УДК 515.2

## ВИЗНАЧЕННЯ ПАРАМЕТРІВ КАНОНІЧНИХ РІВНЯНЬ КОНІЧНИХ ПЕРЕРІЗІВ У СЕРЕДОВИЩІ AutoCAD

Карабчевський В.В., к.т.н. Донецький національний технічний університет E-mail: karabch@pmi.dgtu.donetsk.ua

Анотація – розглянуто використання засобів твердотільного моделювання для отримання ліній конічних перерізів, запропоновано методи отримання параметрів канонічних рівнянь ліній перерізів, що є кривими другого порядку.

## *Ключові слова* – твердотільне моделювання, конічні перерізи, еліпс, парабола, гіпербола, канонічне рівняння.

Постановка проблеми. Засоби системи AutoCAD дозволяють отримати лінії перерізів твердотільних об`єктів у вигляді так званих регіонів, межі яких належать одночасно об`єкту та січній площині. В деяких випадках, коли з геометрії відомий тип лінії, що є перерізом, можна ставити задачу отримання математичного опису такої лінії.

В літературі, Аналіз останніх досліджень. присвяченій AutoCAD, описують використання команди section для отримання перерізів твердотільних моделей. Всі такі описи, відомі автору статті, обмежуються правилами застосування цієї команди, візуальним прикладом у вигляді відповідного скріншота, та констатацією факту, що отримано один або декілька регіонів. В [1] звернено увагу на можливість розбити такий регіон з допомогою команди explode і отримати результат у вигляді ліній, що створюють його межі. У випадку, коли команду section застосовано до прямого кругового конусу, у складі меж регіону можна знайти відрізки прямих, еліпс або еліптичну дугу, а також сплайн. Відомо, що відповідно до положення січної площини, переріз є двома твірними, еліпсом, параболою або гіперболою [2,3]. Система AutoCAD не має у своєму складі об`єктів типу парабола та гіпербола, тож можна припустити, що сплайн використано для моделювання перерізу саме у таких випадках.

Формулювання цілей статті. Вищезазначене дозволяє поставити задачу використання результатів, які дає команда section, для отримання канонічного рівняння лінії перерізу прямого кругового конуса у випадках, коли така лінія є параболою або гіперболою.

*Основна частина.* У випадку, коли січна площина проходить через вершину конусу, переріз представлено двома твірними,

результатом використання команд section та explode є три відрізки – дві твірних та лінія перетину січної площини з підґрунтям конусу, яку на рисунку 1 не виділено. Коли січна площина перетинає всі твірні і є паралельною до підґрунтя, AutoCAD дозволяє отримати коло (об`єкт circle), яке можна розглядати як еліпс з однаковими осями (рис. 1). Засоби доступу до властивостей об`єктів дозволяють отримати геометричні характеристики відрізків та кола.



Рис. 1. Перерізи конусу у вигляді двох твірних та кола

На рис.2 представлені перерізи: площиною П1, яка перетинає всі твірні і не є паралельною підґрунтю – у вигляді еліпса; площиною П2, яка є паралельною твірній SC – у вигляді сплайну, що моделює параболу; площиною П3, яка є паралельною двом твірним, SA та SB – у вигляді сплайну, що моделює гіперболу.



Рис. 2. Перерізи конусу у вигляді еліпсу, параболи та гіперболи

Параметри канонічного рівняння еліпсу можна дістати з бази даних AutoCAD. Парабола та гіпербола змодельовані сплайнами з трьома вузловими точками – перша та остання є точками перетину січної площини з підґрунтям конусу, середня є вершиною сплайну. Перехід до системи координат, горизонтальна площина якої лежить у площині відповідної кривої, дозволяє проілюструвати отримання параметрів канонічного рівняння параболи (рис. 3). Параметр p канонічного рівняння (1) можемо отримати підстановкою у співвідношення (2) координат деякої точки параболи, наприклад T1. Перевірка підстановкою отриманого значення p та координат точки T2 в (1) підтверджує правильність результату.

$$y^{2} = 2 \cdot p \cdot x \quad (1).$$
$$p = \frac{y^{2}}{2 \cdot x} \quad (2).$$

Для пошуку параметрів канонічного рівняння гіперболи (3) потрібно отримати її другу гілку (рис. 4), що дає можливість знайти центр зображеної на рис. 5 системи координат та визначити таким чином параметр a, який буде дорівнювати половині відстані між вершинами гілок.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad (3)$$



Рис. 3. Отримання параметрів канонічного рівняння параболи



Рис. 4. До отримання канонічного рівняння гіперболи



Рис. 5. Отримання параметрів канонічного рівняння гіперболи

Підставивши значення *а* та координати точки T2 у співвідношення (4), можемо отримати параметр *b*.

$$b = \sqrt{\frac{y^2}{\frac{x^2}{a^2} - 1}} \quad (4).$$

Підстановка отриманих параметрів у та координат будь-якої точки, наприклад Т3, у (3) підтверджує правильність результатів.

Для зберігання отриманих канонічних рівнянь у базі даних AutoCAD доцільно використати блоки з атрибутами. У склад блока потрібно включити сплайни, що моделюють відповідні лінії, пояснювальний текст, що містить назву кривої і вигляд канонічного рівняння, та атрибут (для параболи) або два атрибути (для гіперболи), які містять значення отриманих параметрів. Використання атрибутів є доцільним, бо воно спрощує витяг відповідних значень з бази даних, атрибути повинні мати тип constant (незмінні).

Слід також звернути увагу на можливість того, що січна площина перетинає всі твірні конуса, який можна побудувати подовженням конічної поверхні, а твердотільний конус, який її подає, буде перетнуто через підґрунтя (рис. 6, 7).



Рис. 6. Переріз конусу у вигляді еліптичної дуги

Властивості еліптичної дуги дають можливість визначити параметри канонічного рівняння відповідного еліпса.

Результати, що AutoCAD отримує для площин, які є майже паралельними одній твірній, мають деякі особливості. На рис. 7, подібному до рис. 6, кут нахилу твірної SC до площини П5 становить 0.002 градуси.



Рис. 7. Особливий вид перерізу

В цьому випадку переріз є сплайном, хоч теоретично це еліптична дуга. На рис. 6 відповідний кут становить 0.003 градуси, результат – еліптична дуга. Відсутність паралельності SC та П5 проілюстровано подовженням твірної SC та її проекції на П5 до взаємного перетину з допомогою команди fillet. Точка перетину знаходиться далеко за межами рисунку, для рис. 6 довжина SC після подовження становить 540302 одиниці, для рис. 7 – 810397 одиниць (висота конусу – 100 одиниць). Візуально ці випадки можна розрізнити, коли криву вибрано, для еліптичної дуги ручки (grips) знаходяться у кінцях дуги та на кінці осі еліпса, для сплайна, що лежить у площині П5 (рис. 7) – у контрольних точках.

Запропоновані Висновки. методи дозволяють отримати перерізів, опис конічних побудовано математичний які 3 засобів твердотільного використанням моделювання системи AutoCAD, у вигляді канонічних рівнянь відповідних кривих ліній. Такі описи можна використовувати при розв'язанні задач САПР та АСНД. Можна поставити задачу розробки програмних засобів, які дозволять автоматизувати розв'язання цієї задачі у середовищі AutoCAD.

Література

- Карабчевський В.В. Підтримка зв'язку між двовимірними і тривимірними моделями під час розв'язання деяких геометричних задач // Сборник трудов 8-й Международной научно-практической конференции «Современные проблемы геометрического моделирования». Мелитополь: ТГАТА. – 2004. – С. 70-75.
- 2. Гордон В.О., Семенцов-Огиевский М.А. Курс начертательной геометрии. М.: Наука, 1973. –366 с.
- 3. Ефимов Н.В. Краткий курс аналитической геометрии. М.: Наука, 1969. –272 с.

## THE OBTAINING OF CANONICAL EQUATIONS PARAMETERS OF CONIC SECTIONS IN AutoCAD ENVIRONMENT

V. Karabchevsky

## Summary

The solid modeling means using for conic section lines obtaining is considered, the methods of canonical equations parameters of second order curves section lines obtaining are proposed.