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THÈME 3

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Image segmentation using active contours: calculus
of variations or shape gradients?

Gilles Aubert — Michel Barlaud — Olivier Faugeras — Stéphanie Jehan-Besson
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Segmentation d'images par 
ontours a
tifs : 
al
ul desvariations ou gradients de forme ?R�esum�e : Nous �etudions le probl�eme de la segmentation d'une image en minimisant une�energie faisant intervenir des fon
tionnelles de r�egion et de fronti�ere. Nous montrons que
es deux types de fon
tionnelles sont li�ees par les �equations de Poisson ou de Helmholtzave
 des 
onditions aux limites bien 
hoisies. Grâ
e �a 
ette �equivalen
e, nous �etudions unelarge 
lasse de fon
tionnelles de r�egion par des m�ethodes 
lassiques de 
al
ul des variationset en d�eduisons les �equations d'Euler-Lagrange 
orrespondantes. Nous reformulons le mêmeprobl�eme en termes de d�eriv�ees de forme et montrons que les mêmes �equations peuvent être�etablies de mani�ere �el�egante sans passer par l'�etape inutile de 
onversion des int�egrales der�egion en int�egrales fronti�ere. Nous d�e�nissons aussi une 
lasse en
ore plus large de fon
tion-nelles qui s'appuyent sur l'estimation de la loi de probabilit�e de 
ertaines 
ara
t�eristiquesimage et montrons que l'outil d�eriv�ee de forme permet de 
al
uler ais�ement les d�eriv�eesde Gâteaux 
orrspondantes ainsi que les �equations d'Euler-Lagrange. Nous terminons enappliquant 
ette nouvelle fon
tionnelle au probl�eme de la segmentation de r�egions dans unes�equen
e d'images 
ouleur. Nous d�e
rivons bri�evement notre impl�ementation num�erique etpr�esentons quelques r�esultats exp�erimentaux.Mots-
l�es : Segmentation d'images, 
ontours a
tifs. r�egions a
tives, statistiques image,fon
tionnelles r�egion, fon
tionnelles fronti�ere, 
al
ul des variations, optimisation de forme,gradient de forme, �equations d'Euler-Lagrange, d�eriv�ee de Gâteaux, m�ethode d'estimationde Parzen, m�ethodes d'ensembles de niveau.



Image segmentation using a
tive 
ontours: 
al
ulus of variations or shape gradients? 3Contents1 Introdu
tion 52 Problem Statement 62.1 Boundary and region fun
tionals . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Examples of su
h optimization problems in imagepro
essing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.3 An example involving the mean . . . . . . . . . . . . . . . . . . . . . . . . . . 92.4 An example involving the varian
e . . . . . . . . . . . . . . . . . . . . . . . . 93 Expression of region fun
tionals as boundary fun
tionals and 
onversely 103.1 Tranformation of region fun
tionals into boundary fun
tionals . . . . . . . . . 103.2 Tranformation of boundary fun
tionals into region fun
tionals . . . . . . . . . 114 Computation of the evolution equation using a boundary approa
h 114.1 Region-independent features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.1.1 Transformation of region fun
tionals into boundary fun
tionals . . . . 124.1.2 Computation of the Gâteaux derivative . . . . . . . . . . . . . . . . . 134.1.3 Constru
tion of an optimal velo
ity ve
tor for the evolution of ana
tive 
ontour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144.2 General 
ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144.2.1 Transformation of the region fun
tional into a boundary fun
tional . . 144.2.2 Computation of the Gâteaux derivative . . . . . . . . . . . . . . . . . 164.2.3 Constru
tion of an optimal velo
ity ve
tor for the evolution of ana
tive 
ontour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Computation of the derivative using shape derivation tools or \How tokeep a region formulation" 185.1 Introdu
tion of transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 195.2 Computation of the derivative using shape derivation tools . . . . . . . . . . 195.2.1 Relation between the Gâteaux derivative and the shape derivative . . 205.3 Constru
tion of the velo
ity ve
tor of the a
tive 
ontour from the Gâteauxderivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225.3.1 Region-independent features . . . . . . . . . . . . . . . . . . . . . . . . 225.3.2 General 
ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.4 Appli
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 Mat
hing histograms 257 Color histograms: segmentation of regions in video sequen
es 287.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
RR n° 4483



4 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-Besson8 Con
lusion 31

INRIA



Image segmentation using a
tive 
ontours: 
al
ulus of variations or shape gradients? 51 Introdu
tionMany problems in image pro
essing, su
h as segmentation, tra
king, or 
lassi�
ation, 
anbe 
ast in the framework of optimization theory, e.g. as the minimization of some energymeasure. The energy is often some 
ombination of region or boundary fun
tionals. Theminimization is usually not trivial and many methods have been developed to rea
h anoptimum whi
h may be only lo
al.We address here the problem of the optimization of region or boundary fun
tionals withthe method of a
tive 
ontours. A
tive 
ontours have been introdu
ed by Kass, Witkinand Terzopoulos [28℄ and were originally boundary methods. Snakes [28℄, balloons [10℄ orgeodesi
 a
tive 
ontours [4℄ are driven towards the edges of an image through the minimiza-tion of a boundary integral of fun
tions of features depending on edges. A
tive 
ontoursdriven by region fun
tionals in addition to boundary fun
tionals have appeared later. Intro-du
ed by [10℄ and [37℄, they have been further developed in [45, 5, 9, 32, 33, 34, 35, 15, 44℄and [25, 27℄. In e�e
t, the use of a
tive 
ontours for the optimization of a 
riterion in
ludingboth region and boundary fun
tionals appears to be really powerful.In general, features of the image region to be segmented, tra
ked, et
. . . are embeddedin region fun
tionals while the boundary fun
tional allows smoothness and regularity ofthe region boundary. The basi
 prin
iple is to 
onstru
t a paraboli
 partial di�erentialequation (PDE) from the energy 
riterion, e.g. by 
omputing some sort of Euler-lagrangeequations; this PDE 
hanges the shape of the 
urrent 
urve a

ording to some velo
ity �eldwhi
h 
an be thought of as a dire
tion of des
ent of the energy 
riterion. Given a 
losed
urve en
losing an initial region one then 
omputes the solution of this PDE for this initial
ondition. The 
orresponding family of 
urves de
reases the energy 
riterion and 
onvergestoward a (lo
al) minimum of the 
riterion hopefully 
orresponding to the obje
ts to besegmented. To 
ompute su
h a PDE, several methods have been proposed.Some authors do not 
ompute the theoreti
al expression of the velo
ity �eld (basi
allythe gradient of the energy 
riterion) but 
hoose a deformation of the 
urve that will make the
riterion de
rease [5, 9℄ (they 
ompute a dire
tion of des
ent). Other authors [45, 33, 35, 44℄
ompute the theoreti
al expression of the velo
ity ve
tor from the Euler-Lagrange equations.The 
omputation is performed in three main steps. First, region integrals representing regionfun
tionals are transformed into boundary integrals using the Green-Riemann theorem. Se
-ond, the 
orresponding Euler-Lagrange equations are derived, and used to de�ne a dynami
s
heme to evolve the initial region. Another alternative is to keep the region formulation to
ompute the gradient of the energy 
riterion with respe
t to the region boundary instead ofredu
ing region integrals to boundary integrals. In [15℄, the authors propose to 
ompute thederivative of the 
riterion while taking into a

ount the dis
ontinuities a
ross the 
ontour.In [25, 27℄ the 
omputation of the evolution equation is a
hieved through shape derivationprin
iples.This 
omputation be
omes more involved when global information about regions ispresent in the energy 
riterion, the so-
alled region-dependent 
ase. It happens for examplewhen statisti
al features of a region su
h as, for example, the mean or the varian
e of the in-tensity, are involved in the minimization. This 
ase has been studied in [6, 7, 14, 15, 25, 27℄.RR n° 4483



6 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-BessonIn [25, 27℄ the authors show that the minimization of fun
tionals involving region-dependentfeatures indu
es additional terms in the evolution equation of the a
tive 
ontour that are im-portant in pra
ti
e. These additional terms are easily 
omputed thanks to shape derivationtools.In this arti
le we 
larify the relationships between the boundary and region fun
tionalsthat arise naturally in several image pro
essing tasks. We show in se
tion 3 that one 
an gofrom one to the other by solving Poisson's equation with Diri
hlet 
onditions or Helmholtz'sequation with Neumann 
onditions.We then 
on
entrate on the problem of �nding lo
al minima of a large 
lass of regionfun
tionals. In se
tion 4 we �rst transform them into boundary fun
tionals and applymethods from the 
al
ulus of variations to 
ompute the 
orresponding Gâteaux derivativesand 
onstru
t a velo
ity �eld on the region boundary. This �eld de�nes a PDE whosesolution, for a given initial boundary 
ondition, de�nes a one-parameter family of regionswhi
h, in pra
ti
e, 
onverges toward a lo
al minimum of the fun
tional. The problem of theexisten
e and uniqueness of a solution to this PDE is not addressed in this arti
le.We next 
hange our point of view, and re-derive the same equations in a simpler and morenatural way, i.e. without going through the trouble of turning region integrals into boundaryintegrals; this is a
hieved in se
tion 5 by applying shape derivation methods [42, 16℄. Thisline of approa
h has already been followed in [39℄ in his work on the estimation of the opti
al
ow.We then turn in se
tion 6 our attention to a new 
lass of region-based fun
tionals by
onsidering histograms of image features. The shape derivation tools allow us to easily derivethe velo
ity �eld that de�nes the evolution of the region boundary.Se
tion 7 is devoted to an appli
ation of the previous methods to the problem of regionsegmentation with a given 
olor histogram in a sequen
e of images. Our experimental resultsshow that the te
hnique has indeed some interesting potentials.2 Problem StatementIn many image pro
essing problems, the issue is to �nd a set of image regions that mini-mize a given error 
riterion. This 
riterion is often a 
ombination of region and boundaryfun
tionals.A lo
al minimizer for su
h a 
riterion in
luding both region and boundary fun
tionals isusually hard to 
ompute. This is mostly due to the fa
t that the set of image regions, i.e.the set of regular open domains in Rn (whose boundary is a 
losed, C2 manifold), does nothave a stru
ture of ve
tor spa
e, preventing us to use in a straightforward fashion gradientdes
ent methods. In order to 
ir
umvent this diÆ
ulty, 
al
ulus of variations and shapeoptimization te
hniques 
an be brought to bear on the problem. The basi
 idea is to usethem in order to derive a Partial Di�erential Equation (PDE) that will drive the boundary ofan initial region toward a lo
al minimum of the error 
riterion. The key point is to 
omputethe velo
ity ve
tor at ea
h point of the boundary at ea
h time instant. In this paper wepropose a framework for a
hieving these goals in a number of pra
ti
ally important 
ases.INRIA



Image segmentation using a
tive 
ontours: 
al
ulus of variations or shape gradients? 7To �x ideas, in the two-dimensional 
ase, the evolving boundary, or a
tive 
ontour, ismodeled by a parametri
 
urve �(s; �) = (x1(s; �); x2(s; �)), where s may be its ar
-lengthand � is an evolution parameter, the time. The a
tive 
ontour is then driven by the followingPDE: �� def= ��(s; �)�� = v with �(� = 0) = �0;where �0 is an initial 
urve de�ned by the user and v the velo
ity ve
tor of �(s; �). Thisvelo
ity is the unknown that must be derived from the error 
riterion so that the solution�(:; �) 
onverges towards a 
urve a
hieving a lo
al minimum and thus, hopefully, towardsthe boundary of the obje
t to segment, as � !1.2.1 Boundary and region fun
tionalsLet us now de�ne more pre
isely the region and boundary fun
tionals. Let U be a 
lass ofdomains (open, regular bounded sets, i.e. C2) of Rn , and 
 an element of U of boundary �
,whi
h we sometimes note �. A boundary fun
tional, Jb, may be expressed as a boundaryintegral of some s
alar fun
tion g of image features:Jb(�
) = Z�
 g(x) da(x) (1)where �
 is the boundary of the region and da its area element. The derivation of thisboundary fun
tional is 
lassi
al [4, 29℄ and leads to the following velo
ity ve
tor:vb = [g(x)��rg(x) �N℄NwhereN is the inward unit normal ve
tor of � and � its mean 
urvature. The idea is to use alo
al parametrization of � to redu
e (1) to a standard problem in the 
al
ulus of variations.A region fun
tional, Jr, may be expressed as an integral, in a domain 
 of U , of somefun
tion f of some region features:Jr(
) = Z
 f(x;
)dx (2)In that 
ase, the 
omputation of the velo
ity ve
tor for (1) is not as easy. We propose to
ompare two main approa
hes. The �rst approa
h is based upon the idea of transformingall fun
tionals into boundary fun
tionals thereby redu
ing (through a lo
al parametrizationof the boundary) the problem of minimization to a standard problem in the 
al
ulus ofvariations from whi
h the 
omputation of the Gâteaux derivatives follows. The se
ondapproa
h is based upon the use of shape derivation tools. In a sense it is more natural sin
eit keeps the region representation.
RR n° 4483



8 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-BessonNote that the s
alar fun
tion f in (2) is generally region-dependent. This is importantsin
e this dependen
y on the region must be taken into a

ount when sear
hing for a lo
alminimum of the fun
tional, as dis
ussed in later se
tions.Also note that we 
ould have added a dependen
y of g on �
, i.e. write g(x; �
) in (1),to keep the symmetry with the region fun
tional. This is not ne
essary sin
e the results inse
tion 4.2, in parti
ular Theorem 2, do in fa
t provide an answer for this 
ase.2.2 Examples of su
h optimization problems in imagepro
essingAn image is represented by its intensity I(x) de�ned on some region of Rn .A
tive 
ontours were originally introdu
ed to sear
h for minima of boundary fun
tionals.In [4, 29℄, the fon
tion g is a fun
tion of the magnitude of the image gradient through astri
tly de
reasing fun
tion ' : [0;+1[! R+ , g(jrI j) su
h that '(r) ! 0 as r ! +1.Hen
e g(x) = '(jrI(x)j). The minimization amounts to the minimization of the length of a
urve in a Riemannian spa
e. Lo
al minima are obtained via the steepest-des
ent method.Region fun
tionals have also been introdu
ed. The region information is embedded in thefun
tion f of (2). These fun
tionals have been used for many appli
ations su
h as movingobje
ts dete
tion [32, 34, 24, 26℄, image segmentation [5, 15, 7, 33, 34, 44℄, or 
lassi�
ation[45, 38, 35℄. For example, people have used su
h statisti
al features of a region 
 as themean or the varian
e:8><>: �
 = 1j
j R
 I(x)dx with j
j = R
 dx�2
 = 1j
j R
 (I(x) � �
)2dxWe use these two examples to motivate the introdu
tion of a general region fun
tionalJr(
) = Z
 f(x; G1(
); G2(
); ::; Gm(
)) dx; (3)where the fun
tionals Gi are given byGi(
) = Z
Hi(x;
) dx i = 1::m: (4)As shown in this equation, the fun
tion Hi is itself region-dependent, more pre
isely:Hi(x;
) def= Hi(x;Ki1(
);Ki2(
); ::;Kili(
)) ; (5)where Kij(
) = Z
 Lij(x) dx j = 1::li i = 1::m: (6)Note that we have stopped the pro
ess at the se
ond level but it 
ould 
on
eivably 
ontinue.We have 
hosen this spe
ial 
ase of dependen
y be
ause it often arises in appli
ations, asINRIA



Image segmentation using a
tive 
ontours: 
al
ulus of variations or shape gradients? 9shown in the next two se
tions. The various methods that we develop 
an be extended ina fairly straightforward fashion to more 
ompli
ated situations, if needed, see for examplese
tion 6.2.3 An example involving the meanLet us 
hoose f(x;
) = %(I(x) � �
) (7)where % : R ! R+ is a positive fun
tion of 
lass C1. f is region-dependent. This is anexample where the pro
ess des
ribed in the previous se
tion stops at the �rst level:J(
) = Z
 f(x;
) dx = Z
 %(I(x) � �
) dx = Z
 %(I(x) � G1(
)G2(
)) ) dx;where G1(
) = Z
H1(x;
) dx with H1(x;
) = I(x) ;G2(
) = Z
H2(x;
) dx with H2(x;
) = 1 :In this 
ase, the fun
tions Hi; i = 1; 2 do not depend on the region 
, l1 = l2 = 0 andKij(x) = 0 8i; j.2.4 An example involving the varian
eLet us take an example where we stop the pro
ess at the se
ond level. Consider the 
asewhere the fun
tion f is a fun
tion of the varian
e given by:f(x;
) = %(�2
) (8)% : R+ ! R+ is of 
lass C1. We writeJ(
) = Z
 f(x;
) dx = Z
 %(�2
) dx = Z
 %( G1(
)G2(
)) ) dx :Therefore we haveG1(
) = Z
H1(x;
) dx ; H1(x;
) = (I(x)� �
)2 ;G2(
) = Z
H2(x;
) dx ; H2(x;
) = 1 ;
RR n° 4483



10 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-Bessonwith H1(x;
) = �I(x)� K11K12�2 ; l1 = 2;H2(x;
) = 1 ; l2 = 0 ;and �nally K11(
) = Z
 I(x) dx ; L11(x) = I(x) ;K12(
) = Z
 dx ; L12(x) = 1 :3 Expression of region fun
tionals as boundary fun
-tionals and 
onverselyIn this se
tion, we show that a region fun
tional may always be expressed as a boundaryfun
tional and 
onversely.3.1 Tranformation of region fun
tionals into boundary fun
tionalsConsider the region fun
tional (2), the next proposition shows that, under some reasonableassumptions on the funtion f , it 
an always be turned into a boundary fun
tional (1).Proposition 1 Let 
 be a bounded open set with regular boundary �
. Let f : 
! R be a
ontinuous fun
tion and u be the unique solution of Poisson's equation:� ��u = f in 
uj�
 = 0We have the following equality:Z
 f(x;
) dx = Z�
ru �N da(x);where N is the inside pointing unit normal to �
 and da(x) its area element.Proof : Be
ause of our assumptions, Poisson's equation has a unique 
lassi
al, i.e. C2,solution in 
 [2, 19℄ and we have:Z
 f(x;
) dx = � Z
�u dx = Z�
ru �N da(x);the last equality being a 
onsequen
e of the Green-Riemann theorem. 2A region fun
tional 
an always be expressed as a boundary fun
tional, via the solution ofPoisson's equation with Diri
hlet 
onditions. INRIA



Image segmentation using a
tive 
ontours: 
al
ulus of variations or shape gradients? 113.2 Tranformation of boundary fun
tionals into region fun
tionalsThe 
onverse of Proposition 1 is also true. Let us 
onsider the boundary fun
tional (1).Proposition 2 Let 
 be a bounded open set with regular boundary �
. Let u be the uniquesolution of Helmholtz's equation:� ��u+ u = 0 in 
�u�N j�
 = �gThen we have the following equality:Z�
 g(x) da(x) = Z
 u(x;
) dxwhere da(x) is the area element of �
.Proof : Be
ause of our assumptions, Helmholtz's equation has a unique 
lassi
al, i.e. C2,solution in 
 [36, 12℄ and we have:Z
 u dx = Z
�u dx = � Z�
ru �N da(x);the last equality being a 
onsequen
e of the Green-Riemann theorem. ThereforeZ
 u dx = � Z�
 �u�N da(x) = Z�
 g(x) da(x)2A boundary fun
tional 
an always be expressed as a region fun
tional, via the solution ofthe Helmholtz's equation with Neumann boundary 
onditions.4 Computation of the evolution equation using a bound-ary approa
hOriginally, the derivation of region fun
tionals has been performed by using the Green-Riemann theorem to transform region fun
tionals into boundary fun
tionals and then by
omputing the Euler-Lagrange equations. In this se
tion, we re
all the prin
iples of thederivation and we expli
itly take into a

ount the 
ase of region-dependent features when
omputing the Gâteaux derivative. Region fun
tionals are transformed into boundary fun
-tionals by using Proposition 2. The region fun
tional to minimize is (2).The 
omputation of a velo
ity �eld for the evolution of the boundary in order to rea
ha minimum of the error 
riterion pro
eeds in three main steps:
RR n° 4483



12 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-Besson1. Tranformation of the region fun
tionals into boundary fun
tionals.2. Computation of the Gâteaux derivatives of the boundary fun
tionals.3. Constru
tion of a velo
ity �eld for the evolution of the boundary.The �rst step 
an always be performed as it has been proven in Proposition 1, se
tion 3.The 
omputation of an optimal velo
ity �eld is 
arried out �rst for region-independentfeatures, i.e. when the fon
tion f does not depend on 
. We then 
onsider the more general
ase where f has some region dependen
y. We derive our results in the two-dimensional
ase, the generalization to any dimension is tedious but straighforward.4.1 Region-independent featuresIn this part, we detail the three steps for region-independent features. We do it for 2Dimages (n = 2) to keep notations simple but the results hold in any dimension greater than2.We parameterize �
 through the C2 fun
tion � : [0; 1℄ ! R2 su
h that when p variesfrom 0 to 1 we go on
e around �
 
ounter
lo
kwise. The unit tangent ve
tor to �
 is theve
tor �0(p)=j�0(p)j where 0 indi
ates derivative with respe
t to the parameter p. The insidepointing normal N is the ve
tor �0?(p)=j�0(p)j. The ve
tor �0? is obtained by rotating �0by 90 degrees 
ounter
lo
kwise; hen
e if �0 = [�01;�02℄T , �0? = [��02;�01℄T .4.1.1 Transformation of region fun
tionals into boundary fun
tionalsThe following proposition is a straightforward 
onsequen
e of Proposition 1Proposition 3 If f satis�es the hypotheses of Proposition 1, the fun
tional (2):Jr(
) = Z
 f(x) dx;is equal to:�(�) = Z 10 (ux2(�(p))�01(p)� ux1(�(p))�02(p)) dp def= Z 10 '(�(p);�0(p)) dp; (9)where � = �
 and u is the unique 
lassi
al solution of:� ��u = f in 
uj�
 = 0Therefore it is equivalent to minimize (2) with respe
t to 
 or (9) with respe
t to �.Proof : A

ording to Proposition 1, we have:Z
 f(x) dx = � Z
�u dx = Z�
ru �N da(x);and sin
e da(x) = j�0(p)jdp, the result follows. 2
INRIA



Image segmentation using a
tive 
ontours: 
al
ulus of variations or shape gradients? 134.1.2 Computation of the Gâteaux derivativeA

ording to Proposition 3, minimizing (2) with respe
t to 
 is equivalent to minimizing(9) with respe
t to �. Thus, we have to 
ompute the Gâteaux derivative of the fun
tional�.Theorem 1 The Gâteaux derivative in the dire
tion 
 of the fun
tional � is:< �0(�); 
 >= � Z 10 f(�(p)) (�0?(p) � 
(p)) dpProof : Let 
 : [0; 1℄ ! R2 be a C2 parametrization of an arbitrary 
losed 
urve. TheGâteaux derivative of �(�) in the dire
tion 
 noted < �0(�); 
 > is de�ned by:< �0(�); 
 >= lim�!0 �(� + �
)��(�)�We have:lim�!0 �(� + �
)��(�)� = Z 10 ('�(�(p);�0(p))
(p) + '�0(�(p);�0(p))
0(p)) dpwhere '� = �'�� (�;�0). Integrating by parts, we obtain the following expression for theGâteaux derivative:< �0(�); 
 >= Z 10 �'�(�(p);�0(p))� ddp'�0(�(p);�0(p))� � 
(p) dpWe then expli
itly 
ompute the derivative of ' with respe
t to � using equation (9):'� = rux2(�(p))�01(p)�rux1(�(p))�02(p);and with respe
t to �0: '�0 = [ux2 ;�ux1 ℄T :Therefore: ddp'�0 = [rux2 � �0;�rux1 � �0℄T :Putting everything together we obtain:'� � ddp'�0 = �u�0? = �f �0?;thanks to Proposition 3. 2The Euler-Lagrange equations asso
iated with the Gâteaux derivative are thus given by'� � ddp'�0 = �f(�(p))�0?An interesting point to note is that the intermediary fun
tion u disappears.
RR n° 4483



14 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-Besson4.1.3 Constru
tion of an optimal velo
ity ve
tor for the evolution of an a
tive
ontourIn order to �nd a lo
al extremum of the 
riterion (9), we evolve a 
urve using the steepestdes
ent method, starting from an initial 
urve de�ned by the user. Thus, we obtain thefollowing evolution equation:���� = f(�)N with �(� = 0) = �0 (10)This is the 
lassi
al result [45, 32, 34, 44℄ when f has no region dependen
y. Let us now
onsider the more general 
ase where the fun
tion f has some region dependen
y.4.2 General 
aseLet us now derive the evolution equation in the general 
ase. As in the previous 
ase, wefollow our three steps.4.2.1 Transformation of the region fun
tional into a boundary fun
tionalIn the following, to simplify the proofs and the notations, we take m = 1 and l1 = 1 anddrop the indexes. The equations for m > 1 and li � 1 are then given without proof.Be
ause of the form of equations (3)-(6), we have to go through three levels of transfor-mations. We start with the �rst level and theProposition 4 If L satis�es the assumptions of Proposition 1, the fun
tionalK(
) = Z
 L(x) dxis equal to:�(�) = Z 10 (ux2(�(p); L(�))�01(p)� ux1(�(p); L(�))�02(p)) dp def= Z 10 �(�(p);�0(p)) dp;where � = �
 and u is the unique 
lassi
al solution of:� ��u = L in 
uj�
 = 0Proof : The proof is identi
al to that of Proposition 3. 2In the same manner, for the se
ond level, we have the INRIA
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ontours: 
al
ulus of variations or shape gradients? 15Proposition 5 If H satis�es the assumptions of Proposition 1, the fun
tionalG(
) = Z
H(x;K(
)) dxwith K(
) = R
 L(x)dx, is equal to	(�) = Z 10 (vx2(�(p);�(�))�01(p)� vx1(�(p);�(�))�02(p)) dpdef= Z 10  (�(p);�0(p);�(�)) dp;where � = �
 and v is the unique 
lassi
al solution of:� ��v = H in 
vj�
 = 0� is given by Proposition 4.Proof : The proof is identi
al to that of Proposition 3. 2We �nally rea
h the third and last level with theProposition 6 If f satis�es the assumptions of Proposition 1, the fun
tional:J(
) = Z
 f(x; G(
)) dx ; (11)with G(
) = R
H(x;K(
))dx and K(
) = R
 L(x)dx, is equal to:�(�) = Z 10 (wx2(�(p);	(�))�01(p)� wx1(�(p);	(�))�02(p)) dpdef= Z 10 '(�(p);�0(p);	(�)) dp; (12)where � = �
 and u is the unique 
lassi
al solution of:� ��w = f in 
wj�
 = 0	(�) is given by Proposition 5. Therefore it is equivalent to minimize (11) with respe
t to
 or (12) with respe
t to �.Proof : The proof is identi
al to that of Proposition 3. 2
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16 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-Besson4.2.2 Computation of the Gâteaux derivativeA

ording to Proposition 6, minimizing (11) with respe
t to 
 is equivalent to minimizing(12) with respe
t to �. Thus we 
ompute the Gâteaux derivative of � given by (12).Theorem 2 The Gâteaux derivative in the dire
tion 
 of the fun
tional � de�ned in (12)is: < �0(�); 
 >= � Z 10 [f(�(p);	(�)) +AH(�(p);�(�)) +ABL(�(p)) ℄ q(p) dp;where: A = Z
 fG(x;G(
)) dx and B = Z
HK(x;K(
)) dxwith fG = �f�G , and q(p) = (�0?(p) � 
(p)) :Proof : The Gâteaux derivative of �(�) in the dire
tion 
 noted < �0(�); 
 > is given by:< �0(�); 
 >= lim�!0 �(� + �
)��(�)�We have:lim�!0 �(� + �
)��(�)� =Z 10 ('�(�(p);�0(p);	(�))
(p) + '�0(�(p);�0(p);	(�))
0(p)) dp+Z 10 '	(�(p);�0(p);	(�)) < 	0(�); 
 > dpwhere '	 = �'�	 (�;�0;	). Integrating by part, we obtain:< �0(�); 
 > = Z 10 �'� � ddp'�0� 
(p) dp (13)+ Z 10 '	(�(p);�0(p);	(�)) < 	0(�); 
 > dp :A

ording to Theorem 1, we obtain '� � ddp'�0 = �f �0?. The Gâteaux derivative of 	(�)in the dire
tion 
 is 
omputed in the same manner and we �nd:< 	0(�); 
 >= � Z 10 H(�(p);�(�)) q(p) dp+ Z 10  �(�(p);�0(p);�(�)) < �0(�); 
 > dp :
INRIA



Image segmentation using a
tive 
ontours: 
al
ulus of variations or shape gradients? 17A

ording to Theorem 1, the Gâteaux derivative of �(�) in the dire
tion 
 is given by:< �0(�); 
 >= � Z 10 L(�(p)) q(p) dp :Putting all terms together in (13), we �nd the following expression for the derivative:< �0(�); 
 >= � Z 10 f(�(p);	(�)) q(p) dp� Z 10 '	(�(p);�0(p);	(�))dp Z 10 H(�(p);�(�)) q(p) dp� Z 10 '	(�(p);�0(p);	(�))dp Z 10  �(�(p);�0(p);�(�)) dp Z 10 L(�(p)) q(p) dpUsing Propositions 5 and 6, we �nd that:Z 10 '	(�(p);�0(p);	(�))dp = Z
 fG(x; G(
))dx def= ASimilarly, using Propositions 4 and 5 , we obtainZ 10  �(�(p);�0(p);�(�))dp = Z
HK(x;K(
))dx def= BThe equation of the derivative is obtained:< �0(�); 
 >= � Z 10 [f(�(p);	(�)) +AH(�(p);�(�)) +AB L(�(p))℄ q(p) dp:2The Euler-Lagrange equations asso
iated with the Gâteaux derivative are given by� [f(�(p);	(�)) +AH(�(p);�(�)) +ABL(�(p)) ℄ �0? = 0Note again that the intermediate fun
tions u, v and w do not appear in this expression.We 
an now state the general theorem for m > 1 and li � 1:Theorem 3 The Gâteaux derivative in the dire
tion 
 of the fun
tional J de�ned in (3) is< �0(�); 
 >= � Z 10 �f(�(p); G1(�); ::; Gm(�))+ mXi=1 AiHi(�(p);Ki1(�); ::;Kili(�))+ mXi=1 Ai0� liXj=1BijLij(�(p))1A � (�0?(p) � 
(p)) dp
RR n° 4483



18 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-Bessonwhere: Ai = Z
 fGi(x;G1(
); ::; Gm(
)) dx i = 1::mand Bij = Z
HiKij (x;Ki1(
); ::;Kili(
)) dx i = 1::m j = 1::li4.2.3 Constru
tion of an optimal velo
ity ve
tor for the evolution of an a
tive
ontourIn the general 
ase, a

ording to Theorem 3, the steepest gradient des
ent method yieldsthe following evolution equation for the a
tive 
ontour:���� = 24f(�) + mXi=1 AiHi(�) + mXi=1 Ai0� liXj=1BijLij(�)1A35N (14)with �(� = 0) = �0 Compared with equation (10), some additional terms appear that 
omefrom the region dependen
y of the des
riptors.5 Computation of the derivative using shape derivationtools or \How to keep a region formulation"In the previous part, region fun
tionals were �rst transformed into boundary fun
tionalsfor the 
omputation of the derivative. This step is neither natural nor straightforward.Therefore, we propose another solution based on shape derivation tools [42, 16℄. The regionformulation is maintained for the 
omputation and this provides a suitable way for obtainingthe derivative of the 
riterion and the evolution equation of an a
tive 
ontour.We perform three main steps:1. Introdu
tion of a dynami
 s
heme: Sin
e the set of all image regions is not a ve
torspa
e, it is diÆ
ult to 
ompute the derivative of the 
riterion with respe
t to thedomain 
. To 
ir
umvent this problem, we apply a family of transformations T� ,indexed by a real parameter � � 0, to 
 and we note 
(�) = T� (
). The regionfun
tional be
omes a fun
tion of � , J(�) def= J(
(�)).2. Derivation of the 
riterion based on shape derivation prin
iples:The error 
riterion J(�) is then derived with respe
t to � using shape derivationprin
iples.3. Computation of the evolution equation from the derivative:From the derivative, we dedu
e the velo
ity �eld of the a
tive 
ontour that will makeit evolve towards a lo
al minimum of the error 
riterion. INRIA



Image segmentation using a
tive 
ontours: 
al
ulus of variations or shape gradients? 195.1 Introdu
tion of transformationsAs it has already been pointed out, the optimization of the region fun
tional (2) is diÆ
ultsin
e the set of regular domains (regular open bounded sets) U of Rn does not have thestru
ture of a ve
tor spa
e. Variations of a domain must then be de�ned in some way. Letus 
onsider a referen
e domain 
 2 U and the set Â of appli
ations T : 
! Rn , whi
h areat least as regular as homeomorphisms (i.e. one to one with T and T�1 
ontinuous). Wede�ne Â = �T one to one; T; T�1 2 W 1;1(
;Rn )	where:W 1;1(
;Rn ) = fT : 
! Rn su
h that T 2 L1(
;Rn ) and�iT 2 L1(
;Rn ); i = 1; � � � ; ngGiven a shape fun
tion F : U ! R+, for T 2 Â, let us de�ne F̂ (T ) = F (T (
)). Thekey point is that W 1;1(
;Rn ) is a Bana
h spa
e. This allows us to de�ne the notion ofderivative with respe
t to the domain 
 as follows:De�nition 1 F is Gâteaux di�erentiable with respe
t to 
 if and only if F̂ is Gâteauxdi�erentiable with respe
t to T .In order to 
ompute Gâteaux derivatives with respe
t to T we introdu
e a family of deforma-tion (T (�))��0 su
h that T (�) 2 Â for � � 0, T (0) = Id, and T (:) 2 C1([0; A℄;W 1;1(
;Rn ); A >0. From a pra
ti
al point of view, there are many ways to 
onstru
t su
h a family. Themost famous one is the Hadamard deformation [21℄.For a point x 2 
, we note:x(�) = T (�;x) with T (0;x) = x
(�) = T (�;
) with T (0;
) = 
Let us now de�ne the velo
ity ve
tor �eld V 
orresponding to T (�) asV(�;x) = �T�� (�;x) 8x 2 
 8� � 05.2 Computation of the derivative using shape derivation toolsWe now introdu
e three main de�nitions:De�nition 2 The Gâteaux derivative of J(
) = R
 f(x;
)dx in the dire
tion of V, noted< J 0(
);V >, is equal to:< J 0(
);V >= lim�!0 J(
(�)) � J(
)�RR n° 4483



20 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-BessonDe�nition 3 The material derivative of f(x;
), noted fm(x;
;V), is equal to:fm(x;
;V) = lim�!0 f(x(�);
(�)) � f(x;
)�De�nition 4 The shape derivative of f(x;
), noted fs(x;
;V ), is equal to:fs(x;
;V) = lim�!0 f(x;
(�)) � f(x;
)�5.2.1 Relation between the Gâteaux derivative and the shape derivativeThe following theorem gives a relation between the Gâteaux derivative and the shape deriva-tive for the region fun
tional (2). The proof 
an be found in [42, 16℄, we provide an elemen-tary one here for 
ompleteness.Theorem 4 The Gâteaux derivative of the fun
tional J(
) = R
 f(x;
) dx in the dire
tionof V is the following:< J 0(
);V >= Z
 fs(x;
;V)dx � Z�
 f(x;
)(V(x) �N(x))da(x)where N is the unit inward normal to �
 and da its area element.Proof : As far as the 
omputation of the derivative is 
on
erned, only small deformationsare relevant and we thus 
onsider a �rst order Taylor expansion of the transformation:T (�;x) = T (0;x) + � �T�� (0;x)= x+ �V(x);where V(x) = �T�� (0;x).We obtain the following expressions for the material and the shape derivatives:fm(x;
;V) = lim�!0 f(x+ �V(x);
 + �V) � f(x;
)�fs(x;
;V) = lim�!0 f(x;
+ �V) � f(x;
)�If we assume that lim�!0rf(x;
+ �V) = rf(x;
) we 
an writefm(x;
;V) = fs(x;
;V) +rf(x;
) �V(x) (15)We are now ready for the 
omputation of the Gâteaux derivative of J(
) in the dire
tion ofV. We have: J(
(�)) � J(
)� = 1� 264 Z
(�) f(x;
(�))dx � Z
 f(x;
)dx 375 (16)INRIA



Image segmentation using a
tive 
ontours: 
al
ulus of variations or shape gradients? 21In the �rst integral, we make the 
hange of variable x! x+ �V(x) whi
h yields:Z
(�) f(x;
(�))dx = Z
 f(x+ �V(x);
 + �V)j det J� (x)jdx;where J� (x) is the Ja
obian matrix:J� (x) = 0B� 1 + � �V1�x1 � � � � �V1�xn... ... ...� �Vn�x1 � � � 1 + � �Vn�xn 1CA ;V(x) = [V1(x); � � � ; Vn(x)℄T , and x = [x1; � � � ; xn℄T . It follows thatdet J� (x) = 1 + �div(V(x)) + o(�)This shows that, if � is small enough, det J� (x) > 0 andlim�!0 det J� (x)� 1� = div(V(x))The equation (16) 
an now be rewrittenJ(
(�)) � J(
)� = Z
 f(x+ �V(x);
 + �V) � f(x;
)� det(J� (x))dx�Z
 f(x;
) det(J� (x)) � 1� dx def= I1 � I2:If � goes to 0, using (15) and De�nitions (3,4), we get:lim�!0 I1 = Z
 fm(x;
;V)dx= Z
 fs(x;
;V)dx + Z
 rf(x;
) �V(x)dxlim�!0 I2 = Z
 f(x;
)div(V(x))dxWe �nd that the Gâteaux derivative is given by< J 0(
);V >= Z
 fs(x;
;V)dx + Z
 (rf(x;
) �V(x) + f(x;
)div(V(x)))dx =Z
 fs(x;
;V)dx + Z
 div(f(x;
) V(x))dx (17)
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22 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-BessonApplying the Green-Riemann theorem in (17), we �nally obtain:< J 0(
);V >= Z
 fs(x;
;V)dx � Z�
 f(x;
)(V(x) �N(x))da(x)where N is the unit inward normal to �
.2Note that Theorem 4 provides a ne
essary 
ondition for a domain 
̂ to be an extremum ofJ(
): Ẑ
 fs(x; 
̂;V)dx � Z�
̂ f(x; 
̂)(V(x) �N(x)) da(x) = 0 8V:5.3 Constru
tion of the velo
ity ve
tor of the a
tive 
ontour fromthe Gâteaux derivativeWe now make good use of the previous tools to derive the velo
ity ve
tor of the a
tive
ontour for the same fun
tionals as those whi
h were 
onsidered in se
tion 5. As expe
tedwe �nd the same results but in a way whi
h, we feel, is more natural sin
e we do not haveto turn a region integral into a boundary one, and simpler. The evolving region boundary�
, noted �, is modeled as an a
tive 
ontour: the user de�nes an initial 
urve �0 = �
0that evolves towards a lo
al minimum of the region fun
tional (2) a

ording to a PDE thatwe will now derive.5.3.1 Region-independent featuresWe �rst 
onsider the simple 
ase where the fun
tion f does not depend on 
, i.e. f = f(x).In that 
ase, the shape derivative fs is equal to zero and the Gâteaux derivative of J issimply (Theorem 4): < J 0(
);V >= � Z�
 f(x)(V(x) �N(x))da(x)This leads to the following evolution equation for region-independent des
riptors:���� = fNwith �(� = 0) = �0.We noti
e that, as expe
ted, the evolution equation is the same as (10) in se
tion 4.
INRIA



Image segmentation using a
tive 
ontours: 
al
ulus of variations or shape gradients? 235.3.2 General 
aseLet us now ta
kle the same general 
ase as in se
tion 4.2, using the fun
tional de�ned byequations (3)-(6). We similarly restri
t the 
omputation of the Gâteaux derivative of J tothe 
ase m = 1 and li = 1, state the result for m > 1 and li � 1, and drop the indexes.Theorem 5 The Gâteaux derivative in the dire
tion of V of the fun
tional J de�ned in(11) is:< J 0(
);V >= � Z� (AB L(x) +AH(x;K(
)) + f(x;
)) (V(x) �N(x))da(x)where: A = Z
 fG(x;G(
)) dx and B = Z
HK(x;K(
)) dxProof : A

ording to Theorem 4, we have:< J 0(
);V >= Z
 fs dx� Z� f (V �N)da(x)Let us �rst 
ompute the shape derivative of f . From the 
hain rule we get:fs(x;
;V) = fG(x; G) < G0(
);V >; (18)where fG denotes the partial derivative of the fun
tion f with respe
t to its se
ond argument.Next we 
ompute the Gâteaux derivative of G in the dire
tion of V. We apply againTheorem 4, and we get:< G0(
);V >= Z
 Hs dx� Z� H (V �N)da(x):Plugging this into (18), we obtain:Z
 fs dx = A0�Z
 Hs dx � Z� H(V �N)da(x)1A ;where: A = Z
 fG(x; G(
)) dx:We also 
ompute the shape derivative of H through Theorem 4:Hs(x;
;V) = HK(x;K) < K 0(
);V >RR n° 4483



24 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-BessonWe 
ontinue with the Gâteaux derivative of K in the dire
tion of V:< K 0(
);V >= Z
 Ls dx� Z� L(x)(V (x) �N(x))da(x)Sin
e L does not depend on 
, we obtain Ls = 0 and we are done.Putting all terms together, we obtain the 
omplete expression of the Gâteaux derivative ofJ : < J 0(
);V >= � Z� (AB L(x) +AH(x;K(
)) + f(x;
)) (V(x) �N(x))da(x);with B = R
 HK(x;K) dx. 2The general 
ase follows easily and is stated in theTheorem 6 The Gâteaux derivative in the dire
tion of V of the fun
tional J de�ned in (3)is:< J 0(
);V >= � Z� 0� mXi=1 Ai liXj=1(Bij Lij(x)) + mXi=1(AiHi) + f1A (V(x)) �N(x)))da(x):where: Ai = Z
 fGi(x;G1(
); ::; Gm(
)) dx i = 1::mand Bij = Z
HiKij (x;Ki1(
); ::;Kili(
)) dx i = 1::m j = 1::liFrom the Gâteaux derivative of J , we dedu
e the 
orresponding evolution equation:���� = 0� mXi=1 Ai liXj=1(Bij Lij) + mXi=1(AiHi) + f1AN; (19)whi
h, as expe
ted, is identi
al with equation (14) in se
tion 4.2. As far as the �nal resultis 
on
erned, the two methods of 
omputation are equivalent.5.4 Appli
ationLet us now apply this method to the �rst example in se
tion 2.3. The fun
tion f is givenby (7). The 
orresponding fun
tions Gi, Hi are given in se
tion 2.3. We need the termsAj ; j = 1; 2: 8><>: A1 = � R
 1G2 %0 �I(x) � G1G2� dx = �1j
j R
 %0(I � �
)dxA2 = R
 G1(G2)2 %0 �I(x)� G1G2� dx = �
j
j R
 %0(I � �
)dx INRIA
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tive 
ontours: 
al
ulus of variations or shape gradients? 25Sin
e the terms Hi are not region-dependent, the terms Bij are equal to zero.The velo
ity ve
tor of the a
tive 
ontour is then the following:��(�)�� = [ f(x)� (I � �
)j
j Z
 %0(I � �
)dx ℄ NIn this example, the additional term 
oming from the region dependen
y of f is equal to(I��
)j
j R
 %0(I � �
)dx. Note that in the parti
ular 
ase of %(r) = r2, this additional termis equal to zero [6, 7, 14, 15℄. However in the general 
ase, the additional term is not nul.Let us apply this method to the se
ond example in se
tion 2.4. The fun
tion f is a fun
tionof the varian
e given by (8). The 
orresponding fun
tions Gi, Hi, Kij and Lij are also givenin se
tion 2.4. We need the terms Aj ; j = 1; 2:8><>: A1 = R
 1G2 %0 �G1G2� dx = %0(�2
)A2 = � R
 G1(G2)2 %0 �G1G2� dx = ��2
 %0(�2
)The terms Bij are given by:8<: B11 = R
H1K11(x;K11;K12) = �2 1j
j R
(I(x) � �
)dx = 0B12 = R
H1K12(x;K11;K12) = 2�
j
j R
(I(x) � �
)dx = 0We 
an then 
ompute the velo
ity ve
tor of the a
tive 
ontour from (19) and we �nd:��(�)�� = [ f(x) + %0(�2
) �(I(x) � �
)2 � �2
� ℄ NIn this simple example, we noti
e that the dependen
y of the fun
tion on the region indu
esan additional term in the evolution equation 
ompared with the evolution equation obtainedin the 
ase where the fun
tion is region independent (equation (10)). This additional termis %0(�2
) �(I(x) � �
)2 � �2
�. It must be in
luded in order to rea
h a true minimum of the
riterion as proved in [27℄.6 Mat
hing histogramsA natural way of generalizing the use of statisti
al image features su
h as the mean and thevarian
e of the intensity for image segmentation is to 
onsider the full probability distributionof the feature of interest within the region, e.g. intensity, 
olor, texture, et
. . . It turns outthat in attempting to do so, one is naturally led to extend the 
riterion (3) to the 
asewhere the fun
tion f depends on a 
ontinuous family of region 
riteria. Consider a fun
tionRR n° 4483



26 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-Bessonh : Rn ! Rm whi
h des
ribes the feature of interest. Suppose we have learnt the probabilitydensity fun
tion (pdf) of the feature h within the image region of interest, and let q(�) bethis pdf. Given a region 
, we 
an estimate the pdf of the feature h through the use of theParzen method [18℄: let p : Rm ! R+ be the Parzen window, a smooth positive fun
tionwhose integral is equal to 1. For the sake of simpli
ity but without loss of generality, weassume that p is an m-dimensional Gaussian with 0-mean and varian
e �2, we notep(�) = g�(�) = 1(2��2)m=2 exp(�j�j22�2 );and we de�ne q̂(�;
) = 1K(
) Z
 g�(h(x) ��) dx;where h(x) is the value of the feature of interest at the point x of 
 and K is a normalizing
onstant, in general depending of 
, su
h that:ZRm q̂(�;
) d� = 1:Therefore K(
) = Z
 ZRm g�(h(x) ��) d� dx =j 
 jWe next assume that we have a fun
tion ' : R+ � Rm ! R+ whi
h allows us to 
omparetwo pdfs. This fun
tion is small if the pdfs are similar and large otherwise. It allowsus to introdu
e the following fun
tional whi
h represents the "distan
e" between the twohistograms: D(
) = ZRm '(q̂(�;
);�) d� (20)The distan
e 
an be the square of the L2 norm when'(q̂(�;
);�) = (q̂(�;
)� q(�))2;or the 
ommonly used Kullba
k-Leibler divergen
e when'(q̂(�;
);�) = 12(q(�) log q(�)q̂(�;
) + q̂(�;
) log q̂(�;
)q(�) );or the non symmetri
 
hi-2 distan
e when'(q̂(�;
);�) = (q̂(�;
)� q(�))2q(�) :A further generalization of the previous 
ase is to 
onsider se
ond order histogramswhi
h des
ribe the probability of having the value �1 at pixel x and the value �2 at pixelINRIA
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ulus of variations or shape gradients? 27x + Æ, where Æ is a �xed (usually small) ve
tor of Rn. This has been used very mu
h in
omputer vision for analysing textures [22, 23℄. The 
orresponding pdf, noted qÆ(�1;�2)
an be estimated with the same Parzen window te
hnique. We de�neq̂Æ(�1;�2;
) = 1KÆ(
) Z
 g�(h(x)��1)g�(h(x + Æ)��2) dx;The normalizing 
onstant KÆ(
) is given byKÆ(
) = Z
 ZRm�Rm g�(h(x) ��1)g�(h(x+ Æ)��2) d�1 d�2 dx =j 
 j :We therefore de�ne DÆ(
) = ZRm�Rm '(q̂Æ(�1;�2;
);�1;�2) d�1 d�2 (21)Using the tools developed in se
tion 5, we 
ompute the Gâteaux derivative of the fun
tionalD. We have theTheorem 7 The Gâteaux derivative in the dire
tion V of the fun
tional D de�ned in (20)is: < D0(
);V >= � 1j 
 j Z� ��1'(q̂(:); :) � g�(h(x)) � C(
)�(V �N)da(x) ;where C(
) = RRm �1'(q̂(�;
);�)q̂(�;
) d�.Proof : By de�nition of D we have< D0(
);V >= ZRm < ('(q̂(�;
);�))0;V > d�Let us 
ompute the Gâteaux derivative of '(q̂(�;
)). We de�ne:'(q̂(�;
);�) = f(G1(�;
); G2(
)) = '�G1(�;
)G2(
) ;�� ;where: G1(�;
) = Z
 g�(h(x) ��) dx with H1(�;x) = g�(h(x)��)G2(
) = j 
 j= Z
 dxWe obtain:< f 0;V >= fG1 < G01;V > +fG2 < G02;V >=�1'(q̂(�;
);�)j 
 j (< G01;V > �q̂(�;
) < G02;V >) ;
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28 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-Bessonand, using Theorem 4:< f 0;V >= ��1'(q̂(�;
);�)j 
 j Z� ( g�(h(x) ��)� q̂(�;
)) (V �N)da(x)Plugging this result into the expression of < D0(
);V > and swapping the order of integra-tion, we obtain< D0(
);V >= � 1j 
 j Z� �ZRm g�(h(x) ��)�1'(q̂(�;
);�) d��ZRm �1'(q̂(�;
);�)q̂(�;
) d��(V �N)da(x)The �rst integral on the right-hand side is the 
onvolution �1'(q̂(:); :) � g� of the fun
tion�1'(q̂(:); :) : Rm ! R with the fun
tion g�. The �nal result is< D0(
);V >= � 1j 
 j Z� ��1'(q̂(:); :) � g�(h(x)) � C(
)�(V � N)da(x);where C(
) = RRm �1'(q̂(�;
);�)q̂(�;
) d�. 2This solves the question of �rst-order histograms. For se
ond-order histograms we have theTheorem 8 The Gâteaux derivative in the dire
tion V of the fun
tional DÆ de�ned in (21)is: < D0Æ(
);V >=� 1j 
 j Z� ��1'(q̂Æ(:; :); :; :) � (g� 
 g�)(h(x);h(x + Æ))� CÆ(
)�(V �N)da(x) ;where CÆ(
) = RRm�Rm �1'(q̂Æ(�1;�2;
);�1;�2)q̂Æ(�1;�2;
) d�1 d�2,and g� 
 g�(�1;�2) = g�(�1) g�(�2).Proof : The proof is identi
al to that of Theorem 7. 27 Color histograms: segmentation of regions in videosequen
esThis work has been motivated by [11, 8℄ where the tra
king algorithms take bene�t ofstatisti
al 
olor ditributions. We propose here to use a
tive 
ontours in order to �t exa
tlythe shape of the obje
t to be segmented. We 
onsider a video sequen
e where ea
h frameINRIA
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olor fun
tion h : R2 ! R2 . The 
olor spa
e used is (Y;H) where Ystands for the luminan
e and H for the hue1. The goal is to segment a referen
e region,given in the previous image of the sequen
e, into the 
urrent one by minimizing the distan
ebetween the referen
e histogram q of the region in the previous image and the estimatedhistogram q̂ in the 
urrent frame. From an initial 
urve 
hosen by the user in the 
urrentframe, we want to make an a
tive 
ontour evolve towards the region in the 
urrent framewhose histogram is 
losest to the referen
e histogram of the previous frame.As for the fun
tion ', we 
hoose '(r; �) = (r � q(�))2=2. Therefore'(q̂(�;
);�) = (q̂(�;
)� q(�))2=2;and �1'(r;�) = r � q(�).In order to introdu
e a 
ompetition between the region of interest and the ba
kgroundregion, we also 
onsider the 
omplement 

 of the region 
 of interest. They share the sameboundary, �, but with normals pointing in opposite dire
tions. We note q
 the referen
ehistogram of 

 and we look for the region 
 whi
h minimizes the following 
riterion 2J(
) = D(
) +D(

) + � Z� ds (22)In this 
riterion, the �rst two terms are region fun
tionals while the last one is a boundaryfun
tionals. The last one minimizes the 
urve length and is a regularization term weightedby the positive parameter �. We have of 
ourse:D(
) = ZR2 '(q̂(�;
);�) d�D(

) = ZR2 '(q̂(�;

);�) d�Computation of the Gâteaux derivative A straightforward appli
ation of Theorem 7yields < D0(
);V >= � 1j 
 j Z� �(q̂(:; 
)� q(:)) � g�(h(x)) � C(
)�(V �N)ds ;with: C(
) = ZRm (q̂(�;
)� q(�))q̂(�;
) d� : (23)Similar results hold for 

:< D0(

);V >= 1j 

 j Z� �(q̂(:; 

)� q
(:)) � g�(h(x)) � C(

)�(V �N)ds ;1We ignore the saturation to avoid the 
urse of dimensionality.2The results are even better if we introdu
e the region area in the 
riterion by minimizing D(
)j
j +D(

)j

j+ � R� ds.RR n° 4483



30 Gilles Aubert , Mi
hel Barlaud , Olivier Faugeras , St�ephanie Jehan-Bessonwith: C(

) = ZRm (q̂(�;

)� q
(�))q̂(�;

) d� : (24)Computation of the evolution equation of an a
tive 
ontour It is well known thatthe minimization of the 
urve length leads to the Eu
lidean 
urve shortening 
ow �� [4, 29℄.Then, from the previous derivatives, we 
an dedu
e the evolution of an a
tive 
ontour thatwill evolve towards a minimum of the 
riterion Jn de�ned in (22). We �nd the followingevolution equation: ��(�)�� = FN (25)with:F = ��+ 1j 
 j�(q̂(: ;
)� q(:)) � g�(h(x)) � C(
)��1j 

 j�(q̂(: ;
)� q
(:)) � g�(h(x)) � C(

)�where � is the 
urvature of � and C(
), C(

) are given by equations (23) and (24),respe
tively.7.1 ImplementationAs far as the numeri
al implementation is 
on
erned, we 
an either model the a
tive 
ontourwith an expli
it parameterization (Lagrangian formulation) or an impli
it one (Eulerianformulation). See [17℄ for an interesting 
omparison between the two methods. Anotherinteresting review may be found in [30℄.Here, we use the level set method approa
h �rst proposed by Osher and Sethian [31℄ andapplied to a
tive 
ontours in [3℄. The key idea of the level set method is to introdu
e anauxiliary fun
tion U(x; �) su
h that �(�) is the zero level set of U . The fun
tion U is often
hosen to be the signed distan
e fun
tion of �(�) whi
h satis�es�(�) = fx j U(x; �) = 0g and jrU j = 1:This Eulerian formulation presents several advantages [40℄. First, the 
urve U may break ormerge as the fun
tion U evolves, and topologi
al 
hanges are thus easily handled. Se
ond,the evolving fun
tion U(x; �) always remains a fun
tion allowing eÆ
ient numeri
al s
hemes.Third, the geometri
 properties of the 
urve, like the 
urvature � and the normal ve
tor �eldN, 
an be estimated dire
tly from the level set fun
tion:� = div� rUjrU j� and N = � rUjrU j :
INRIA
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tive 
ontours: 
al
ulus of variations or shape gradients? 31The evolution equation (25) then be
omes:�U(�)�� = F jrU j: (26)The velo
ity fun
tion F is 
omputed only on the 
urve �(�) but we 
an extend its expressionto the whole image domain 
. To implement the level set method, solutions must be foundto 
ir
umvent problems 
oming from the fa
t that the signed distan
e fun
tion U is not asolution of the PDE (26); see [20℄ for details. In our work, the fun
tion U is reinitialized sothat it remains a distan
e fun
tion. Details on the reinitialization equation are provided in[1, 13℄.In order to improve numeri
al eÆ
ien
y, we 
ompute the equation in a narrowbanden
losing the 0 level of the level set fun
tion [40, 41℄. We also use multiresolution te
hniquesby making the a
tive 
ontour evolve �rst in a low resolution image. The �nal 
ontourobtained for this redu
ed image is then used as an initial 
urve for the real size image.Another possibility for in
reasing eÆ
ien
y would be the use of AOS s
hemes [43℄7.2 Experimental resultsExperimental results have been obtained on the sequen
e \Erik" from the European groupCOST211. The region of interest is the fa
e. We assume that it has been segmented in the�rst image as shown in Fig.1.a. The �rst two referen
e histograms are 
omputed. Thesetwo histograms are represented in Fig.1.b using di�erent 
olors for ea
h of the two regions.The referen
e histogram for the fa
e, q, is shown in red while the referen
e histogram forthe ba
kground, q
, is shown in green. For a given region 
, and for a point � = [�1; �2℄T ,the fun
tion q̂(�;
) represents the probability to obtain Y (x) = �1 and H(x) = �2 for xbelonging to the region 
.Then, using the two referen
e histograms of the previous frame, we make the a
tive
ontour evolve using equation (25) in the 
urrent frame. The initial 
urve is 
hosen to be a
ir
le. The evolution of the a
tive 
ontour in the 
urrent frame is shown in Fig.2. We 
annoti
e that the �nal 
ontour in Fig.2.b ni
ely des
ribes the region of interest, and the fa
eis a

urately segmented38 Con
lusionIn this arti
le we have 
lari�ed the relationships between the boundary and region fun
tionalsthat arise naturally in several image pro
essing tasks. We have shown that one 
an go fromone to the other by solving Poisson's equation with Diri
hlet 
onditions or Helmholtz'sequation with Neumann 
onditions.3In order to obtain a better �nal segmentation, the histograms are sharpened by the fun
tion ' : [0; 1℄!R+ de�ned by '(x) = 1� exp(�
1 � x), where 
1 is a positive 
onstant. This amounts to repla
ing q and q̂by '(q) and '(q̂) and renormalizing them so that they remain pdfs.
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Hue

Luminance

(0,0)

a. Referen
e segmentation b. Referen
e histogramsFigure 1: The referen
e segmentation of the previous frame (a) and the two referen
e his-tograms, q, in red for the fa
e, and q
 in green for the ba
kground (b).We have then 
on
entrated on the problem of �nding lo
al minima of a large 
lass ofregion fun
tionals. By �rst transforming them into boundary fun
tionals and applying meth-ods from the 
al
ulus of variations we have 
omputed the 
orresponding Gâteaux derivativesand 
onstru
ted a velo
ity �eld on the region boundary. This �eld de�nes a PDE whosesolution, for a given initial boundary, generates a one-parameter family of regions whi
h, inpra
ti
e, 
onverges toward a lo
al minimum of the fun
tional. The problem of the existen
eand uniqueness of a solution to this PDE has not been addressed.Changing our point of view, we have then re-derived the same equations in a simplerand more natural way, i.e. without going through the trouble of turning region integralsinto boundary integrals; this is a
hieved by applying methods of shape derivation [42, 16℄.We have then turned our attention to a new 
lass of region-based fun
tionals by 
on-sidering histograms of image features. The shape derivation tools have allowed us to easilyderive the velo
ity �eld that de�nes the evolution of the region boundary.The �nal part of the paper has been devoted to an appli
ation of the previous methodsto the problem of region segmentation with a given 
olor histogram in a sequen
e of images.Our experimental results show that the te
hnique has indeed some interesting potentials.A
knowledgementsWe thank Ra
hid Deri
he for his helpful 
omments on an early draft of this do
ument. Wealso thank Gerardo Hermosillo for providing us with his software pa
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a. Initial 
ontour

b. Final ContourFigure 2: Evolution of the a
tive 
ontour on the 
urrent frame number using the two refer-en
e histograms of the previous frame
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