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THÈME 3

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Image segmentation using active contours: calculus
of variations or shape gradients?

Gilles Aubert — Michel Barlaud — Olivier Faugeras — Stéphanie Jehan-Besson
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Segmentation d'images par ontours atifs : alul desvariations ou gradients de forme ?R�esum�e : Nous �etudions le probl�eme de la segmentation d'une image en minimisant une�energie faisant intervenir des fontionnelles de r�egion et de fronti�ere. Nous montrons quees deux types de fontionnelles sont li�ees par les �equations de Poisson ou de Helmholtzave des onditions aux limites bien hoisies. Grâe �a ette �equivalene, nous �etudions unelarge lasse de fontionnelles de r�egion par des m�ethodes lassiques de alul des variationset en d�eduisons les �equations d'Euler-Lagrange orrespondantes. Nous reformulons le mêmeprobl�eme en termes de d�eriv�ees de forme et montrons que les mêmes �equations peuvent être�etablies de mani�ere �el�egante sans passer par l'�etape inutile de onversion des int�egrales der�egion en int�egrales fronti�ere. Nous d�e�nissons aussi une lasse enore plus large de fontion-nelles qui s'appuyent sur l'estimation de la loi de probabilit�e de ertaines arat�eristiquesimage et montrons que l'outil d�eriv�ee de forme permet de aluler ais�ement les d�eriv�eesde Gâteaux orrspondantes ainsi que les �equations d'Euler-Lagrange. Nous terminons enappliquant ette nouvelle fontionnelle au probl�eme de la segmentation de r�egions dans unes�equene d'images ouleur. Nous d�erivons bri�evement notre impl�ementation num�erique etpr�esentons quelques r�esultats exp�erimentaux.Mots-l�es : Segmentation d'images, ontours atifs. r�egions atives, statistiques image,fontionnelles r�egion, fontionnelles fronti�ere, alul des variations, optimisation de forme,gradient de forme, �equations d'Euler-Lagrange, d�eriv�ee de Gâteaux, m�ethode d'estimationde Parzen, m�ethodes d'ensembles de niveau.
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Image segmentation using ative ontours: alulus of variations or shape gradients? 51 IntrodutionMany problems in image proessing, suh as segmentation, traking, or lassi�ation, anbe ast in the framework of optimization theory, e.g. as the minimization of some energymeasure. The energy is often some ombination of region or boundary funtionals. Theminimization is usually not trivial and many methods have been developed to reah anoptimum whih may be only loal.We address here the problem of the optimization of region or boundary funtionals withthe method of ative ontours. Ative ontours have been introdued by Kass, Witkinand Terzopoulos [28℄ and were originally boundary methods. Snakes [28℄, balloons [10℄ orgeodesi ative ontours [4℄ are driven towards the edges of an image through the minimiza-tion of a boundary integral of funtions of features depending on edges. Ative ontoursdriven by region funtionals in addition to boundary funtionals have appeared later. Intro-dued by [10℄ and [37℄, they have been further developed in [45, 5, 9, 32, 33, 34, 35, 15, 44℄and [25, 27℄. In e�et, the use of ative ontours for the optimization of a riterion inludingboth region and boundary funtionals appears to be really powerful.In general, features of the image region to be segmented, traked, et. . . are embeddedin region funtionals while the boundary funtional allows smoothness and regularity ofthe region boundary. The basi priniple is to onstrut a paraboli partial di�erentialequation (PDE) from the energy riterion, e.g. by omputing some sort of Euler-lagrangeequations; this PDE hanges the shape of the urrent urve aording to some veloity �eldwhih an be thought of as a diretion of desent of the energy riterion. Given a losedurve enlosing an initial region one then omputes the solution of this PDE for this initialondition. The orresponding family of urves dereases the energy riterion and onvergestoward a (loal) minimum of the riterion hopefully orresponding to the objets to besegmented. To ompute suh a PDE, several methods have been proposed.Some authors do not ompute the theoretial expression of the veloity �eld (basiallythe gradient of the energy riterion) but hoose a deformation of the urve that will make theriterion derease [5, 9℄ (they ompute a diretion of desent). Other authors [45, 33, 35, 44℄ompute the theoretial expression of the veloity vetor from the Euler-Lagrange equations.The omputation is performed in three main steps. First, region integrals representing regionfuntionals are transformed into boundary integrals using the Green-Riemann theorem. Se-ond, the orresponding Euler-Lagrange equations are derived, and used to de�ne a dynamisheme to evolve the initial region. Another alternative is to keep the region formulation toompute the gradient of the energy riterion with respet to the region boundary instead ofreduing region integrals to boundary integrals. In [15℄, the authors propose to ompute thederivative of the riterion while taking into aount the disontinuities aross the ontour.In [25, 27℄ the omputation of the evolution equation is ahieved through shape derivationpriniples.This omputation beomes more involved when global information about regions ispresent in the energy riterion, the so-alled region-dependent ase. It happens for examplewhen statistial features of a region suh as, for example, the mean or the variane of the in-tensity, are involved in the minimization. This ase has been studied in [6, 7, 14, 15, 25, 27℄.RR n° 4483



6 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-BessonIn [25, 27℄ the authors show that the minimization of funtionals involving region-dependentfeatures indues additional terms in the evolution equation of the ative ontour that are im-portant in pratie. These additional terms are easily omputed thanks to shape derivationtools.In this artile we larify the relationships between the boundary and region funtionalsthat arise naturally in several image proessing tasks. We show in setion 3 that one an gofrom one to the other by solving Poisson's equation with Dirihlet onditions or Helmholtz'sequation with Neumann onditions.We then onentrate on the problem of �nding loal minima of a large lass of regionfuntionals. In setion 4 we �rst transform them into boundary funtionals and applymethods from the alulus of variations to ompute the orresponding Gâteaux derivativesand onstrut a veloity �eld on the region boundary. This �eld de�nes a PDE whosesolution, for a given initial boundary ondition, de�nes a one-parameter family of regionswhih, in pratie, onverges toward a loal minimum of the funtional. The problem of theexistene and uniqueness of a solution to this PDE is not addressed in this artile.We next hange our point of view, and re-derive the same equations in a simpler and morenatural way, i.e. without going through the trouble of turning region integrals into boundaryintegrals; this is ahieved in setion 5 by applying shape derivation methods [42, 16℄. Thisline of approah has already been followed in [39℄ in his work on the estimation of the optialow.We then turn in setion 6 our attention to a new lass of region-based funtionals byonsidering histograms of image features. The shape derivation tools allow us to easily derivethe veloity �eld that de�nes the evolution of the region boundary.Setion 7 is devoted to an appliation of the previous methods to the problem of regionsegmentation with a given olor histogram in a sequene of images. Our experimental resultsshow that the tehnique has indeed some interesting potentials.2 Problem StatementIn many image proessing problems, the issue is to �nd a set of image regions that mini-mize a given error riterion. This riterion is often a ombination of region and boundaryfuntionals.A loal minimizer for suh a riterion inluding both region and boundary funtionals isusually hard to ompute. This is mostly due to the fat that the set of image regions, i.e.the set of regular open domains in Rn (whose boundary is a losed, C2 manifold), does nothave a struture of vetor spae, preventing us to use in a straightforward fashion gradientdesent methods. In order to irumvent this diÆulty, alulus of variations and shapeoptimization tehniques an be brought to bear on the problem. The basi idea is to usethem in order to derive a Partial Di�erential Equation (PDE) that will drive the boundary ofan initial region toward a loal minimum of the error riterion. The key point is to omputethe veloity vetor at eah point of the boundary at eah time instant. In this paper wepropose a framework for ahieving these goals in a number of pratially important ases.INRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 7To �x ideas, in the two-dimensional ase, the evolving boundary, or ative ontour, ismodeled by a parametri urve �(s; �) = (x1(s; �); x2(s; �)), where s may be its ar-lengthand � is an evolution parameter, the time. The ative ontour is then driven by the followingPDE: �� def= ��(s; �)�� = v with �(� = 0) = �0;where �0 is an initial urve de�ned by the user and v the veloity vetor of �(s; �). Thisveloity is the unknown that must be derived from the error riterion so that the solution�(:; �) onverges towards a urve ahieving a loal minimum and thus, hopefully, towardsthe boundary of the objet to segment, as � !1.2.1 Boundary and region funtionalsLet us now de�ne more preisely the region and boundary funtionals. Let U be a lass ofdomains (open, regular bounded sets, i.e. C2) of Rn , and 
 an element of U of boundary �
,whih we sometimes note �. A boundary funtional, Jb, may be expressed as a boundaryintegral of some salar funtion g of image features:Jb(�
) = Z�
 g(x) da(x) (1)where �
 is the boundary of the region and da its area element. The derivation of thisboundary funtional is lassial [4, 29℄ and leads to the following veloity vetor:vb = [g(x)��rg(x) �N℄NwhereN is the inward unit normal vetor of � and � its mean urvature. The idea is to use aloal parametrization of � to redue (1) to a standard problem in the alulus of variations.A region funtional, Jr, may be expressed as an integral, in a domain 
 of U , of somefuntion f of some region features:Jr(
) = Z
 f(x;
)dx (2)In that ase, the omputation of the veloity vetor for (1) is not as easy. We propose toompare two main approahes. The �rst approah is based upon the idea of transformingall funtionals into boundary funtionals thereby reduing (through a loal parametrizationof the boundary) the problem of minimization to a standard problem in the alulus ofvariations from whih the omputation of the Gâteaux derivatives follows. The seondapproah is based upon the use of shape derivation tools. In a sense it is more natural sineit keeps the region representation.
RR n° 4483



8 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-BessonNote that the salar funtion f in (2) is generally region-dependent. This is importantsine this dependeny on the region must be taken into aount when searhing for a loalminimum of the funtional, as disussed in later setions.Also note that we ould have added a dependeny of g on �
, i.e. write g(x; �
) in (1),to keep the symmetry with the region funtional. This is not neessary sine the results insetion 4.2, in partiular Theorem 2, do in fat provide an answer for this ase.2.2 Examples of suh optimization problems in imageproessingAn image is represented by its intensity I(x) de�ned on some region of Rn .Ative ontours were originally introdued to searh for minima of boundary funtionals.In [4, 29℄, the fontion g is a funtion of the magnitude of the image gradient through astritly dereasing funtion ' : [0;+1[! R+ , g(jrI j) suh that '(r) ! 0 as r ! +1.Hene g(x) = '(jrI(x)j). The minimization amounts to the minimization of the length of aurve in a Riemannian spae. Loal minima are obtained via the steepest-desent method.Region funtionals have also been introdued. The region information is embedded in thefuntion f of (2). These funtionals have been used for many appliations suh as movingobjets detetion [32, 34, 24, 26℄, image segmentation [5, 15, 7, 33, 34, 44℄, or lassi�ation[45, 38, 35℄. For example, people have used suh statistial features of a region 
 as themean or the variane:8><>: �
 = 1j
j R
 I(x)dx with j
j = R
 dx�2
 = 1j
j R
 (I(x) � �
)2dxWe use these two examples to motivate the introdution of a general region funtionalJr(
) = Z
 f(x; G1(
); G2(
); ::; Gm(
)) dx; (3)where the funtionals Gi are given byGi(
) = Z
Hi(x;
) dx i = 1::m: (4)As shown in this equation, the funtion Hi is itself region-dependent, more preisely:Hi(x;
) def= Hi(x;Ki1(
);Ki2(
); ::;Kili(
)) ; (5)where Kij(
) = Z
 Lij(x) dx j = 1::li i = 1::m: (6)Note that we have stopped the proess at the seond level but it ould oneivably ontinue.We have hosen this speial ase of dependeny beause it often arises in appliations, asINRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 9shown in the next two setions. The various methods that we develop an be extended ina fairly straightforward fashion to more ompliated situations, if needed, see for examplesetion 6.2.3 An example involving the meanLet us hoose f(x;
) = %(I(x) � �
) (7)where % : R ! R+ is a positive funtion of lass C1. f is region-dependent. This is anexample where the proess desribed in the previous setion stops at the �rst level:J(
) = Z
 f(x;
) dx = Z
 %(I(x) � �
) dx = Z
 %(I(x) � G1(
)G2(
)) ) dx;where G1(
) = Z
H1(x;
) dx with H1(x;
) = I(x) ;G2(
) = Z
H2(x;
) dx with H2(x;
) = 1 :In this ase, the funtions Hi; i = 1; 2 do not depend on the region 
, l1 = l2 = 0 andKij(x) = 0 8i; j.2.4 An example involving the varianeLet us take an example where we stop the proess at the seond level. Consider the asewhere the funtion f is a funtion of the variane given by:f(x;
) = %(�2
) (8)% : R+ ! R+ is of lass C1. We writeJ(
) = Z
 f(x;
) dx = Z
 %(�2
) dx = Z
 %( G1(
)G2(
)) ) dx :Therefore we haveG1(
) = Z
H1(x;
) dx ; H1(x;
) = (I(x)� �
)2 ;G2(
) = Z
H2(x;
) dx ; H2(x;
) = 1 ;
RR n° 4483



10 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-Bessonwith H1(x;
) = �I(x)� K11K12�2 ; l1 = 2;H2(x;
) = 1 ; l2 = 0 ;and �nally K11(
) = Z
 I(x) dx ; L11(x) = I(x) ;K12(
) = Z
 dx ; L12(x) = 1 :3 Expression of region funtionals as boundary fun-tionals and onverselyIn this setion, we show that a region funtional may always be expressed as a boundaryfuntional and onversely.3.1 Tranformation of region funtionals into boundary funtionalsConsider the region funtional (2), the next proposition shows that, under some reasonableassumptions on the funtion f , it an always be turned into a boundary funtional (1).Proposition 1 Let 
 be a bounded open set with regular boundary �
. Let f : 
! R be aontinuous funtion and u be the unique solution of Poisson's equation:� ��u = f in 
uj�
 = 0We have the following equality:Z
 f(x;
) dx = Z�
ru �N da(x);where N is the inside pointing unit normal to �
 and da(x) its area element.Proof : Beause of our assumptions, Poisson's equation has a unique lassial, i.e. C2,solution in 
 [2, 19℄ and we have:Z
 f(x;
) dx = � Z
�u dx = Z�
ru �N da(x);the last equality being a onsequene of the Green-Riemann theorem. 2A region funtional an always be expressed as a boundary funtional, via the solution ofPoisson's equation with Dirihlet onditions. INRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 113.2 Tranformation of boundary funtionals into region funtionalsThe onverse of Proposition 1 is also true. Let us onsider the boundary funtional (1).Proposition 2 Let 
 be a bounded open set with regular boundary �
. Let u be the uniquesolution of Helmholtz's equation:� ��u+ u = 0 in 
�u�N j�
 = �gThen we have the following equality:Z�
 g(x) da(x) = Z
 u(x;
) dxwhere da(x) is the area element of �
.Proof : Beause of our assumptions, Helmholtz's equation has a unique lassial, i.e. C2,solution in 
 [36, 12℄ and we have:Z
 u dx = Z
�u dx = � Z�
ru �N da(x);the last equality being a onsequene of the Green-Riemann theorem. ThereforeZ
 u dx = � Z�
 �u�N da(x) = Z�
 g(x) da(x)2A boundary funtional an always be expressed as a region funtional, via the solution ofthe Helmholtz's equation with Neumann boundary onditions.4 Computation of the evolution equation using a bound-ary approahOriginally, the derivation of region funtionals has been performed by using the Green-Riemann theorem to transform region funtionals into boundary funtionals and then byomputing the Euler-Lagrange equations. In this setion, we reall the priniples of thederivation and we expliitly take into aount the ase of region-dependent features whenomputing the Gâteaux derivative. Region funtionals are transformed into boundary fun-tionals by using Proposition 2. The region funtional to minimize is (2).The omputation of a veloity �eld for the evolution of the boundary in order to reaha minimum of the error riterion proeeds in three main steps:
RR n° 4483



12 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-Besson1. Tranformation of the region funtionals into boundary funtionals.2. Computation of the Gâteaux derivatives of the boundary funtionals.3. Constrution of a veloity �eld for the evolution of the boundary.The �rst step an always be performed as it has been proven in Proposition 1, setion 3.The omputation of an optimal veloity �eld is arried out �rst for region-independentfeatures, i.e. when the fontion f does not depend on 
. We then onsider the more generalase where f has some region dependeny. We derive our results in the two-dimensionalase, the generalization to any dimension is tedious but straighforward.4.1 Region-independent featuresIn this part, we detail the three steps for region-independent features. We do it for 2Dimages (n = 2) to keep notations simple but the results hold in any dimension greater than2.We parameterize �
 through the C2 funtion � : [0; 1℄ ! R2 suh that when p variesfrom 0 to 1 we go one around �
 ounterlokwise. The unit tangent vetor to �
 is thevetor �0(p)=j�0(p)j where 0 indiates derivative with respet to the parameter p. The insidepointing normal N is the vetor �0?(p)=j�0(p)j. The vetor �0? is obtained by rotating �0by 90 degrees ounterlokwise; hene if �0 = [�01;�02℄T , �0? = [��02;�01℄T .4.1.1 Transformation of region funtionals into boundary funtionalsThe following proposition is a straightforward onsequene of Proposition 1Proposition 3 If f satis�es the hypotheses of Proposition 1, the funtional (2):Jr(
) = Z
 f(x) dx;is equal to:�(�) = Z 10 (ux2(�(p))�01(p)� ux1(�(p))�02(p)) dp def= Z 10 '(�(p);�0(p)) dp; (9)where � = �
 and u is the unique lassial solution of:� ��u = f in 
uj�
 = 0Therefore it is equivalent to minimize (2) with respet to 
 or (9) with respet to �.Proof : Aording to Proposition 1, we have:Z
 f(x) dx = � Z
�u dx = Z�
ru �N da(x);and sine da(x) = j�0(p)jdp, the result follows. 2
INRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 134.1.2 Computation of the Gâteaux derivativeAording to Proposition 3, minimizing (2) with respet to 
 is equivalent to minimizing(9) with respet to �. Thus, we have to ompute the Gâteaux derivative of the funtional�.Theorem 1 The Gâteaux derivative in the diretion  of the funtional � is:< �0(�);  >= � Z 10 f(�(p)) (�0?(p) � (p)) dpProof : Let  : [0; 1℄ ! R2 be a C2 parametrization of an arbitrary losed urve. TheGâteaux derivative of �(�) in the diretion  noted < �0(�);  > is de�ned by:< �0(�);  >= lim�!0 �(� + �)��(�)�We have:lim�!0 �(� + �)��(�)� = Z 10 ('�(�(p);�0(p))(p) + '�0(�(p);�0(p))0(p)) dpwhere '� = �'�� (�;�0). Integrating by parts, we obtain the following expression for theGâteaux derivative:< �0(�);  >= Z 10 �'�(�(p);�0(p))� ddp'�0(�(p);�0(p))� � (p) dpWe then expliitly ompute the derivative of ' with respet to � using equation (9):'� = rux2(�(p))�01(p)�rux1(�(p))�02(p);and with respet to �0: '�0 = [ux2 ;�ux1 ℄T :Therefore: ddp'�0 = [rux2 � �0;�rux1 � �0℄T :Putting everything together we obtain:'� � ddp'�0 = �u�0? = �f �0?;thanks to Proposition 3. 2The Euler-Lagrange equations assoiated with the Gâteaux derivative are thus given by'� � ddp'�0 = �f(�(p))�0?An interesting point to note is that the intermediary funtion u disappears.
RR n° 4483



14 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-Besson4.1.3 Constrution of an optimal veloity vetor for the evolution of an ativeontourIn order to �nd a loal extremum of the riterion (9), we evolve a urve using the steepestdesent method, starting from an initial urve de�ned by the user. Thus, we obtain thefollowing evolution equation:���� = f(�)N with �(� = 0) = �0 (10)This is the lassial result [45, 32, 34, 44℄ when f has no region dependeny. Let us nowonsider the more general ase where the funtion f has some region dependeny.4.2 General aseLet us now derive the evolution equation in the general ase. As in the previous ase, wefollow our three steps.4.2.1 Transformation of the region funtional into a boundary funtionalIn the following, to simplify the proofs and the notations, we take m = 1 and l1 = 1 anddrop the indexes. The equations for m > 1 and li � 1 are then given without proof.Beause of the form of equations (3)-(6), we have to go through three levels of transfor-mations. We start with the �rst level and theProposition 4 If L satis�es the assumptions of Proposition 1, the funtionalK(
) = Z
 L(x) dxis equal to:�(�) = Z 10 (ux2(�(p); L(�))�01(p)� ux1(�(p); L(�))�02(p)) dp def= Z 10 �(�(p);�0(p)) dp;where � = �
 and u is the unique lassial solution of:� ��u = L in 
uj�
 = 0Proof : The proof is idential to that of Proposition 3. 2In the same manner, for the seond level, we have the INRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 15Proposition 5 If H satis�es the assumptions of Proposition 1, the funtionalG(
) = Z
H(x;K(
)) dxwith K(
) = R
 L(x)dx, is equal to	(�) = Z 10 (vx2(�(p);�(�))�01(p)� vx1(�(p);�(�))�02(p)) dpdef= Z 10  (�(p);�0(p);�(�)) dp;where � = �
 and v is the unique lassial solution of:� ��v = H in 
vj�
 = 0� is given by Proposition 4.Proof : The proof is idential to that of Proposition 3. 2We �nally reah the third and last level with theProposition 6 If f satis�es the assumptions of Proposition 1, the funtional:J(
) = Z
 f(x; G(
)) dx ; (11)with G(
) = R
H(x;K(
))dx and K(
) = R
 L(x)dx, is equal to:�(�) = Z 10 (wx2(�(p);	(�))�01(p)� wx1(�(p);	(�))�02(p)) dpdef= Z 10 '(�(p);�0(p);	(�)) dp; (12)where � = �
 and u is the unique lassial solution of:� ��w = f in 
wj�
 = 0	(�) is given by Proposition 5. Therefore it is equivalent to minimize (11) with respet to
 or (12) with respet to �.Proof : The proof is idential to that of Proposition 3. 2
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16 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-Besson4.2.2 Computation of the Gâteaux derivativeAording to Proposition 6, minimizing (11) with respet to 
 is equivalent to minimizing(12) with respet to �. Thus we ompute the Gâteaux derivative of � given by (12).Theorem 2 The Gâteaux derivative in the diretion  of the funtional � de�ned in (12)is: < �0(�);  >= � Z 10 [f(�(p);	(�)) +AH(�(p);�(�)) +ABL(�(p)) ℄ q(p) dp;where: A = Z
 fG(x;G(
)) dx and B = Z
HK(x;K(
)) dxwith fG = �f�G , and q(p) = (�0?(p) � (p)) :Proof : The Gâteaux derivative of �(�) in the diretion  noted < �0(�);  > is given by:< �0(�);  >= lim�!0 �(� + �)��(�)�We have:lim�!0 �(� + �)��(�)� =Z 10 ('�(�(p);�0(p);	(�))(p) + '�0(�(p);�0(p);	(�))0(p)) dp+Z 10 '	(�(p);�0(p);	(�)) < 	0(�);  > dpwhere '	 = �'�	 (�;�0;	). Integrating by part, we obtain:< �0(�);  > = Z 10 �'� � ddp'�0� (p) dp (13)+ Z 10 '	(�(p);�0(p);	(�)) < 	0(�);  > dp :Aording to Theorem 1, we obtain '� � ddp'�0 = �f �0?. The Gâteaux derivative of 	(�)in the diretion  is omputed in the same manner and we �nd:< 	0(�);  >= � Z 10 H(�(p);�(�)) q(p) dp+ Z 10  �(�(p);�0(p);�(�)) < �0(�);  > dp :
INRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 17Aording to Theorem 1, the Gâteaux derivative of �(�) in the diretion  is given by:< �0(�);  >= � Z 10 L(�(p)) q(p) dp :Putting all terms together in (13), we �nd the following expression for the derivative:< �0(�);  >= � Z 10 f(�(p);	(�)) q(p) dp� Z 10 '	(�(p);�0(p);	(�))dp Z 10 H(�(p);�(�)) q(p) dp� Z 10 '	(�(p);�0(p);	(�))dp Z 10  �(�(p);�0(p);�(�)) dp Z 10 L(�(p)) q(p) dpUsing Propositions 5 and 6, we �nd that:Z 10 '	(�(p);�0(p);	(�))dp = Z
 fG(x; G(
))dx def= ASimilarly, using Propositions 4 and 5 , we obtainZ 10  �(�(p);�0(p);�(�))dp = Z
HK(x;K(
))dx def= BThe equation of the derivative is obtained:< �0(�);  >= � Z 10 [f(�(p);	(�)) +AH(�(p);�(�)) +AB L(�(p))℄ q(p) dp:2The Euler-Lagrange equations assoiated with the Gâteaux derivative are given by� [f(�(p);	(�)) +AH(�(p);�(�)) +ABL(�(p)) ℄ �0? = 0Note again that the intermediate funtions u, v and w do not appear in this expression.We an now state the general theorem for m > 1 and li � 1:Theorem 3 The Gâteaux derivative in the diretion  of the funtional J de�ned in (3) is< �0(�);  >= � Z 10 �f(�(p); G1(�); ::; Gm(�))+ mXi=1 AiHi(�(p);Ki1(�); ::;Kili(�))+ mXi=1 Ai0� liXj=1BijLij(�(p))1A � (�0?(p) � (p)) dp
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18 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-Bessonwhere: Ai = Z
 fGi(x;G1(
); ::; Gm(
)) dx i = 1::mand Bij = Z
HiKij (x;Ki1(
); ::;Kili(
)) dx i = 1::m j = 1::li4.2.3 Constrution of an optimal veloity vetor for the evolution of an ativeontourIn the general ase, aording to Theorem 3, the steepest gradient desent method yieldsthe following evolution equation for the ative ontour:���� = 24f(�) + mXi=1 AiHi(�) + mXi=1 Ai0� liXj=1BijLij(�)1A35N (14)with �(� = 0) = �0 Compared with equation (10), some additional terms appear that omefrom the region dependeny of the desriptors.5 Computation of the derivative using shape derivationtools or \How to keep a region formulation"In the previous part, region funtionals were �rst transformed into boundary funtionalsfor the omputation of the derivative. This step is neither natural nor straightforward.Therefore, we propose another solution based on shape derivation tools [42, 16℄. The regionformulation is maintained for the omputation and this provides a suitable way for obtainingthe derivative of the riterion and the evolution equation of an ative ontour.We perform three main steps:1. Introdution of a dynami sheme: Sine the set of all image regions is not a vetorspae, it is diÆult to ompute the derivative of the riterion with respet to thedomain 
. To irumvent this problem, we apply a family of transformations T� ,indexed by a real parameter � � 0, to 
 and we note 
(�) = T� (
). The regionfuntional beomes a funtion of � , J(�) def= J(
(�)).2. Derivation of the riterion based on shape derivation priniples:The error riterion J(�) is then derived with respet to � using shape derivationpriniples.3. Computation of the evolution equation from the derivative:From the derivative, we dedue the veloity �eld of the ative ontour that will makeit evolve towards a loal minimum of the error riterion. INRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 195.1 Introdution of transformationsAs it has already been pointed out, the optimization of the region funtional (2) is diÆultsine the set of regular domains (regular open bounded sets) U of Rn does not have thestruture of a vetor spae. Variations of a domain must then be de�ned in some way. Letus onsider a referene domain 
 2 U and the set Â of appliations T : 
! Rn , whih areat least as regular as homeomorphisms (i.e. one to one with T and T�1 ontinuous). Wede�ne Â = �T one to one; T; T�1 2 W 1;1(
;Rn )	where:W 1;1(
;Rn ) = fT : 
! Rn suh that T 2 L1(
;Rn ) and�iT 2 L1(
;Rn ); i = 1; � � � ; ngGiven a shape funtion F : U ! R+, for T 2 Â, let us de�ne F̂ (T ) = F (T (
)). Thekey point is that W 1;1(
;Rn ) is a Banah spae. This allows us to de�ne the notion ofderivative with respet to the domain 
 as follows:De�nition 1 F is Gâteaux di�erentiable with respet to 
 if and only if F̂ is Gâteauxdi�erentiable with respet to T .In order to ompute Gâteaux derivatives with respet to T we introdue a family of deforma-tion (T (�))��0 suh that T (�) 2 Â for � � 0, T (0) = Id, and T (:) 2 C1([0; A℄;W 1;1(
;Rn ); A >0. From a pratial point of view, there are many ways to onstrut suh a family. Themost famous one is the Hadamard deformation [21℄.For a point x 2 
, we note:x(�) = T (�;x) with T (0;x) = x
(�) = T (�;
) with T (0;
) = 
Let us now de�ne the veloity vetor �eld V orresponding to T (�) asV(�;x) = �T�� (�;x) 8x 2 
 8� � 05.2 Computation of the derivative using shape derivation toolsWe now introdue three main de�nitions:De�nition 2 The Gâteaux derivative of J(
) = R
 f(x;
)dx in the diretion of V, noted< J 0(
);V >, is equal to:< J 0(
);V >= lim�!0 J(
(�)) � J(
)�RR n° 4483



20 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-BessonDe�nition 3 The material derivative of f(x;
), noted fm(x;
;V), is equal to:fm(x;
;V) = lim�!0 f(x(�);
(�)) � f(x;
)�De�nition 4 The shape derivative of f(x;
), noted fs(x;
;V ), is equal to:fs(x;
;V) = lim�!0 f(x;
(�)) � f(x;
)�5.2.1 Relation between the Gâteaux derivative and the shape derivativeThe following theorem gives a relation between the Gâteaux derivative and the shape deriva-tive for the region funtional (2). The proof an be found in [42, 16℄, we provide an elemen-tary one here for ompleteness.Theorem 4 The Gâteaux derivative of the funtional J(
) = R
 f(x;
) dx in the diretionof V is the following:< J 0(
);V >= Z
 fs(x;
;V)dx � Z�
 f(x;
)(V(x) �N(x))da(x)where N is the unit inward normal to �
 and da its area element.Proof : As far as the omputation of the derivative is onerned, only small deformationsare relevant and we thus onsider a �rst order Taylor expansion of the transformation:T (�;x) = T (0;x) + � �T�� (0;x)= x+ �V(x);where V(x) = �T�� (0;x).We obtain the following expressions for the material and the shape derivatives:fm(x;
;V) = lim�!0 f(x+ �V(x);
 + �V) � f(x;
)�fs(x;
;V) = lim�!0 f(x;
+ �V) � f(x;
)�If we assume that lim�!0rf(x;
+ �V) = rf(x;
) we an writefm(x;
;V) = fs(x;
;V) +rf(x;
) �V(x) (15)We are now ready for the omputation of the Gâteaux derivative of J(
) in the diretion ofV. We have: J(
(�)) � J(
)� = 1� 264 Z
(�) f(x;
(�))dx � Z
 f(x;
)dx 375 (16)INRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 21In the �rst integral, we make the hange of variable x! x+ �V(x) whih yields:Z
(�) f(x;
(�))dx = Z
 f(x+ �V(x);
 + �V)j det J� (x)jdx;where J� (x) is the Jaobian matrix:J� (x) = 0B� 1 + � �V1�x1 � � � � �V1�xn... ... ...� �Vn�x1 � � � 1 + � �Vn�xn 1CA ;V(x) = [V1(x); � � � ; Vn(x)℄T , and x = [x1; � � � ; xn℄T . It follows thatdet J� (x) = 1 + �div(V(x)) + o(�)This shows that, if � is small enough, det J� (x) > 0 andlim�!0 det J� (x)� 1� = div(V(x))The equation (16) an now be rewrittenJ(
(�)) � J(
)� = Z
 f(x+ �V(x);
 + �V) � f(x;
)� det(J� (x))dx�Z
 f(x;
) det(J� (x)) � 1� dx def= I1 � I2:If � goes to 0, using (15) and De�nitions (3,4), we get:lim�!0 I1 = Z
 fm(x;
;V)dx= Z
 fs(x;
;V)dx + Z
 rf(x;
) �V(x)dxlim�!0 I2 = Z
 f(x;
)div(V(x))dxWe �nd that the Gâteaux derivative is given by< J 0(
);V >= Z
 fs(x;
;V)dx + Z
 (rf(x;
) �V(x) + f(x;
)div(V(x)))dx =Z
 fs(x;
;V)dx + Z
 div(f(x;
) V(x))dx (17)
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22 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-BessonApplying the Green-Riemann theorem in (17), we �nally obtain:< J 0(
);V >= Z
 fs(x;
;V)dx � Z�
 f(x;
)(V(x) �N(x))da(x)where N is the unit inward normal to �
.2Note that Theorem 4 provides a neessary ondition for a domain 
̂ to be an extremum ofJ(
): Ẑ
 fs(x; 
̂;V)dx � Z�
̂ f(x; 
̂)(V(x) �N(x)) da(x) = 0 8V:5.3 Constrution of the veloity vetor of the ative ontour fromthe Gâteaux derivativeWe now make good use of the previous tools to derive the veloity vetor of the ativeontour for the same funtionals as those whih were onsidered in setion 5. As expetedwe �nd the same results but in a way whih, we feel, is more natural sine we do not haveto turn a region integral into a boundary one, and simpler. The evolving region boundary�
, noted �, is modeled as an ative ontour: the user de�nes an initial urve �0 = �
0that evolves towards a loal minimum of the region funtional (2) aording to a PDE thatwe will now derive.5.3.1 Region-independent featuresWe �rst onsider the simple ase where the funtion f does not depend on 
, i.e. f = f(x).In that ase, the shape derivative fs is equal to zero and the Gâteaux derivative of J issimply (Theorem 4): < J 0(
);V >= � Z�
 f(x)(V(x) �N(x))da(x)This leads to the following evolution equation for region-independent desriptors:���� = fNwith �(� = 0) = �0.We notie that, as expeted, the evolution equation is the same as (10) in setion 4.
INRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 235.3.2 General aseLet us now takle the same general ase as in setion 4.2, using the funtional de�ned byequations (3)-(6). We similarly restrit the omputation of the Gâteaux derivative of J tothe ase m = 1 and li = 1, state the result for m > 1 and li � 1, and drop the indexes.Theorem 5 The Gâteaux derivative in the diretion of V of the funtional J de�ned in(11) is:< J 0(
);V >= � Z� (AB L(x) +AH(x;K(
)) + f(x;
)) (V(x) �N(x))da(x)where: A = Z
 fG(x;G(
)) dx and B = Z
HK(x;K(
)) dxProof : Aording to Theorem 4, we have:< J 0(
);V >= Z
 fs dx� Z� f (V �N)da(x)Let us �rst ompute the shape derivative of f . From the hain rule we get:fs(x;
;V) = fG(x; G) < G0(
);V >; (18)where fG denotes the partial derivative of the funtion f with respet to its seond argument.Next we ompute the Gâteaux derivative of G in the diretion of V. We apply againTheorem 4, and we get:< G0(
);V >= Z
 Hs dx� Z� H (V �N)da(x):Plugging this into (18), we obtain:Z
 fs dx = A0�Z
 Hs dx � Z� H(V �N)da(x)1A ;where: A = Z
 fG(x; G(
)) dx:We also ompute the shape derivative of H through Theorem 4:Hs(x;
;V) = HK(x;K) < K 0(
);V >RR n° 4483



24 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-BessonWe ontinue with the Gâteaux derivative of K in the diretion of V:< K 0(
);V >= Z
 Ls dx� Z� L(x)(V (x) �N(x))da(x)Sine L does not depend on 
, we obtain Ls = 0 and we are done.Putting all terms together, we obtain the omplete expression of the Gâteaux derivative ofJ : < J 0(
);V >= � Z� (AB L(x) +AH(x;K(
)) + f(x;
)) (V(x) �N(x))da(x);with B = R
 HK(x;K) dx. 2The general ase follows easily and is stated in theTheorem 6 The Gâteaux derivative in the diretion of V of the funtional J de�ned in (3)is:< J 0(
);V >= � Z� 0� mXi=1 Ai liXj=1(Bij Lij(x)) + mXi=1(AiHi) + f1A (V(x)) �N(x)))da(x):where: Ai = Z
 fGi(x;G1(
); ::; Gm(
)) dx i = 1::mand Bij = Z
HiKij (x;Ki1(
); ::;Kili(
)) dx i = 1::m j = 1::liFrom the Gâteaux derivative of J , we dedue the orresponding evolution equation:���� = 0� mXi=1 Ai liXj=1(Bij Lij) + mXi=1(AiHi) + f1AN; (19)whih, as expeted, is idential with equation (14) in setion 4.2. As far as the �nal resultis onerned, the two methods of omputation are equivalent.5.4 AppliationLet us now apply this method to the �rst example in setion 2.3. The funtion f is givenby (7). The orresponding funtions Gi, Hi are given in setion 2.3. We need the termsAj ; j = 1; 2: 8><>: A1 = � R
 1G2 %0 �I(x) � G1G2� dx = �1j
j R
 %0(I � �
)dxA2 = R
 G1(G2)2 %0 �I(x)� G1G2� dx = �
j
j R
 %0(I � �
)dx INRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 25Sine the terms Hi are not region-dependent, the terms Bij are equal to zero.The veloity vetor of the ative ontour is then the following:��(�)�� = [ f(x)� (I � �
)j
j Z
 %0(I � �
)dx ℄ NIn this example, the additional term oming from the region dependeny of f is equal to(I��
)j
j R
 %0(I � �
)dx. Note that in the partiular ase of %(r) = r2, this additional termis equal to zero [6, 7, 14, 15℄. However in the general ase, the additional term is not nul.Let us apply this method to the seond example in setion 2.4. The funtion f is a funtionof the variane given by (8). The orresponding funtions Gi, Hi, Kij and Lij are also givenin setion 2.4. We need the terms Aj ; j = 1; 2:8><>: A1 = R
 1G2 %0 �G1G2� dx = %0(�2
)A2 = � R
 G1(G2)2 %0 �G1G2� dx = ��2
 %0(�2
)The terms Bij are given by:8<: B11 = R
H1K11(x;K11;K12) = �2 1j
j R
(I(x) � �
)dx = 0B12 = R
H1K12(x;K11;K12) = 2�
j
j R
(I(x) � �
)dx = 0We an then ompute the veloity vetor of the ative ontour from (19) and we �nd:��(�)�� = [ f(x) + %0(�2
) �(I(x) � �
)2 � �2
� ℄ NIn this simple example, we notie that the dependeny of the funtion on the region induesan additional term in the evolution equation ompared with the evolution equation obtainedin the ase where the funtion is region independent (equation (10)). This additional termis %0(�2
) �(I(x) � �
)2 � �2
�. It must be inluded in order to reah a true minimum of theriterion as proved in [27℄.6 Mathing histogramsA natural way of generalizing the use of statistial image features suh as the mean and thevariane of the intensity for image segmentation is to onsider the full probability distributionof the feature of interest within the region, e.g. intensity, olor, texture, et. . . It turns outthat in attempting to do so, one is naturally led to extend the riterion (3) to the asewhere the funtion f depends on a ontinuous family of region riteria. Consider a funtionRR n° 4483



26 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-Bessonh : Rn ! Rm whih desribes the feature of interest. Suppose we have learnt the probabilitydensity funtion (pdf) of the feature h within the image region of interest, and let q(�) bethis pdf. Given a region 
, we an estimate the pdf of the feature h through the use of theParzen method [18℄: let p : Rm ! R+ be the Parzen window, a smooth positive funtionwhose integral is equal to 1. For the sake of simpliity but without loss of generality, weassume that p is an m-dimensional Gaussian with 0-mean and variane �2, we notep(�) = g�(�) = 1(2��2)m=2 exp(�j�j22�2 );and we de�ne q̂(�;
) = 1K(
) Z
 g�(h(x) ��) dx;where h(x) is the value of the feature of interest at the point x of 
 and K is a normalizingonstant, in general depending of 
, suh that:ZRm q̂(�;
) d� = 1:Therefore K(
) = Z
 ZRm g�(h(x) ��) d� dx =j 
 jWe next assume that we have a funtion ' : R+ � Rm ! R+ whih allows us to omparetwo pdfs. This funtion is small if the pdfs are similar and large otherwise. It allowsus to introdue the following funtional whih represents the "distane" between the twohistograms: D(
) = ZRm '(q̂(�;
);�) d� (20)The distane an be the square of the L2 norm when'(q̂(�;
);�) = (q̂(�;
)� q(�))2;or the ommonly used Kullbak-Leibler divergene when'(q̂(�;
);�) = 12(q(�) log q(�)q̂(�;
) + q̂(�;
) log q̂(�;
)q(�) );or the non symmetri hi-2 distane when'(q̂(�;
);�) = (q̂(�;
)� q(�))2q(�) :A further generalization of the previous ase is to onsider seond order histogramswhih desribe the probability of having the value �1 at pixel x and the value �2 at pixelINRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 27x + Æ, where Æ is a �xed (usually small) vetor of Rn. This has been used very muh inomputer vision for analysing textures [22, 23℄. The orresponding pdf, noted qÆ(�1;�2)an be estimated with the same Parzen window tehnique. We de�neq̂Æ(�1;�2;
) = 1KÆ(
) Z
 g�(h(x)��1)g�(h(x + Æ)��2) dx;The normalizing onstant KÆ(
) is given byKÆ(
) = Z
 ZRm�Rm g�(h(x) ��1)g�(h(x+ Æ)��2) d�1 d�2 dx =j 
 j :We therefore de�ne DÆ(
) = ZRm�Rm '(q̂Æ(�1;�2;
);�1;�2) d�1 d�2 (21)Using the tools developed in setion 5, we ompute the Gâteaux derivative of the funtionalD. We have theTheorem 7 The Gâteaux derivative in the diretion V of the funtional D de�ned in (20)is: < D0(
);V >= � 1j 
 j Z� ��1'(q̂(:); :) � g�(h(x)) � C(
)�(V �N)da(x) ;where C(
) = RRm �1'(q̂(�;
);�)q̂(�;
) d�.Proof : By de�nition of D we have< D0(
);V >= ZRm < ('(q̂(�;
);�))0;V > d�Let us ompute the Gâteaux derivative of '(q̂(�;
)). We de�ne:'(q̂(�;
);�) = f(G1(�;
); G2(
)) = '�G1(�;
)G2(
) ;�� ;where: G1(�;
) = Z
 g�(h(x) ��) dx with H1(�;x) = g�(h(x)��)G2(
) = j 
 j= Z
 dxWe obtain:< f 0;V >= fG1 < G01;V > +fG2 < G02;V >=�1'(q̂(�;
);�)j 
 j (< G01;V > �q̂(�;
) < G02;V >) ;
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28 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-Bessonand, using Theorem 4:< f 0;V >= ��1'(q̂(�;
);�)j 
 j Z� ( g�(h(x) ��)� q̂(�;
)) (V �N)da(x)Plugging this result into the expression of < D0(
);V > and swapping the order of integra-tion, we obtain< D0(
);V >= � 1j 
 j Z� �ZRm g�(h(x) ��)�1'(q̂(�;
);�) d��ZRm �1'(q̂(�;
);�)q̂(�;
) d��(V �N)da(x)The �rst integral on the right-hand side is the onvolution �1'(q̂(:); :) � g� of the funtion�1'(q̂(:); :) : Rm ! R with the funtion g�. The �nal result is< D0(
);V >= � 1j 
 j Z� ��1'(q̂(:); :) � g�(h(x)) � C(
)�(V � N)da(x);where C(
) = RRm �1'(q̂(�;
);�)q̂(�;
) d�. 2This solves the question of �rst-order histograms. For seond-order histograms we have theTheorem 8 The Gâteaux derivative in the diretion V of the funtional DÆ de�ned in (21)is: < D0Æ(
);V >=� 1j 
 j Z� ��1'(q̂Æ(:; :); :; :) � (g� 
 g�)(h(x);h(x + Æ))� CÆ(
)�(V �N)da(x) ;where CÆ(
) = RRm�Rm �1'(q̂Æ(�1;�2;
);�1;�2)q̂Æ(�1;�2;
) d�1 d�2,and g� 
 g�(�1;�2) = g�(�1) g�(�2).Proof : The proof is idential to that of Theorem 7. 27 Color histograms: segmentation of regions in videosequenesThis work has been motivated by [11, 8℄ where the traking algorithms take bene�t ofstatistial olor ditributions. We propose here to use ative ontours in order to �t exatlythe shape of the objet to be segmented. We onsider a video sequene where eah frameINRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 29is represented by the olor funtion h : R2 ! R2 . The olor spae used is (Y;H) where Ystands for the luminane and H for the hue1. The goal is to segment a referene region,given in the previous image of the sequene, into the urrent one by minimizing the distanebetween the referene histogram q of the region in the previous image and the estimatedhistogram q̂ in the urrent frame. From an initial urve hosen by the user in the urrentframe, we want to make an ative ontour evolve towards the region in the urrent framewhose histogram is losest to the referene histogram of the previous frame.As for the funtion ', we hoose '(r; �) = (r � q(�))2=2. Therefore'(q̂(�;
);�) = (q̂(�;
)� q(�))2=2;and �1'(r;�) = r � q(�).In order to introdue a ompetition between the region of interest and the bakgroundregion, we also onsider the omplement 
 of the region 
 of interest. They share the sameboundary, �, but with normals pointing in opposite diretions. We note q the referenehistogram of 
 and we look for the region 
 whih minimizes the following riterion 2J(
) = D(
) +D(
) + � Z� ds (22)In this riterion, the �rst two terms are region funtionals while the last one is a boundaryfuntionals. The last one minimizes the urve length and is a regularization term weightedby the positive parameter �. We have of ourse:D(
) = ZR2 '(q̂(�;
);�) d�D(
) = ZR2 '(q̂(�;
);�) d�Computation of the Gâteaux derivative A straightforward appliation of Theorem 7yields < D0(
);V >= � 1j 
 j Z� �(q̂(:; 
)� q(:)) � g�(h(x)) � C(
)�(V �N)ds ;with: C(
) = ZRm (q̂(�;
)� q(�))q̂(�;
) d� : (23)Similar results hold for 
:< D0(
);V >= 1j 
 j Z� �(q̂(:; 
)� q(:)) � g�(h(x)) � C(
)�(V �N)ds ;1We ignore the saturation to avoid the urse of dimensionality.2The results are even better if we introdue the region area in the riterion by minimizing D(
)j
j +D(
)j
j+ � R� ds.RR n° 4483



30 Gilles Aubert , Mihel Barlaud , Olivier Faugeras , St�ephanie Jehan-Bessonwith: C(
) = ZRm (q̂(�;
)� q(�))q̂(�;
) d� : (24)Computation of the evolution equation of an ative ontour It is well known thatthe minimization of the urve length leads to the Eulidean urve shortening ow �� [4, 29℄.Then, from the previous derivatives, we an dedue the evolution of an ative ontour thatwill evolve towards a minimum of the riterion Jn de�ned in (22). We �nd the followingevolution equation: ��(�)�� = FN (25)with:F = ��+ 1j 
 j�(q̂(: ;
)� q(:)) � g�(h(x)) � C(
)��1j 
 j�(q̂(: ;
)� q(:)) � g�(h(x)) � C(
)�where � is the urvature of � and C(
), C(
) are given by equations (23) and (24),respetively.7.1 ImplementationAs far as the numerial implementation is onerned, we an either model the ative ontourwith an expliit parameterization (Lagrangian formulation) or an impliit one (Eulerianformulation). See [17℄ for an interesting omparison between the two methods. Anotherinteresting review may be found in [30℄.Here, we use the level set method approah �rst proposed by Osher and Sethian [31℄ andapplied to ative ontours in [3℄. The key idea of the level set method is to introdue anauxiliary funtion U(x; �) suh that �(�) is the zero level set of U . The funtion U is oftenhosen to be the signed distane funtion of �(�) whih satis�es�(�) = fx j U(x; �) = 0g and jrU j = 1:This Eulerian formulation presents several advantages [40℄. First, the urve U may break ormerge as the funtion U evolves, and topologial hanges are thus easily handled. Seond,the evolving funtion U(x; �) always remains a funtion allowing eÆient numerial shemes.Third, the geometri properties of the urve, like the urvature � and the normal vetor �eldN, an be estimated diretly from the level set funtion:� = div� rUjrU j� and N = � rUjrU j :
INRIA



Image segmentation using ative ontours: alulus of variations or shape gradients? 31The evolution equation (25) then beomes:�U(�)�� = F jrU j: (26)The veloity funtion F is omputed only on the urve �(�) but we an extend its expressionto the whole image domain 
. To implement the level set method, solutions must be foundto irumvent problems oming from the fat that the signed distane funtion U is not asolution of the PDE (26); see [20℄ for details. In our work, the funtion U is reinitialized sothat it remains a distane funtion. Details on the reinitialization equation are provided in[1, 13℄.In order to improve numerial eÆieny, we ompute the equation in a narrowbandenlosing the 0 level of the level set funtion [40, 41℄. We also use multiresolution tehniquesby making the ative ontour evolve �rst in a low resolution image. The �nal ontourobtained for this redued image is then used as an initial urve for the real size image.Another possibility for inreasing eÆieny would be the use of AOS shemes [43℄7.2 Experimental resultsExperimental results have been obtained on the sequene \Erik" from the European groupCOST211. The region of interest is the fae. We assume that it has been segmented in the�rst image as shown in Fig.1.a. The �rst two referene histograms are omputed. Thesetwo histograms are represented in Fig.1.b using di�erent olors for eah of the two regions.The referene histogram for the fae, q, is shown in red while the referene histogram forthe bakground, q, is shown in green. For a given region 
, and for a point � = [�1; �2℄T ,the funtion q̂(�;
) represents the probability to obtain Y (x) = �1 and H(x) = �2 for xbelonging to the region 
.Then, using the two referene histograms of the previous frame, we make the ativeontour evolve using equation (25) in the urrent frame. The initial urve is hosen to be airle. The evolution of the ative ontour in the urrent frame is shown in Fig.2. We annotie that the �nal ontour in Fig.2.b niely desribes the region of interest, and the faeis aurately segmented38 ConlusionIn this artile we have lari�ed the relationships between the boundary and region funtionalsthat arise naturally in several image proessing tasks. We have shown that one an go fromone to the other by solving Poisson's equation with Dirihlet onditions or Helmholtz'sequation with Neumann onditions.3In order to obtain a better �nal segmentation, the histograms are sharpened by the funtion ' : [0; 1℄!R+ de�ned by '(x) = 1� exp(�1 � x), where 1 is a positive onstant. This amounts to replaing q and q̂by '(q) and '(q̂) and renormalizing them so that they remain pdfs.
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Hue

Luminance

(0,0)

a. Referene segmentation b. Referene histogramsFigure 1: The referene segmentation of the previous frame (a) and the two referene his-tograms, q, in red for the fae, and q in green for the bakground (b).We have then onentrated on the problem of �nding loal minima of a large lass ofregion funtionals. By �rst transforming them into boundary funtionals and applying meth-ods from the alulus of variations we have omputed the orresponding Gâteaux derivativesand onstruted a veloity �eld on the region boundary. This �eld de�nes a PDE whosesolution, for a given initial boundary, generates a one-parameter family of regions whih, inpratie, onverges toward a loal minimum of the funtional. The problem of the existeneand uniqueness of a solution to this PDE has not been addressed.Changing our point of view, we have then re-derived the same equations in a simplerand more natural way, i.e. without going through the trouble of turning region integralsinto boundary integrals; this is ahieved by applying methods of shape derivation [42, 16℄.We have then turned our attention to a new lass of region-based funtionals by on-sidering histograms of image features. The shape derivation tools have allowed us to easilyderive the veloity �eld that de�nes the evolution of the region boundary.The �nal part of the paper has been devoted to an appliation of the previous methodsto the problem of region segmentation with a given olor histogram in a sequene of images.Our experimental results show that the tehnique has indeed some interesting potentials.AknowledgementsWe thank Rahid Derihe for his helpful omments on an early draft of this doument. Wealso thank Gerardo Hermosillo for providing us with his software pakage for the robustestimation of image histograms.Referenes[1℄ G. Aubert and P. Kornprobst. Mathematial Problems in Image Proessing: PartialDi�erential Equations and the Calulus of Variations, volume 147 of Applied Mathe-matial Sienes. Springer-Verlag, De. 2002. INRIA
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a. Initial ontour

b. Final ContourFigure 2: Evolution of the ative ontour on the urrent frame number using the two refer-ene histograms of the previous frame
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Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
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