoudis, E., “ Thwarting Virtual Machine Detection”,

2006,

http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudi

s.pdf, Last Accessed December 11, 2008.

[14] Bania, P., “Playing with RTDSC”,

http://www.piotrbania.com/all/articles/playing_with_rdtsc.txt, Last

Accessed December 11, 2008.

[15] Quist, D., Smith, V., “Detecting the Presence of Virtual Machines
Using the Local Data Table”,

http://www.offensivecomputing.net/files/active/0/vm.pdf, Last

Accessed December 11, 2008.
[16] Omella, A. A., “Methods for Virtual Machine Detection”, June 20,

2006, http://www.s21sec.com/descargas/vmware-eng.pdf, Last

Accessed December 11, 2008.

[17] Tariq, T. B., “Detecting Virtualization”, May 14, 2006, Talha Bin

Tariq Blog, http://talhatariq.wordpress.com/2006/05/14/detecting-

virtualization-2/, Last Accessed December 11, 2008.

[18] Rutkowska, J., " Red Pill... or how to detect VMM using (almost) one
CPU instruction”, November 2004,

http://www.invisiblethings.org/papers/redpill.html, Last Accessed

December 11, 2008.

