
NTrace: Function Boundary Tracing for Windows on IA-32

Johannes Passing, Alexander Schmidt, Martin von Löwis, Andreas Polze
Hasso Plattner Institute at University of Potsdam

Potsdam, Germany
{johannes.passing, alexander.schmidt, martin.vonloewis, andreas.polze}@hpi.uni-potsdam.de

Abstract—For a long time, dynamic tracing has been an
enabling technique for reverse engineering tools. Tracing can
not only be used to record the control flow of a particular
component such as a piece of malware itself, it is also a way
to analyze the interactions of a component and their impact
on the rest of the system. Unlike Unix-based systems, for
which several dynamic tracing tools are available, Windows
has been lacking appropriate tools. From a reverse engineering
perspective, however, Windows may be considered the most
relevant OS, particularly with respect to malware analysis.
In this paper, we present NTrace, a dynamic tracing tool for
the Windows kernel, drivers, system libraries, and applications
that supports function boundary tracing. NTrace incorporates
2 novel approaches: (1) a way to integrate with Windows Struc-
tured Exception Handling and (2) a technique to instrument
binary code on IA-32 architectures that is both safe and more
efficient than DTrace.

Keywords-Reverse engineering; Software debugging; Oper-
ating system kernels

I. MOTIVATION AND INTRODUCTION

Computer systems are inherently complex. An ever grow-
ing set of interfaces and functionality can be identified at
every single system layer. Residing at the border between
software and hardware, the operating system itself is no
exception to this rule.

Coming along with this complexity, the potential interac-
tions and impacts caused by application software is diverse
and their analysis requires specialized tools. On Windows,
where source code of the kernel, device drivers, and libraries
is usually not available, dynamic tracing can be a power-
ful technique enabling such analysis. Although the focus
of dynamic tracing has traditionally lain on development
and debugging of production systems, we find that reverse
engineering tools pose remarkably similar requirements on
dynamic tracing techniques.

Within this paper we are presenting a novel solution
for instrumenting the Windows kernel, device drivers, and
libraries for dynamic tracing. We consider the techniques
used by NTrace to be equally suitable for building reverse
engineering tools as well as for creating debugging tools for
production systems.

There are various approaches towards dynamic tracing.
Besides relying on hardware-generated events, tracing can
be based on modifications to the execution environment (i.e.,
interpreter, just-in-time compiler), or modifications to the

binary code itself. Typically, these approaches assume the
general model of a von-Neumann computer with support
for sequential program execution.

In contrast to most Unix systems, the Windows model
for program execution assumes existence of the structured
exception handling mechanism (SEH), which is comparable
to the exception concept present in Ada, Java, or C++.
However, SEH is not implemented as part of a specific
language runtime but rather integrated with the operating
systems mechanisms for process and thread creation and
program execution. SEH significantly impacts the execution
model for programs in Windows. Our solution for instru-
menting Windows takes SEH into account and extends the
program-rewriting approach to dynamic tracing with support
for synchronous exception handling.

A. Function Boundary Tracing

While dynamic tracing can be performed at various levels
of detail, this paper focusses on Function Boundary Tracing,
which for many applications, we consider to be the most
versatile and generic approach. First, it can be used to trace
control flow of arbitrary applications in order to better un-
derstand system behavior. Second, by measuring occurrences
of pairing function entry and function exit/exception events,
it is easily possible to derive a timing profile of a given
application. Last but not least, monitoring applications is
possible by instrumenting certain functions that may indicate
resource shortage or suspicious behavior.

Over the past decades, a variety of approaches for imple-
menting dynamic tracing in general and function boundary
tracing in particular have evolved. To allow assessing these
approaches, we have identified three aspects to be of partic-
ular interest:

• Runtime Overhead. The runtime overhead of tracing,
i.e. the degree to which the traced system is slowed
down, clearly is of paramount importance for the appli-
cability of a tracing system: Not only may the overhead
impact the timing behavior of the system, being frugal
in terms of overhead also is a requirement for the
system to be applicable on production systems.

• Coverage, i.e. the percentage of functions (in relation
to all functions the individual traced system comprises)
the tracing system is capable of instrumenting.



• Risk. Adding instrumentation to a system changes the
system and therefore entails a certain intrusiveness.
More precisely, the activity of adding instrumentation
and tracing execution flow can potentially cause faults
and therefore invariably introduces a certain risk.

Taking these three aspects into account, and focussing
on the IA-32 architecture, a number of conclusions may be
drawn from regarding existing dynamic tracing facilities:

• Using hardware features such as last branch recording
and branch trace storage [1] tends to yield information
too fine-grained to be of significant use for function
boundary tracing.

• For many systems, and the NT kernel in particular,
relying on environment modifications, such as patching
function pointers and Vtables to redirect execution flow
into instrumentation routines falls short w.r.t. coverage
and is therefore not universally applicable.

• Systems relying on dynamic compilation [2] or dy-
namic binary translation [3] feature high coverage and
low overhead. However, their intense reliance on flow
analysis and disassembly introduces a non-negligibe
risk: Disassembly algorithms have known shortcomings
regarding the disassembly of arbitrary IA-32 code and
their usage therefore involves the danger of silently
yielding false results[4] – which in turn can jeopardize
system stability.

• Relying on the injection of trap-generating instructions
avoids several of the challenges concerning runtime
code modification and allows high coverage to be
achieved, yet, the overhead of trap handling is signif-
icant and invariably leads to a relatively high runtime
overhead.

• Performing in-place modifications on the code to in-
corporate branch instructions so that execution flow is
redirected to instrumentation routines is advantagous
regarding runtime overhead and, depending on the
individual approach, may also allow high coverage
to be achieved. However, due to its variable-length
instruction set, approaches implementing this technique
face significant challenges on the IA-32 architecture.
Systems such as KernInst [5] and DTrace [6], for ex-
ample, while using this technique on SPARC, therefore
revert to the injection of trap-generating instructions on
IA-32.

• The ramifications and challenges regarding Structured
Exception Handling have not been sufficiently covered
by any of the existing tracing solutions.

Based on these observations, a universal, low-overhead,
high-coverage and low-risk function boundary tracing solu-
tion for the IA-32 architecture is not in sight. Nonetheless,
we see significant room for improvement. The main contri-
butions of this paper in this regard are:

• Integrating with the Windows NT Structured Exception

Handling facilty. Being able to to trace exception un-
winds is an important requirement for allowing reliable
reconstruction of the control flow of a system – this is
particulary the case when analyzing error cases.

• Leveraging the Hotpatching features of recent Windows
NT kernel editions, we present an implementation of
the technique of using in-place code modification and
injection of branch instructions. The technique features
low runtime overhead and is able to sidestep the
disassembly-related challenges imposed by the IA-32
architecture. Although sacrificing a certain degree of
coverage, the technique is therefore particularly well-
suited for analysis of production systems where risk is
of utter concern.

• Furthermore, the technique is equally applicable to
kernel mode components, including device drivers, as
to user mode libraries and executables such as kernel32,
ole32, and Windows Explorer.

II. CHALLENGES FOR TRACING WINDOWS

Implementing a dynamic tracing system requires a number
of challenges to be addressed, including, but not limited to
the following:

• Re-entrance of the Tracing Facility Sharing the address
space and further resources with the traced operat-
ing system kernel/process, the tracing facility must
be careful to properly share and coordinate access to
these resources. In particular, the tracing system must
avoid calling routines which have themselves been
instrumented for tracing in order to avoid hazardous
forms of re-entrance and endless recursion.

• Memory Protection Certain instrumentation activity, in
particular performing runtime code modification, com-
monly entails having to modify memory pages which
have been marked write-protected. Such restrictions can
be temporarily disabled or circumvented, yet stability
and integrity of the system have to be maintained.

• Life Cycle Management of Dynamically Allocated Code
Dynamically detaching from the system, i.e. revoking
instrumentation and releasing resources may involve
freeing memory containing code. Due to concurrently
running as well as preempted threads, however, decid-
ing on the safety of such operation is non-trivial and
requires careful checks or tracking of the usage of these
resources.

• Runtime Code Modification Whenever code is to be
modified at runtime, in particular on systems com-
prising multiple processors, any modification on code
has to be performed in a safe manner. That is, the
instrumentation technique has to guarantee that a rou-
tine is either run in its unmodified version or run
in its modified version and that the behavior of the
modified routine is equivalent to its non-instrumented
counterpart. In this context, we consider the behaviors



equivalent if during execution, all non-noop instructions
of the modified routine are executed in the same order
as in the unmodified routine. Still, the modified version
may contain additional jump or branch instructions as
long as they do not violate the constrains defined above.

An additional challenge posed by Windows NT, both
for kernel and user mode tracing, is dealing and inte-
grating with the built-in Structured Exception Handling
(SEH) facility: SEH exceptions are not only used for han-
dling software exceptions, i.e. exception explicitly raised via
RtlRaiseException. It is also used for handling certain
hardware-defined faults or traps such as Integer divide by
zero conditions.

Handling an exception often involves unwinding, which
means that one or more routines are left prematurely. Such
premature exit, however, implies that the routine will not
return in the classical sense. As such, besides function entry
and exit events, exception unwinds have to be regarded as a
third kind of event.

In order to be able to capture the event of an exception
being raised, and, in particular, recognize the fact that a
traced routine is about to be left prematurely due to an
exception unwind, however, requires appropriate integration
with the Structured Exception Handling infrastructure.

III. NTRACE

In order to address the issues described in the previ-
ous section, and Structure Exception Handling (SEH) in
particular, we present our tracing approach called NTrace.
NTrace is a tracing suite comprising a management appli-
cation resembling a command line debugger as well as two
agents. One agent, implemented as a loadable device driver,
implements kernel mode tracing and allows the Windows
kernel itself as well as kernel mode device drivers and DLLs
to be instrumented and traced. The second agent implements
tracing of user mode applications and libraries. In order to
allow arbitrary processes to be analyzed, it is implemented
as a DLL which is injected into the respective process on
demand. Both agents use the same tracing technique, albeit
with minor adaptions to account for the different operation
environments.

The tracing technique leveraged by NTrace is based on in-
place code modification and injection of branch instructions.
In order to conduct such code modifications in a safe
manner, NTrace utilizes certain properties introduced by
the Microsoft Hotpatching infrastructure [7]. Starting with
Windows Server 2003, Microsoft builds both kernel and
user mode Windows components as hotpatchable images.
Those image have two fundamental properties: (1) There is a
certain padding area between functions and (2) hotpatchable
functions have a certain noop-prologue, which we utilize to
address safety issues.

Foo‐5:

Foo:

CallProxy:

..
.

..
.

(1)
(2)

(3)

..
.

EntryThunk:

(4)

(5)

(6)

(7)

Figure 1. Schematic execution flow for tracing function Foo

A. Operation

In order to capture function entry and exit events, NTrace
performs the modifications, illustrated in Figure 1, to our
sample function Foo.

Hotpatchable functions, by definition, start with a mov
edi, edi instruction, which is semantically a two-byte
noop. NTrace replaces this instruction with a two-byte jump
instruction. Due to the space constraints, the jump cannot
direct control into our instrumentation routine. As shown in
figure 1, it rather redirects to the padding area preceding the
function (2). We use this padding area as a trampoline into
the CallProxy routine (3).

It is worth noting that due to the fact that the padding
area can be considered as dead code, the runtime code
modification is effectively limited to a single instruction,
replacing the mov edi, edi. Moreover, no true disas-
sembly is required by this approach – only the presence of
the padding area and the mov edi, edi instruction have
to be verified. Both can be implemented by a simple memory
comparison.

We guard the process of replacing the noop instruction
with compliance to the Intel algorithm defined for cross-
modifying code [1]. We disable interrupts and issue deferred
procedure calls (DPCs) on all processors, if necessary,
except for the one performing the replacement in order to
stall execution until the modification has been completed.
Finally, a serializing instruction, cpuid, is performed on
all CPUs to take the modification into effect.

Having entered Foo (1) and taken the short jump, execu-
tion reaches the padding area (2). We use it as a trampoline
as it is usually 5 bytes in size which allows for jump
distances large enough to reach our pre-processing routine
CallProxy (3). As CallProxy, and EntryThunk as
well, are generic pre- and post-processing routines shared by
all instrumented functions, we provide information where to
redirect control after capturing the events. For that reason,
we replace the padding area by a near call instruction
resulting in pushing Foo’s address onto the stack.

Following this call instruction (3), execution reaches



CallProxy, which first performs a call to EntryThunk
(4). This series of call instructions leaves us a stack con-
taining the following information (in pop-order): (a) The
address of the CallProxy instruction following the call
instruction. We will use this code to perform exit-event
tracing. (b) Foo’s address, which is necessary to return
control after entry-event tracing has been performed into
the traced function and (c) the return address after leaving
function Foo.

Based on this setup, EntryThunk performs the follow-
ing steps:

• Raise the entry event.
• Update the stack in such a way that any return instruc-

tion within Foo will end up in CallProxy+5.
• Restore the stack in order to allow Foo to use its

parameters, if necessary.
• Resume execution at Foo+2.
The original return address has to be stored in order

to return to the caller of Foo after exit-event tracing has
been performed. We maintain a thread-local auxiliary stack
where we store the return addresses and further bookkeeping
information.
Foo will eventually return in one of two ways. Either

it returns normally or it is aborted prematurely by an
exception. Exception handling will be discussed in more
detail in the following section.

In the normal case, Foo will return normally and exe-
cution will resume at CallProxy+5 (6), where the post-
processing takes place. Having obtained the necessary infor-
mation from the auxiliary stack, the exit event can be raised
by invoking the appropriate callback routine. After this has
been accomplished, the scratch data has to be removed from
the stack and register contents have to be restored so that
stack and registers are in the same state as they were after
return from Foo. Finally, execution can be transferred to the
caller by pushing the original return address and performing
a simple ret instruction. After the return, execution resumes
at the caller as normal.

Facilitating the auxiliary stack allows nesting, i.e., traced
functions may call other traced functions. If, however, the
execution of CallProxy or EntryThunk is interrupted
by an interrupt service routine (ISR) which itself is instru-
mented for tracing, a situation can arise where CallProxy
or EntryThunk are re-entered. While CallProxy and
EntryThunk are partialy re-entrant, they both contain a
window of instructions (dealing with allocation and mainte-
nance of the auxiliary stack) that is not safe w.r.t re-entrance.

Whenever such re-entrance is detected, NTrace degrades
gracefully and will cause the affected routine to be run un-
traced. Although leading to an event effectively being lost,
this approach ensures that the consistency of internal data
structures is maintained.

It is worth pointing out that the auxiliary stack also
allows us to solve the problem of dealing with life-cycle

Module!Routine1

Module!Routine2

Module!Routine3

Module!Routine4

Module!Routine5

handled by

Figure 2. An example callstack when an exception is raised. Gray boxes
denote stack frames of traced routines.

management of dynamically allocated code: We only allow
the NTrace agent to unload when all instrumentation has
been removed and all auxiliary stacks have been verified to
be empty. Not before these conditions are met, the NTrace
code is guaranteed to be not used any more and is safe to
be unloaded.

Finally, we overcome memory protection by leveraging
Memory Descriptor Lists to create secondary virtual address
mappings, a technique that has been described by Hoglund
and Butler [8].

B. Structured Exception Handling

The Windows kernel supports three types of function
boundary events: entry, normal exit, and abnormal exit.
The last type of event is caused by exceptions using the
structured exception handling infrastructure (SEH) of the
Windows NT kernel. Such prematurely leaving a traced
routine means that post-processing is skipped. Yet, skipping
post-processing of a routine results in the corresponding
auxiliary stack frame to not be popped. As a consequence,
exception unwinds endanger the coherence between call
stack and auxiliary stack.

Such incoherence entails two basic issues. The minor
issue is a resource leak: The un-popped frames on the aux-
iliary stack will remain on the stack and new frames will be
pushed atop of these frames. Preventing the auxiliary stack
from ever becoming empty again, these frames effectively
denote a resource leak. Diminishing the effective size of
the stack, they also raise the probability of stack depletion.
While NTrace is able to deal with depletion, we attempt to
avoid such situations for that they cause events to be missed.

The second issue, however, is of major concern. An exam-
ple is illustrated by Figure 2: Depicting a call stack, the stack
is drawn growing bottom-up. Each box denotes a call frame,
gray boxes denote call frames of traced routines. Routine5
raises an exception, which is handled by Routine3 and
leads to an unwind. If NTrace does not anticipate correctly,
one frame will now be leaked on the auxiliary stack. If
Routine3 and Routine2 later return, post-processing for
the latter routine has to take place. That is, the topmost frame
is popped from the auxiliary stack and is used to obtain and
reconstruct the original return address. However, as the top
frame denotes the leaked frame and is thus not the frame
corresponding to the call frame of Routine2, this address



is wrong – rather than pointing into Routine1, it will point
into Routine3. Needless to say, continuing execution at
the wrong return address will lead to behavior that may be
considered arbitrary.

In order to both be able to capture the event of an excep-
tion unwind taking place, and maintain coherence between
call stack and auxiliary stack, appropriate integration with
the exception dispatching process is required. Kernel mode
SEH, however, does not provide any notification or hooking
mechanisms that would readily support such integration.
Aiming to be compatible with the retail kernel, on the other
hand, prohibits extending the implementation of SEH to
provide for such means.

When an exception is raised, the kernel invokes
RtlDispatchException, which walks the list of reg-
istration records, calling each handler routine until it finds
a handler agreeing to handle the exception. If handling the
exception entails continuing execution at a different code
location, it is among an exception handler’s responsibilities
to initiate the second phase of exception handling – the
unwinding phase – by calling RtlUnwind. During unwind-
ing, the list of exception registration records is walked once
more, giving each of the handlers previously having declined
to handle the exception the opportunity to perform certain
cleanup work. Further details on SEH can be found in [9].

Given this algorithm and being restricted to using existing
SEH mechanisms, the route chosen by NTrace is as follows:
Each traced routine is effectively surrounded by a try/finally
construct. That is, during pre-processing, an SEH registra-
tion record is set up and maintained until post-processing,
which in turn tears down the registration record. In case the
routine returns normally, the existence of the registration
record is ignored. In case of an exception unwind, however,
the exception handler is given the opportunity to deliver an
appropriate event and adjust the auxiliary stack.

While this approach is conceptually trivial,
there are two problems: first, creating an SEH
registration record on IA-32 architectures requires an
EXCEPTION_REGISTRATION_RECORD structure to be
set up on the stack and be maintained during the lifetime of
a call. However, we cannot create such a record on the stack
as this would change the stack frame in a way that is likely
to hinder proper execution of the traced routine. Second,
we cannot create an exception record on our auxiliary
stack and enqueue it properly into the exception chain:
For security reasons, the SEH implementation requires
exception records to be allocated on the stack of the thread
causing the exception.

To circumvent these restrictions, we perform the follow-
ing actions. During the pre-processing phase of an entry
event, we locate the closest exception registration record
on the stack. We replace the exception handler address
of this record with the address of our exception handler
proxy, called ExceptionProxy, and store the original

handler address in the current auxiliary stack frame. If the
traced function terminates normally, we restore the original
state of the exception record. If, however, an exception
occurs, the exception dispatch function of the Windows
kernel, RtlDispatchException sooner or later calls
ExceptionProxy.

In order to preserve semantics, ExceptionProxy will
in this case merely delegate the call to the original exception
handler routine. Two situations may occur: (1) The original
handler declines to handle the exception and instead, a han-
dler of one of the underlying registration records takes over
the responsibility of handling the exception. If this includes
unwinding, ExceptionProxy will be called again, being
given the opportunity to perform cleanup work, which, in
this case, entails tracing the event and adjusting the auxiliary
stack.

(2) If, however, the original handler agrees to handle the
exception, the situation is more intricate: When unwinding
is performed in this case, neither will the original handler
return to ExceptionProxy (it will perform a continua-
tion), nor will ExceptionProxy be called again to allow
cleanup work. To mitigate this situation, we therefore set
up another, temporary exception registration record before
delegating a call to the original handler. Using a separate
handler routine, UnwindHandler, allows us to be notified
about an unwind taking place, and hence to properly trace
the event and adjust the auxiliary stack in either situation.

It is possible that more than one stack frame of a traced
routine maps onto a single exception record. In such cases,
the handler is not exchanged once again – instead, the
logic implemented to adjust the auxiliary stack is capable of
detecting the number of auxiliary stack frames to be removed
(and hence, the number of exception events to be raised) by
inspecting the respective exception record and its correlation
to a frame in the auxiliary stack.

1) Empty SEH Chain: Another situation that has been
ignored so far is the possibility that no SEH record has
yet been installed when a traced routine is called. That is,
the respective pointer in the PCR contains the special value
EXCEPTION_CHAIN_END.

In such situations, the scheme as discussed so far is not
applicable. It is, however, also not necessary to install an
additional exception handler in this case: If no SEH record
has been installed and one of the functions indirectly called
by the traced routine raises an exception while still no SEH
frame has been set up, this exception will necessarily be left
unhandled and lead to a bugcheck (Windows blue screen).
The fact that an auxiliary stack frame has been leaked is in
this case of no real concern as the system is about to stop.

As a consequence, if the PCR is found to not have a single
exception registration record registered, the entire process
of installing an additional exception handler can safely be
skipped.



Finally, it is worth mentioning that the entire implemen-
tation is SafeSEH-conforming.

C. Using NTrace for Creating Trace Files

The core implementation of NTrace focuses on the act of
capturing function entry, exit and unwind events, leaving
the consumption of these events to external components.
Although by far not being the the only conceivable use case,
one application that has been implemented on top of NTrace
is capturing the event data and writing it to a trace file. Once
such a trace file has been created, it can be browsed using
appropriate tools to observe call-relationships of functions.

Utilizing a dedicated and lock-free buffering scheme, the
trace file is written asynchronously by a system thread.

IV. RELATED WORK

Specialized tools such as the COM Universal Delega-
tor [10] and IRPTracker [11] are able to trace the execution
of selected functions by modifying appropriate function
pointers and Vtables. Although comparatively straightfor-
ward to implement, the inability to instrument function calls
which are not dispatched through a function pointer severely
limits the generic applicability of this technique.

In sharp contract to this, tools relying on interpreta-
tion, dynamic compilation, or dynamic binary translation
to weave in instrumentation code are widely applicable
and allow tracing on a very fine-grained level. One of the
first tools to implement this technique was Shade [2]; later
implementations include Valgrind [12] and DynamoRio [13].
Pin [14] uses a similar approach, yet has introduced the
capability of attaching to a running process. While the
former tools are all limited to user mode tracing, Olszewski
et al. [15] have shown that the technique is also suitable for
instrumenting a running operating system kernel.

However, despite their remarkable capabilities, the intense
relicance of disassembly, as indicated before, can potentially
undermine system stability and therefore incurs a non-
negligible risk. Another potentially less relevant, yet still
important drawback of these solutions turns out to be the
bootstrapping: To successfully interpose code execution, the
tracing facility must either be present from the start of the
respective program on or it must be injected and be provided
some form of jump aid. Requiring the tracing facility to
be present during program startup has to be considered a
contradiction to the tracing solution being truly dynamic.
In the second case, the tracing solution can only be as
good as its jump start facility is – the more limited the
number of potential entry points is, the more limited will
the applicability of such a solution be.

Detours [16] as well as the SPARC implementations of
DTrace [6] and KernInst [5] perform in-place modifications
on the code to incorporate branch instructions that redirect
execution to instrumentation code. On IA-32, which, unlike
SPARC, uses a variable length instruction set, such in-place

modifications require significantly more attention in order to
be conduced in a safe manner. In fact, we were able to create
situations in which Detours failed to properly handle speific
issues of runtime code modification and led to crashes.
Presumably due to this added complexity, both DTrace and
KernInst revert to relying on traps rather than on jumps on
IA-32.

Injecting and handling traps is a technique that modifies
the binary code by inserting trap instructions, like int 3,
and providing appropriate trap handlers. As dealing with
traps is at the core of hardware and an operating system’s
capabilities, this approach can be expected to be feasible on
a very wide range of operating systems and hardware archi-
tectures. Although avoiding several of the potential runtime
code modification-related hazards, an inherent drawback of
this approach, is the non-negligible overhead associated with
the handling of traps as was shown by Hiramatsu [17]. Note-
worthy tools applying this technique include Paradyn [18]
and GILK [19].

While the tracing technique implemented by NTrace re-
sembles the approach taken by DTrace on SPARC, it stands
out by the fact that it fully integrates with the Windows-
specific Structures Exception Handling. Moreover, NTrace
demonstrates that by leveraging the Microsoft Hotpaching
infrastructure, it is possible to implement tracing based
on in-place code modifications in a safe manner, even on
multiprocessor IA-32 machines.

V. EVALUATION

One of the aims of NTrace being to minimize the overhead
induced by tracing activity, we chose to evaluate the perfor-
mance of NTrace for kernel mode tracing and conducted
a comparison to the Function Boundary Tracing (FBT)
provider of DTrace. To put the results into relation, we also
included the DTrace Syscall Provider into our measurements,
which we consider to have near-optimal performance.

DTrace is being recognized as a mature and widely used
tracing solution and can therefore be regarded a natural
choice to compare the performance of NTrace to. Moreover,
due the fact that the DTrace FBT provider uses differing
implementations on IA-32 and SPARC, including DTrace in
the evaluation allowed us to assess the following hypotheses:

1) As the IA-32 implementation of DTrace, unlike the
SPARC implementation, uses traps to trace execution,
we expect the runtime overhead of DTrace on IA-32
to be significantly higher than on SPARC.

2) We expect NTrace, which runs on IA-32, yet does not
rely on the usage of traps, to perform significantly
better than DTrace on IA-32.

DTrace being part of Sun Solaris and running on both
IA-32 and SPARC, different operating system builds and
hardware had to be used to conduct the evaulation. In order
to avoid the choice of operating system, hardware, and
different compilers having significant impact on the results,



we chose to perform a micro-benchmark and avoid direct
comparison of timing results.

The benchmark itself consists of repeatedly performing a
simple, nonblocking system call and measuring the overall
time elapsed. We chose the getpid system call and per-
formed 500,000,000 calls per test run. Each test run was
conducted two times – first, without any instrumentation
present, and second, with entry and exit of the system call
being traced.

To avoid script execution and tracing output to impact
the results, we used an empty D probe for DTrace and
suppressed output generation by using the -q command line
switch. Similarly, we configured NTrace to use empty event
handlers for function entry, exit, and exception events.

The SPARC benchmarks were conduced on a 4 CPU Sun
Fire V440 with 16 GB of RAM running Solaris 10 (SunOS
5.10, 64 bit). The IA-32 benchmarks were performed on a
machine with an Intel Core 2 Quad Q6600 2.4 GHz Quad-
Core Processor and 2 GB of RAM, running OpenSolaris 10
(SunOS 5.11, 32 bit).

We assume that the Solaris implementation of getpid
is sufficiently similar on both architectures. Based on this
assumption, it is possible to compare the performance of
DTrace on both systems by measuring the relative overhead
caused by the instrumentation.

Table I lists the results of our measurements and the
relative slowdown figures for each configuration. While the
performance differences between the Syscall providers on
IA-32 and SPARC are modest, the DTrace FBT provider
performs significantly worse on IA-32 than on SPARC
(284% vs. 107%). We expect this to be due to the imple-
mentation differences and consider it to be a proof of our
first hypothesis, namely, that the usage of traps to implement
tracing incurs a siginificant performance penalty.

To compare the performance of NTrace with DTrace, we
used the same IA-32 machine to perform another test run
using NTrace on Windows 2003 Server Enterprise Edition
(SP2, 32 bit). Again, we performed 500,000,000 system
calls and used NtIsProcessInJob as a non-blocking,
reasonably simple service to call.

Although running on the same hardware and being
of similar nature, the execution times of getpid and
NtIsProcessInJob are clearly not comparable. It is,
however, reasonable to assume that both for DTrace and
NTrace, the overhead caused by tracing the invokation of
a routine is independent of the length (and thus, execution
time) of the individual routine. Based on this assumption,
it is legitimate to compare the total overhead induced by
tracing.

With 87423 ms overhead on IA-32 (compared to 399166
ms), NTrace outperforms DTrace by a factor of roughly
4.5. We attribute this to the more advanced instrumentation
technique used by NTrace and see this as a proof of our
second hypothesis.

Although a direct comparison of NTrace and
DTrace/SPARC is hardly possible, the fact that DTrace/IA-
32 adds about 4.1 times more overhead than DTrace/SPARC
and about 4.5 times more overhead than NTrace is a strong
indicator for NTrace achieving similar, if not better,
performance than DTrace/SPARC.

It is worth noting that with trace file creation enabled
– which involved capturing the data and writing a total of
7.3 GB of trace data to disk – the overhead of NTrace was
130891 ms, which is still three times lower than DTrace.

Another aspect closely related to runtime overhead is
scalability, i.e., the question of how the performance and
overhead evolves when the number of instrumented routines
rises.

To address this aspect of performance, a second bench-
mark has been developed and performed. Instrumented to
various degrees, a Windows Server 2003 SP2 system (retail
kernel) has been analyzed while performing a build of the
entire Windows Research Kernel [20] source tree on the IA-
32 machine mentioned previously. Besides measuring the
elapsed time taken for a build, performance counters were
used to capture further performance-related data.

The specific workload has been chosen for generating a
significant amount of I/O operations – and therefore system
calls – as well as involving frequent process startups and
tear downs. For each configuration, ten such builds were
performed.

To analyze how the degree of instrumentation influences
the overhead, ten runs have been performed, each using a
different configuration. The configurations differ in the set
of instrumented routines. The initial set, S100, contains all
routines of the kernel image itself (ntoskrnl.exe). This image
consists of 6012 function out which we could instrument
5131 functions. Some of the non-instrumentable functions
were written in assembly and are therefore not hotpatchable.
Others are preceeded by padding, yet do not begin with a
mov edi, edi instruction. We are currently working on
a slightly adapted instrumentation scheme for the latter frac-
tion of functions that, by the use of an additional trampoline,
allows us to raise the percentage of instrumentable functions
further.

Based on the number of events captured for a run using
this configuration (S100), nine further routine sets have
been created. Each set has been manually chosen based
on the anticipated number of events a run using such a
configuration would yield. For example, the configuration
S20 has been select to yield a fraction of approximately 20
percent of the initial set. Table III gives an overview on the
selected configurations.

The partition of functions is based on the Windows NT
naming conventions. Functions belonging to one component
usually share the same two letters abbreviating the respective
module. For example, the Io prefix is used in all functions
that implement the I/O system, the Ex prefix precedes all



Table I
DTRACE IA-32 VS. SPARC

ISA/Provider Total time Total time Relative
w/o instr. w/ instr. slowdown
[ms] [ms]

DTrace SPARC Syscall 63124 33550 88%
DTrace IA-32 Syscall 290850 139926 108%
DTrace SPARC FBT 59332 33550 77%
DTrace IA-32 FBT 539092 139926 285%

Table II
NTRACE VS. DTRACE ON IA-32

ISA/Provider Total time Total time Total
w/o instr. w/ instr. overhead
[ms] [ms] [ms]

DTrace IA-32 FBT 539092 139926 399166
NTrace IA-32 FBT 174595 87000 87595

Table III
ROUTINE SETS

Name Set (Prefixes) Estimated Number of
output (relative routines
to S100)

S0 (none) 0% 0
S10 Se 10% 182
S20 Io 20% 685
S30 Io, Ob 30% 813
S40 Ex, Mi 40% 681
S50 Ex, Mi, Ob 50% 809
S60 Ex, Mi, Io 60% 1365
S70 Ex, Mi, Io, Se 70% 1546
S80 Ex, Mi, Io, Se, Ob 80% 1674
S90 Ex, Mi, Io, Se, Ob, Fs, Cc 90% 1995
S100 * 100% 5131

function names of functions that implement the Executive
component, and so on. More details on the components of
the Windows kernel can be found in [21].

It is worth pointing out that the aim of this benchmark is to
measure the overhead imposed by capturing function entry,
exit, and exception unwind events only. As such, no further
processing is performed using the events – once captured,
they are dropped immediately.

We created a third benchmark to give an impression
on how system performance is affected when our instru-
mentation facility is used for an application. Our sample
application is to construct dynamic call graphs that help
understand the otherwise opaque Windows kernel better.
Starting with a system service call, the call graph then shows
the control flow throughout the kernel and its modules until
completion of the service call.

We create the call graph in a post-mortem manner, i.e.,
we first persistently log all function entry, function exit,
and function exception events, disable the instrumentation,
and create afterwards the call graph. How to log log entries
persistently has been discussed in Section III-C. Although
logging events asynchronously, writing events back to a
secondary storage incurs additional I/O operations, which

Table IV
MEASUREMENTS: COST PER CAPTURE

Relative Cost per
Cost/100M Overhead per single

captures [ms] 100M catures capture [ns]
S10 1,078 1.38% 10.78
S20 1,075 1.37% 10.75
S30 1,067 1.36% 10.67
S40 1,023 1.31% 10.23
S50 1,041 1.33% 10.41
S60 1,019 1.30% 10.19
S70 1,030 1.32% 10.30
S80 1,106 1.41% 11.06
S90 1,178 1.50% 11.78
S100 1,075 1.37% 10.75

increases the impact on the performance of the system.
The results of these two benchmarks are shown in figure

3. While the total overhead is as low as 11% (capturing only)
and 23% (example use case) for S10, the overhead increaes
up to a maximum of 124% and 361%, respectively, for S100.
At this level, NTrace handled up to 3.2 million events per
second.

Based on these values, the average cost of handling a
single event can be calculated. Ideally, the cost per event



 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

S0 S10 S20 S30 S40 S50 S60 S70 S80 S90 S100

ru
n 

tim
e 

(m
s)

routine sets

Kernel, example use case
Kernel, capturing only

Figure 3. Total run time

0.6%

0.8%

1%

1.2%

1.4%

1.6%

1.8%

2%

S10 S20 S30 S40 S50 S60 S70 S80 S90 S100

ov
er

he
ad

routine sets

Figure 4. Overhead caused by each 100 million captures

would be constant across all configurations. In a poorly
scaling implementation, in contrast, the cost would increase
proportionally to the degree of instrumentation. Table V
and Figure 4 show the results of this calculation. Although
not constant, the cost per 100 million captures varies only
slightly.

VI. CONCLUSION

NTrace is a novel approach towards dynamic tracing
of user- and kernel- mode thread execution in context of
the Windows operating system. Initially developed on the
Windows Research Kernel, NTrace is applicable to the
current retail versions of Windows (Vista, Server 2003,
Server 2008).

NTrace relies on dynamic instrumentation of the Windows
kernel and allows for analyzing control flows in the Windows
kernel (and device drivers) as well as in compatible user-
space applications (with respect to function entry and exit).

Our approach minimizes the impact on system operation,
thus making it possible to use the NTrace tool for debugging
or reverse engineering purposes, even in production environ-
ments. Indeed, our experiments indicate that the instrumen-
tation of select parts of the kernel (or select drivers) will
induce execution time overheads in the order of 5 percent
or less.

Structured exception handling (SEH) lies at the heart
of the Windows thread execution model. SEH is used
throughout the Windows kernel and presents a fundamental
difference in system behavior in contrast to the UNIX execu-
tion model. Integrating exception handling with the NTrace
framework presented an additional challenge, however, we
have developed (and described) a solution that meets all
constraints of the system, and smoothly integrates with the
rest of the framework.

At Hasso-Plattner-Institut, we have already received pos-
itive feedback from students actively using NTrace in con-
junction with the Windows Reseach Kernel to explore and
learn about the inner workings of the Windows kernel.
Future work will extend the current NTrace implementation
with frontend tools comparable to those found in other
frameworks, such as the Solaris DTrace.

REFERENCES

[1] Intel Corporation, Intel 64 and IA-32 Architectures Software
Developer’s Manual, 2007, vol. 3B: System Programming
Guide, Part 2.

[2] R. Cmelik and D. Keppel, “Shade: A fast instruction-
set simulator for execution profiling,” ACM SIGMETRICS
Performance Evaluation Review, vol. 22, no. 1, pp. 128–137,
May 1994. [Online]. Available: citeseer.comp.nus.edu.sg/
175806.html

[3] C. Cifuentes and V. Malhotra, “Binary translation: Static,
dynamic, retargetable?” [Online]. Available: citeseer.ist.psu.
edu/cifuentes96binary.html

[4] B. Schwarz, S. Debray, and G. Andrews, “Disassembly
of executable code revisited,” 2002. [Online]. Available:
citeseer.ist.psu.edu/schwarz02disassembly.html

[5] A. Tamches and B. P. Miller, “Fine-grained dynamic
instrumentation of commodity operating system kernels,”
in Operating Systems Design and Implementation, 1999,
pp. 117–130. [Online]. Available: citeseer.ist.psu.edu/article/
tamches99finegrained.html

[6] B. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
instrumentation of production systems.” in USENIX Annual
Technical Conference, General Track, 2004, pp. 15–28.

[7] Microsoft Corporation, “Using hotpatching technology to
reduce servicing reboots,” URL http://technet.microsoft.com/
en-us/library/cc787843.aspx, 2008.

[8] G. Hoglund and J. Butler, Rootkits: Subverting the Windows
Kernel. Addison Wesley, 2005.



[9] M. Pietrek, “A crash course on the depths of win32
structured exception handling,” Microsoft Systems Journal,
vol. 12, no. 1, January 1997. [Online]. Available: http:
//www.microsoft.com/msj/0197/Exception/Exception.aspx

[10] K. Brown, “Building a Lightweight COM Interception Frame-
work, Part I: The Universal Delegator,” Microsoft Systems
Journal, Vol 14 No 1, 1999, uRL http://www.microsoft.com/
msj/0199/intercept/intercept.aspx, retrieved 10.04.2008.

[11] O. O. S. Resources, “OSR’s IRPTracker – Tracking the Life
of an IRP in Detail,” pp. 10–11, 2003.

[12] N. Nethercote, “Dynamic binary analysis and instrumenta-
tion,” Ph.D. dissertation, Trinity College, University of Cam-
bridge, 2004.

[13] D. L. Bruening, “Efficient, transparent, and comprehen-
sive runtime code manipulation,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2004.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” in PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation. New York, NY, USA: ACM, 2005, pp. 190–
200.

[15] M. Olszewski, K. Mierle, A. Czajkowski, and A. D. Brown,
“Jit instrumentation: a novel approach to dynamically instru-
ment operating systems,” in EuroSys ’07: Proceedings of the
ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007. New York, NY, USA: ACM, 2007, pp. 3–16.

[16] G. Hunt and D. Brubacher, “Detours: Binary Interception of
Win32 Functions,” Proceedings of the 3rd USENIX Windows
NT Symposium, pp. 135–143, 1999.

[17] M. Hiramatsu, “Overhead Evaluation about Kprobes
and Djprobe (Direct Jump Probe),” 2005, uRL
http://lkst.sourceforge.net/docs/probes-eval-report.pdf,
retrieved 17.09.2008.

[18] J. K. Hollingsworth, B. P. Miller, and J. Cargille, “Dynamic
program instrumentation for scalable performance tools,”
Tech. Rep. CS-TR-1994-1207, 1994. [Online]. Available:
citeseer.ist.psu.edu/75570.html

[19] D. J. Pearce, P. H. Kelly, T. Field, and U. Harder, “GILK: A
dynamic instrumentation tool for the Linux Kernel,” in Pro-
ceedings of the 12th International Conference on Computer
Performance Evalution, 2002.

[20] A. Polze and D. Probert, “Teaching operating systems: the
Windows case,” in SIGCSE ’06: Proceedings of the 37th
SIGCSE technical symposium on Computer science educa-
tion. New York, NY, USA: ACM Press, 2006, pp. 298–302.

[21] M. E. Russinovich and D. A. Solomon, Microsoft Windows
Internals, 4th ed. One Microsoft Way, Redmond, Washington
98052-6399: Microsoft Press, 2005.


