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Adaptive Fuzzy Segmentation of
Magnetic Resonance Images

Dzung L. Pham,Student Member, IEEE, and Jerry L. Prince,*Member, IEEE

Abstract—An algorithm is presented for the fuzzy segmentation
of two-dimensional (2-D) and three-dimensional (3-D) multispec-
tral magnetic resonance (MR) images that have been corrupted
by intensity inhomogeneities, also known as shading artifacts. The
algorithm is an extension of the 2-D adaptive fuzzyCCC-means al-
gorithm (2-D AFCM) presented in previous work by the authors.
This algorithm models the intensity inhomogeneities as a gain
field that causes image intensities to smoothly and slowly vary
through the image space. It iteratively adapts to the intensity
inhomogeneities and is completely automated. In this paper, we
fully generalize 2-D AFCM to three-dimensional (3-D) multispec-
tral images. Because of the potential size of 3-D image data,
we also describe a new faster multigrid-based algorithm for its
implementation. We show, using simulated MR data, that 3-D
AFCM yields lower error rates than both the standard fuzzy
CCC-means (FCM) algorithm and two other competing methods,
when segmenting corrupted images. Its efficacy is further demon-
strated using real 3-D scalar and multispectral MR brain images.

Index Terms—Clustering methods, fuzzy sets, image segmen-
tation, magnetic resonance imaging.

I. INTRODUCTION

T ISSUE classification is a necessary step in many med-
ical imaging applications, including the quantification

of tissue volumes, the detection of pathology, and computer
integrated surgery. Classification of voxels exclusively into
distinct classes, however, is difficult because of artifacts such
as noise and partial volume averaging, where multiple tis-
sues are present in a single voxel. To compensate for these
artifacts, there has recently been growing interest in soft
segmentation methods [1]–[3]. In soft segmentations, voxels
may be classified into multiple classes with a varying degree
of membership. The membership thus gives an indication of
where noise and partial volume averaging have occurred in
the image. Standard soft segmentation algorithms, however,
cannot effectively compensate for intensity inhomogeneities,
a common artifact in magnetic resonance (MR) images.
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In MR images, intensity inhomogeneities are typically
caused by nonuniformities in the RF field during acquisition,
although other factors also play a role [4], [5]. Similar
artifacts also occur in computed tomography images, due
to beam hardening effects, as well as in microscopy and light
photography, due to nonuniform illumination. The result is
a shading effect where the pixel or voxel intensities of the
same tissue class vary over the image domain. It has been
shown that the shading in MR images is well modeled by the
product of the original image and a smooth slowly varying
gain field [6], [7]. Typically, corrupted images are segmented
using either a two-step approach or a segmentation algorithm
that simultaneously classifies the voxels while compensating
for the shading effect.

In the two-step approach, the image is first corrected to
remove intensity inhomogeneities. This correction is then
followed by a standard segmentation algorithm that assumes
no inhomogeneity is present. Numerous methods have been
proposed in the literature to perform the correction step.
Several research groups have used homomorphic filtering
in an attempt to remove the multiplicative effect of the
inhomogeneity [8]–[10]. It was shown in [10], however, that
homomorphic filtering can sometimes distort an image rather
than correct it. In their work, Dawantet al. [6] used manually
selected reference points in the image to guide the construction
of a spline correction surface. Meyeret al. [11] used an edge-
based segmentation scheme to find uniform regions in the
image, followed by a polynomial surface fit to those regions.
Sled et al. [12] corrected the inhomogeneity by estimating a
gain field that sharpens the histogram of the image. The latter
three methods used either disconnected regions in the original
image or a subsampled image to estimate the gain field, thereby
not taking advantage of all available image data. In [13], Lee
and Vannier corrected -weighted scans using an extension of
the fuzzy -means (FCM) algorithm. Images were segmented
into two classes, consisting of background and nonbackground
and the mean of the nonbackground class was allowed to vary,
using filtered estimates computed within a local neighborhood.

Several methods have also been proposed that simultane-
ously compensate for the shading effect while segmenting the
image. These methods have the advantage of being able to
use intermediate information from the segmentation while per-
forming the correction. Markov random field-based algorithms
have been proposed that account for inhomogeneities by allow-
ing the centroids of each class to vary independently [14]–[16].
Unser [17] proposed an adaptive -means algorithm that
also allowed the centroids to vary independently, according
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to a first-order regularization term. Only hard segmentations,
however, were obtained with these methods.

Wells et al. [7] proposed an expectation-maximization al-
gorithm that modeled the inhomogeneities as a bias field of
the image logarithm. This method was later extended in [18].
The Wellset al. method iterates between a classification step
and a step to estimate the inhomogeneity, using an approxi-
mate spatially invariant, low-pass filter. Because training data
obtained through manual interaction is required to model the
distributions of the tissue intensities, it is a supervised method
[1]. Their method is capable of obtaining soft segmentations
based on posterior probabilities.

In a recent letter [19], we presented some initial results
on an unsupervised segmentation algorithm called the two-
dimensional (2-D) adaptive fuzzy -means algorithm (2-D
AFCM), designed for segmenting 2-D scalar images corrupted
by intensity inhomogeneities. Based on FCM [20], [21], the
advantages of 2-D AFCM are that it automatically produces
soft segmentations, it is robust to inhomogeneities, and it
computes a smooth gain field based on all pixels in the image.
Although this algorithm is suitable for the segmentation of
MR images obtained using single or multislice acquisitions,
it cannot be used in volumetric acquisitions where the in-
homogeneities are three-dimensional (3-D) in nature or on
multispectral data. In this paper, we generalize AFCM to
3-D multispectral images. Our generalization also allows for
the adjustment of the hardness or fuzziness of the resulting
segmentation and for the segmentation of data with ellipsoidal-
shaped clusters. A novel algorithm is presented for computing
the gain field, which typically yields a threefold improvement
in speed over a standard multigrid approach, without reducing
accuracy. This speed improvement is especially significant
when working with large 3-D data sets.

It was shown in [19] that 2-D AFCM segments images
corrupted by inhomogeneities as accurately as FCM segments
uncorrupted images. The accuracy of the FCM segmenta-
tion itself, however, was not quantified. We provide in this
paper several new results using simulated data that show
that the segmentations obtained using FCM on uncorrupted
images and AFCM on corrupted images are indeed accurate
in terms of classification and modeling of partial volume
effects. Moreover, we show that, under default initializations,
AFCM’s performance on corrupted 3-D images is superior to
the performance of the methods presented in [12] and [15].

II. BACKGROUND

In this section, we give a brief overview of FCM and
2-D AFCM. FCM has been used with some success in the
soft or fuzzy segmentation of MR images [22]–[24], as well
as for the estimation of partial volumes [3]. It clusters data
by computing a measure of membership, called the fuzzy
membership, at each voxel for a specified number of classes.
The fuzzy membership function, constrained to be between
zero and one, reflects the degree of similarity between the
data value at that location and the prototypical data value or
centroid of its class. Thus, a high membership value near unity
signifies that the data value at that location is close to the
centroid for that particular class.

FCM is formulated as the minimization of the following
objective function with respect to the membership functions
and the centroids [1], [21]:

(1)

Here, is the set of voxel locations in the image domain,
is a parameter that is constrained to be greater than one,

is the membership value at voxel locationfor class
such that , is the observed (multispectral)
image intensity at location, and is the centroid of class
. The total number of classes is assumed to be known.

The parameter is a weighting exponent on each fuzzy
membership and determines the amount of fuzziness of the
resulting classification. For , reduces to the
classical within-group sum of the squared errors objective
function and FCM becomes equivalent to the-means or
ISODATA clustering algorithms [21]. A commonly used value
is [22], [24], [25]. The operator is any inner
product norm on , where is the number of channels or
spectra in the image and . By specifying the
appropriate norm, FCM can be applied to data that possess
ellipsoidal shaped clusters, although typically the Euclidean
norm is used.

The FCM objective function (1) is minimized when high
membership values are assigned to voxels whose intensities
are close to the centroid for its particular class and low
membership values are assigned when the voxel intensity is
far from the centroid. Taking the first derivatives of (1) with
respect to and and setting those equations to zero yields
necessary conditions for (1) to be minimized. Iterating through
these two necessary conditions leads to a grouped coordinate
descent scheme for minimizing the objective function [20],
[21]. This is the standard FCM algorithm. The resulting fuzzy
segmentation can be converted to a hard or crisp segmentation
by assigning each voxel solely to the class that has the
highest membership value for that voxel. This is known as a
maximum membership segmentation. The advantages of FCM
are that it is unsupervised (i.e., it does not require training
data) and it is robust to initial conditions when applied to
data with well-separated clusters [26]. However, FCM assumes
that the centroids of the image are spatially invariant, which
is not true of images that have been corrupted by intensity
inhomogeneities.

In order to preserve the advantages of FCM, we proposed
the following objective function [19], [27] for segmenting 2-D
scalar images possessing intensity inhomogeneities:

(2)
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where is the (scalar) pixel intensity, is the centroid,
is an unknown gain field, is a (known) finite difference
operator along theth dimension of the image. The notation

refers to the convolution of with the kernel and
taking the resulting value at theth pixel. Equation (2) models
the brightness variation of the inhomogeneity by multiplying
the centroids by the gain field . The last two terms are first-
and second-order regularization terms used to ensure that
is spatially smooth and slowly varying. The finite difference
operators act like derivatives, except that they are performed
on a discrete domain. AFCM, like FCM, does not place any
assumption of spatial smoothness on the membership functions

. Note that because assumes scalar data, the norm
operator in (1) does not come into play. In addition, values of

and 3-D images are not considered in [19].
Note the similarities between (1) and the AFCM objective

function. The differences lie in the inclusion of the gain
field within the norm operator and the addition of two
regularization terms on. If we assume that the membership
values and the centroids are known, then the gain field that
minimizes is the field that makes the centroids close
to the data, but is also slowly varying and smooth. Without
the regularization terms, a gain field could always be found
that would set the objective function to zero. If and
are set sufficiently large, then the gain field is forced to be
constant and the AFCM objective function essentially reduces
to a special case of the standard FCM objective function. In
[19], (2) was minimized by taking its first partial derivatives
with respect to , , and , and iterating through these three
necessary conditions. The necessary condition onyields
a space-varying difference equation that was solved using a
standard multigrid approach (see Section III-C).

III. A DAPTIVE FUZZY -MEANS

In this section, we generalize the AFCM objective function
to 3-D multispectral images and describe an algorithm for
minimizing the objective function. We also describe an im-
plementation that yields much faster results than the standard
multigrid approach.

A. Objective Function

When working with multispectral MR data corrupted by
intensity inhomogeneities, there are two possible assumptions
one can make about the gain field: 1) the gain field is a scalar
field and 2) the gain field is a vector field. The first assumption
implies that the brightness variation in each component or
spectrum of the acquired image is identical, while the second
assumes that they can be different. In [4], it was found that for
spin-echo acquisitions, the inhomogeneity was nearly identical
for different pulse echo times (TE) when using a body coil,
but not identical when using a head coil. This indicates that
in different situations, either assumption might be appropriate.
We therefore consider both cases.

If a scalar gain field is assumed, we define AFCM to be
an algorithm that seeks to minimize the following objective
function with respect to membership functions, the centroids

, and the gain field :

(3)

This equation is applicable to 2-D images when and to
3-D images when . For , , and scalar image
data, (3) reduces to the 2-D AFCM objective function given
in (2). If the gain field is assumed to be a vector field, then
we use the following objective function:

(4)

where is a diagonal matrix whose entries are equal to the
components of the component vector at each voxel .
The notation means theth component of the vector.

In practice, we have found in double-echo MR data that the
scalar gain field assumption provides nearly identical results
to the vector gain field assumption and is also faster, requiring
fewer computations. Furthermore, the algorithm derived from
the scalar case is notationally cleaner and therefore more easily
explained. For these reasons, we focus mainly on the scalar
assumption for the remainder of this paper. Equations for the
vector case are similar and are provided in Appendix A.

The scalar gain field objective function in (3) can
be minimized by taking the first derivatives of with
respect to , , and , setting them equal to zero, and
iterating through these three necessary conditions for
to be at a minimum. This yields the following algorithm (the
equations for which are derived in Appendix B).

Algorithm 1—AFCM:

1) Provide initial values for the centroids
and set the gain field equal to one for

all .
2) Compute membership functions as follows:

(5)

for all and .
3) Compute new centroids as follows:

(6)
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4) Compute a new gain field by solving the following
space-varying difference equation for:

(7)

where the convolution kernels and are given by

(8)

(9)

where is the mirror reflection of the finite difference
operator . and are given explicitly in Appendix
C for 2-D and 3-D images.

5) If the algorithm has converged, then quit. Otherwise, go
to Step 2.

We define convergence to be when the maximum change
in the membership functions over all pixels between iterations
is less than a given threshold value. In practice, we used a
threshold value of 0.01. Methods for determining initial cen-
troids in Step 1 are described in Section III-B. The solution to
the difference equation in Step 4 is described in Section III-C.

B. Initial Centroids

AFCM requires an initial estimate of centroid values. Proper
selection will generally improve accuracy and convergence
of the algorithm. We propose two methods for automatically
selecting initial centroids. The first method may be applied
generally to all scalar data, while the second method is specific
to multispectral MR images.

If the given data is scalar-valued, then one can apply the
approach described in [19] and [27], where the modes of a
critically smoothed kernel estimator of the image histogram
are used to determine the initial centroids. The approach is
essentially the same as the bump-hunting algorithm described
by Silverman in [28]. Briefly, a kernel estimator of the
histogram is smoothed in an iterative fashion until it possesses
a number of modes equal to the desired number of classes.
These modes are then numerically computed, using first and
second derivatives of the kernel estimator, and are used as
initial centroids.

For multispectral data, manipulation of a multidimensional
kernel estimator can be computationally prohibitive. In this
case, one can obtain initial centroids by applying the approach
described in [22]. This approach requiresa priori knowledge
of the approximate , , and proton spin density of the tissue
classes being segmented. Most of these values for different
tissue classes have been documented in the literature (cf. [29]).
These values can then be used in an imaging equation derived
for the corresponding pulse sequence (e.g., spin echo) to obtain
expected intensity values. This rough initialization is normally
sufficient for AFCM to yield good convergence properties.

C. Solution to the Gain Field

In Step 4 of AFCM, a new gain field is computed given
the current values of the centroids and membership functions.
This is the most time-consuming step in AFCM and deserves
special attention in its numerical implementation. Because the
difference equation (7) is space varying, the gain field cannot
be found using standard frequency domain filters. The equation
could be solved iteratively using the Jacobi or Gauss–Seidel
schemes [30], [31], but these methods take a large number
of iterations to converge. In [19] and [27] this equation was
solved, using a standard multigrid algorithm at each iteration
of AFCM (for a general overview of multigrid algorithms, see
[17] or [31]). For 2-D images, this approach is sufficiently
fast, but for large 3-D images, execution times can grow to
several hours. We now describe a modified multigrid algorithm
that yields significantly faster overall execution time, without
loss of accuracy. Its premise is that during early iterations
of AFCM, only an approximate solution to the gain field is
required. Thus, a subsampled solution is used and later refined
as the number of iterations increases.

To see how (7) can be solved efficiently, we first write it in
matrix form. We begin by defining the functionsand to be

(10)

(11)

Then, (7) can be written as

(12)

where and have as their elements and , respec-
tively, stacked in vector form, is a diagonal matrix with
as its diagonal elements, and and are matrix versions
of and . Defining , we see
that the objective is to find that solves . If is
decomposed as , where is diagonal, is
lower triangular, and is upper triangular, then the weighted
Jacobi iteration is given by [31]

(13)

where is the identity matrix, and is a weighting parameter
(in practice, set to 0.3 and not changed). To solve (12)
efficiently, we apply Jacobi iterations in a multigrid-based
scheme. Computational complexity is drastically reduced by
replacing the iterations that would normally take place on a
fine grid with iterations on a coarse grid.

The basis of a multigrid algorithm is the coarse grid correc-
tion scheme, where an estimate of the solution is refined by
approximating the error of the estimate on a coarse grid, then
updating the estimate with the error. If is an approximate
solution to , the error is defined as .
Then the error itself satisfies

(14)
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where is called the residual. Thus, the error
satisfies an equation of the same form as the equation for
and can be approximated by applying Jacobi iterations at a

resolution lower than the original resolution of. The coarse
grid correction scheme is summarized as follows.

Algorithm 2—Coarse Grid Correction Scheme:

1) Given an initial guess of the solution, performJacobi
iterations on and assign the result to .

2) Compute a coarse grid residual by computing
followed by a REDUCE operation.

3) Solve for the coarse grid error by performing Jacobi
iterations on the error equation .

4) Apply an EXPAND operator to the error and update the
fine grid estimate .

5) Perform Jacobi iterations on with the
updated as the initial estimate.

A REDUCE operator is a transformation from a high-
resolution representation to a representation with half the
resolution along each axis, and an EXPAND operator is a low-
to-high resolution transformation. Our 3-D REDUCE operator
is simply the replacement of each eight-pixel (22 2)
neighborhood with the average of the neighborhood. Our 3-D
EXPAND operator is the replication of each low-resolution
pixel to an eight-pixel neighborhood. By iteratively applying
these operators, a multigrid pyramid is formed, as illustrated
in Fig. 1(a). The superscripts in Algorithm 2 are used to
denote the pyramid level of the vector or operator. Level zero
represents the original resolution of the image. The operator

at a pyramid level other than zero is determined simply by
performing a REDUCE operation on the diagonal elements of

. Since and represent spatially invariant operators,
these are well-defined at any resolution.

A -cycle is a recursion of the coarse grid correction upon
itself to coarser resolutions. In other words, the error (14) also
has its own error that can be solved using an embedded coarse
grid correction and this is repeated for multiple resolutions. A
full multigrid cycle is a sequence of cycles which is
first initialized by repeatedly applying Step 2 of Algorithm
2 until the top of the multigrid pyramid is reached. It then
performs a sequence of cycles that increase in resolution
levels until the bottom of the pyramid is reached. A four-level
full multigrid cycle is illustrated in Fig. 1(b). By the time
the original resolution has been reached, the algorithm has
typically converged to its final solution.

In [19] and [27] the gain field was computed by applying
one full multigrid cycle at each iteration of 2-D AFCM.
For 3-D images, we propose a new faster method that takes
advantage of the fact that during early iterations of AFCM,
the estimates of the centroid and membership functions are
poor and an exact solution to the gain field is not necessary.
We define a truncated multigrid cycle at level to be a
full multigrid cycle that terminates the first time theth
pyramid level is reached. In Fig. 1(b), the termination points
of a truncated multigrid cycle are shown as open circles. For
a truncated multigrid cycle at level , the estimated gain
field is an approximation of the final solution on a coarse
grid but it can be computed quickly. The implementation

(a)

(b)

Fig. 1. Multigrid. (a) A four-level multigrid pyramid. (b) A full multigrid
V cycle.

of AFCM, using a truncated full multigrid cycle, proceeds
as follows.

Algorithm 3—AFCM Using Truncated Multigrid Cycle:

1) Set the size of the multigrid pyramid to some value.
Set .

2) Run the entire AFCM algorithm until convergence, using
a truncated multigrid cycle at level to solve for the
gain field at each iteration.

3) If , decrease by one. Using the most recent
values of and as initial values, go to Step 2.
Otherwise, if , terminate.

This modified multigrid algorithm greatly increases the
speed of AFCM during its early iterations. As the number
of iterations increases, the truncation level reduces toward the
original resolution and the iterations become slower. If a result
is required quickly, one can terminate Algorithm 3 at some
value of . This provides an approximation of the final
solution and, as we show in Section IV, the approximation
error decreases rapidly as the resolution increases.

IV. RESULTS

AFCM was implemented in C on a Silicon Graphics O2
system with an R10000 processor running IRIX 6.3. It has
been tested on both real MR data as well as simulated
MR brain images obtained from the Brainweb simulated
brain database at the McConnell Brain Imaging Center of
the Montreal Neurological Institute, McGill University [32].
Simulated brain data sets of varying noise, inhomogeneity, and
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(a) (b)

(c) (d)

Fig. 2. FCM and AFCM membership functions. (a) Simulated MR phantom. (b) GM partial volume truth model. (c) FCM GM membership function.
(d) TM-AFCM GM membership function.

contrast are available on the World Wide Web at the website
listed in the references section. The inhomogeneity in these
data sets was simulated by multiplying the image by an RF
field recovered from an actual MR scan [32].

In this section, we present the application of AFCM only
to 3-D brain images. For 2-D results, readers are referred
to [19]. Extracranial tissues were removed from all images
prior to applying any segmentation algorithm. For the real
MR data, this was performed using a semiautomated technique
described in [33]. In all results that follow, the value of
was set to two and the standard Euclidean distance norm was
used. We denote the AFCM results computed with the full
multigrid cycle as FM-AFCM and the results computed
with the truncated multigrid cycle as TM-AFCM. Using
FM-AFCM, execution times for a 3-D -weighted MR data
set with 1-mm cubic voxels are typically between 45 min
and 3 h. Using TM-AFCM, execution times are between
10 min and 1 h. Quantitative evaluation indicates that this

speed increase is not achieved at the cost of segmentation
accuracy.

A. Visual Evaluation of Performance on Simulated Data

Fig. 2 shows the results of applying FCM and AFCM on a
Brainweb simulated MR brain image. This brain image was
simulated with -weighted contrast, 1-mm cubic voxels, 3%
noise, and 40% image intensity inhomogeneity. The number
of tissue classes was assumed to be three, corresponding to
gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) tissue classes. Background pixels were ignored.
Fig. 2(a) shows a slice from the simulated data set and
Fig. 2(b) shows the true partial volume model of the GM
tissue class that was used to generate the simulated image.
Fig. 2(c) and (d) shows the GM membership function obtained
by applying FCM and TM-AFCM, respectively, to the 3-D
data set. Because of the shading effect present in the data, the
FCM membership function deteriorates near the bottom of the
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(a) (b)

(c) (d)

Fig. 3. Comparison of hard segmentations. (a) Truth model. (b) FCM max membership segmentation. (c) AMRF segmentation. (d) TM-AFCM max
membership segmentation.

image. The AFCM result, however, shows less speckling at
the bottom of the image and is very similar to the true partial
volume image. Both results do, however, show some overall
grain because of the effects of noise and because no constraint
on spatial smoothness is placed on the membership functions
in FCM or AFCM.

Fig. 3 shows the results of three different segmentation
algorithms applied to the same data set described in the
previous example. Fig. 3(a) shows the true hard segmentation
of the simulated data. CSF is labeled as dark gray, GM as light
gray, and WM as white. Fig. 3(b)–(d) shows the maximum
membership segmentation produced by FCM, the segmenta-
tion produced by the adaptive Markov random field (AMRF1)
method used in [15] and [33], and the maximum membership
segmentation produced by TM-AFCM, respectively. Clearly,
the AFCM segmentation is most similar to the truth model.
Both the FCM and AMRF results segment much of the WM as
GM near the bottom of the image. The AMRF segmentation is

1This method is also very similar to the one described in [16].

TABLE I
ERROR MEASURES FROMSIMULATED DATA RESULTS

also spatially smoother than the other methods. This is because
it takes into account pixel dependency, while both FCM and
AFCM classify pixels independently.

B. Quantitative Evaluation of Performance on Simulated Data

Table I summarizes error measures resulting from applying
the FCM, FM-AFCM, TM-AFCM, and the AMRF algorithms
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to Brainweb simulated -weighted data sets (1-mm cubic
voxels, 3% noise) with varying levels of inhomogeneity. Errors
were also computed from applying the unsupervised EM
algorithm for finite Gaussian mixture models [34]. EM1 refers
to the standard model and EM2 refers to the model where vari-
ances and mixture coefficients are assumed equal. The latter
model was used, since it is conceptually and algorithmically
similar to FCM, iterating between estimating the mean of each
tissue class and computing a soft segmentation. In addition, er-
ror measures were also computed for a segmentation obtained
by first applying the inhomogeneity correction software
[12] obtained from the Montreal Neurological Institute, then
applying FCM. The results of this method are given in the
row labeled MNI-FCM. Errors for intermediate results of TM-
AFCM at each resolution level are shown in the rows labeled
TM -AFCM, which stands for truncated multigrid AFCM at
level . Two error measures were used. The first measure was
the mean squared error (MSE) between the true GM partial
volume and the GM fuzzy membership function. The second
error measure was the misclassification rate (MCR), defined as
the number of pixels misclassified by the algorithm divided by
the total number of pixels in the image. For FM-AFCM and
TM-AFCM, the parameters and were fixed to a default
value of 2 10 and 2 10 , respectively. Default parameters
were also used for all other segmentation methods.

Columns 1–3 show the MSE resulting from segmenting
data sets with 0, 20, and 40% inhomogeneity, respectively.
Similarly, columns 4–6 show the MCR for the same respective
data sets. The MSE columns show that AFCM is capable
of estimating partial volume coefficients with a reasonable
accuracy, even in the presence of inhomogeneities. MSE errors
for the EM methods were computed based on their posterior
probability estimates. These probabilities tend to be too hard
for -weighted data, however, and this is reflected in the
higher errors. Although none of these methods explicitly model
partial volume effects, it has been shown in previous work
that FCM can behave similarly to partial volume estimation
approaches [35].

The MCR columns show that as the inhomogeneity is
increased, the errors for all methods also increase. However,
the AFCM methods are much more robust to increased inho-
mogeneity than the other methods, with TM-AFCM achieving
slightly lower errors than FM-AFCM. In the case of 40%
inhomogeneity, AFCM provides an improvement of nearly
50% over FCM, nearly 30% over the MRF methods, and
over 10% over the MNI-FCM method. At zero inhomogeneity,
both the FCM and AMRF methods perform slightly better
than AFCM, while AMRF yields the lowest error. This is
expected since the AMRF method provides some smoothing
of noise, while FCM and AFCM do not. The increase in error
of AFCM over FCM in the zero inhomogeneity case is due
to the additional freedom of the gain field. This effect is also
seen in the errors resulting from the MNI-FCM method. One
could easily reduce the error by increasing the regularization
terms if the amount of inhomogeneity was known to be low.
The difference in error is small, however, and, overall, AFCM
performs well on images of varying inhomogeneity, without
the need for modifying the regularization parameters. Note that

TABLE II
MISCLASSIFICATION RATE AS A FUNCTION OF �1 AND �2

one can potentially achieve much lower errors in each of the
AFCM, AMRF, and MNI-FCM methods if more information
about the inhomogeneity is knowna priori, thereby allowing
some tailoring of their parameters.

Results of the TM-AFCM algorithm using theth pyramid
level estimate show that in the 20 and 40% inhomogeneity
cases the error is reduced rapidly asis decreased. Because
the gain field is slowly varying and spatially smooth, the
difference in error between the level one and level zero results
is small. However, in the zero inhomogeneity case, the error
is actually increased. This is, again, because each increase
in resolution adds additional degrees of freedom in how
the multiplier field can vary. Note also that the TM-AFCM
algorithm actually produces lower errors than FM-AFCM. We
speculate that the slow increase in resolution provided by FM-
AFCM allows it to avoid local minima in the AFCM objective
function better than TM-AFCM. Further comparisons between
the two approaches are discussed in Section IV-F.

C. Variation of Regularization Parameters

Table II shows the MCR after applying TM-AFCM to
the simulated data set (1-mm cubic voxels, 3% noise, 20%
inhomogeneity) when varying the regularization parameters

and . The 20% inhomogeneity was used because this is
the default setting of the Brainweb database and is likely to be
the level of inhomogeneity encountered in most-weighted
MR acquisitions. The table shows that even if the parameters
are varied by an order of magnitude higher or lower than the
optimal values, AFCM will still yield lower errors than FCM.
For those values tested, the error was rarely significantly larger
than the FCM error. However, the lowest error obtained was
never lower than the FCM error on the zero inhomogeneity
image (see Table I). Selecting larger values for and
generally leads to more conservative results, since AFCM
reduces to FCM in this case.

D. Correction of Inhomogeneities

Fig. 4 shows the results of using AFCM to correct the
inhomogeneity in an actual 3-D -weighted MR image data
set. Fig. 4(a) shows a slice from the original data set. Fig. 4(b)
shows the same slice after correction by AFCM. The correc-
tion was obtained by multiplying the original image by the
reciprocal of the estimated gain field. The corrected image
does not exhibit the left to right shading present in the original
image. Fig. 4(c) shows the computed gain field for that slice.
The gain field is actually computed everywhere in the image
domain but, for visual purposes, it has been masked by the
brain area. Note the bright area on the upper left quadrant of
the image has been captured by the gain field.
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(a) (b)

(c)

Fig. 4. Correction of inhomogeneity using TM-AFCM. (a) Slice from original MR image. (b) MR slice after AFCM correction. (c) Gain field
computed using AFCM.

Fig. 4(d) and (e) shows histograms of the slice before
and after the correction has been performed. On a typical
histogram of an uncorrupted MR image, three modes are
present corresponding to (from left to right) CSF, GM, and
WM. The original histogram in Fig. 4(d), however, exhibits
an additional mode around an intensity of 80 that corresponds
to the bright WM on the upper left of the image slice. The
corrected histogram does not possess this additional mode and
also shows a significant improvement in contrast between the
modes corresponding to GM and WM.

E. Multispectral Data

Fig. 5 shows the results of FCM and TM-AFCM when
applied to a spin-echo [ -weighted and proton spin density
(PD) weighted] multispectral MR data set. Fig. 5(a) and (b)
shows a PD-weighted and the corresponding-weighted
slice, respectively, from the data set. Fig. 5(c) and (d) shows
the GM membership functions computed by FCM and AFCM,
respectively. One can see that the FCM membership function
has a noticeable fading on the left side. There is also an
increase in noise in the FCM membership function on the right
side of the image. The AFCM membership function, however,
is markedly cleaner from noise and does not exhibit the same

fading. Fig. 5(e) and (f) shows the contour of where the GM
membership function is equal to the white matter membership
function, overlayed on the PD-weighted slice. The inhomo-
geneity has the effect of shifting the boundaries between tissue
classes. On the upper right-hand side of the image, the FCM
contour has shifted inward toward the center of the image,
while on the left of the image, the contour has shifted out-
ward. The AFCM contour however, conforms to the GM-WM
boundary, as seen on the original images much more accu-
rately. Note that the ring of gray matter outside the brain region
is due to errors in the brain extraction preprocessing step.

The vector gain field version of AFCM (see Appendix A)
was also applied to the same data set. Although differences
between the vector gain field segmentation and scalar gain field
segmentation were negligible in this case and in most other
data to which we have applied AFCM, the PD-weighted com-
ponent of the estimated vector gain field typically possessed
greater variation. This topic requires further investigation.

F. Comparisons of Truncated and Full Multigrid Approaches

In this section, the behavior of the AFCM objective function
under the full and truncated multigrid approaches is examined.
The objective function was evaluated at each iteration using
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(d)

(e)

Fig. 4. (Continued.) Correction of inhomogeneity using TM-AFCM. (d) Histogram of slice before correction. (e) Histogram after correction.

both approaches for the McGill phantom data set with 3%
noise and 20% inhomogeneity, as well as a real 3-D-
weighted MR data set with 1-mm cubic voxels. Fig. 6(a)
and (b) plots the objective function over time for these two
data sets, respectively. Each data point marker on the plots
represents the value of the objective function taken after each
iteration of AFCM. The full multigrid AFCM curves possess
uniform spacing between each marker, since each iteration
requires equal computational expense. On the other hand, the

truncated multigrid results show increased spacing between
markers as it moves from coarser resolution levels to finer
levels. At the finest resolution, both methods require an equal
amount of time for each iteration.

Both plots show that during early iterations of AFCM, the
objective function decreases much more rapidly using the
truncated multigrid approach. This is because the truncated
method quickly computes an approximation of the gain field,
allowing for more iterations of AFCM to take place and
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. FCM versus AFCM for double-echo MR data. (a) Slice from PD-weighted MR image. (b) Slice fromT2-weighted MR image. (c) FCM GM
membership function. (d), TM-AFCM GM membership function. (e) FCM isocontour superimposed on PD-weighted image. (f) TM-AFCM isocontour
superimposed on PD-weighted image.

yielding better estimates of the membership functions and
centroids. In the case of Fig. 6(b), the objective function
began to flatten horizontally during the later iterations at
level three, but upon switching to level two, it resumed a
steeper slope. The truncated multigrid approach also achieves a
lower minimization of the objective function, even though both

methods use the same stopping criterion (see Section III-A).
This corroborates the results in Section IV-B, where the trun-
cated multigrid approach achieved slightly lower segmentation
errors than the full approach. For both examples shown,
decrease in the objective function was monotonic for both full
and truncated multigrid approaches. Note that the data set used
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(a)

(b)

Fig. 6. Plots of objective function over time for FM-AFCM and TM-AFCM: application to (a) phantom data with 3% noise, 20% inhomogeneity and
(b) real T1-weighted MR data set.

to generate Fig. 6(b) possessed lower levels of inohomogeneity
than the phantom data and, thus, fewer iterations of AFCM
were required.

V. DISCUSSION

It was shown in Section IV-B that AFCM was more ro-
bust to intensity inhomogeneities than two other established
methods. Because the gain field is computed at every point

in the image, AFCM has a potential advantage over these
methods and other similar methods that use subsampling or
regression techniques to compute the gain field (cf. [11], [12],
[14], [16]). Although the inhomogeneities are typically slowly
varying, there can be specific regions in the image where the
inhomogeneities vary more quickly. This can be difficult to
characterize when the field is subsampled. The key to the
robustness of AFCM lies in the spatially varying difference
equation (7), which governs how the gain field is estimated.
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To better understand the action of (7) it is helpful to view
it as a smoothing filter. If the membership functions and
centroids are assumed to be known, then (7) can be shown
to be a necessary condition for the solution of the variational
problem

(15)

where the functions and were defined in Section III-C. We
refer to the first term in (15) as the data term and the last two
terms as the smoothing terms. Thus, the difference equation
governing the gain field can be seen as a smoothing of the
function where is a weighting function that controls where
the gain field should be close to. In areas of the image where

is large relative to and , the data term dominates and
is forced to be equal or close to . On the other hand,

where is small, then the smoothing terms dominate and
is forced to be equal or close to the value of its neighbors.

The function is essentially a function of the ratios of the
observed intensity to the centroids. This is more easily seen
when considering the special case when for some

and is a scalar. In this case, ,
the observed intensity divided by the centroid. In an ideal
image, the intensity of each class would be constant and equal
to the centroid. Thus, any gain field effect could be computed
using this ratio. The membership functions weight the ratio
according to which centroid the observed intensity is closest.

The function is small when the membership functions
are low for all classes, implying that the intensity is an
outlier. This corresponds to either partially volume-averaged
pixels or pixels originating from unconsidered tissue classes.
The smoothing terms therefore dominate in these areas of
the image. The function also has a dependency on the
magnitude of the centroid vectors. This property originates
from the AFCM objective function (3) and the desire to
minimize . When the magnitude of a centroid is
large, small variations in result in a larger normed difference
than when the centroid is small. Thus, a greater weight is
necessary on the data term to equalize the differences. The
reason why this dependence is necessary is because classes
with higher intensity will locally possess a higher signal-to-
noise ratio than classes with lower intensity. Thus, gain field
estimates from areas of the image with higher intensity can be
trusted more than estimates from areas of low intensity.

The spatially varying nature of (7) simplifies dealing with
boundary conditions. In MR images, it is common to attempt
to segment an object such as a brain surrounded by empty
space. Thus, boundary conditions can become a problem with
spatially invariant filtering methods since it is undesirable to
blur the background with the object. In [8] and [9] it was
necessary to fill the background with the average intensity
of the object, while in [7] a predefined region of interest was
required in certain cases. In AFCM, when a background tissue
class with a centroid approximately equal to zero is used,

is automatically set to zero outside the object of interest. Thus,
the background plays little or no role in the data term of (15).

It is possible to give a statistical interpretation to (15) (cf.
[36]). This interpretation might prove beneficial if an optimal
selection of the parameters and is desired given the data.
We showed in Section IV-C, however, that AFCM is fairly
insensitive to the selection of these parameters and, in practice,
one can normally use a set of standard fixed parameters.

Several variations on the objective function (3) are possible,
which lead to algorithms similar to AFCM. An obvious alter-
native would be to allow the gain field to multiply the observed
intensities , rather than the centroids . This leads to a
slightly more computationally complex difference equation for
the solution of the gain field. Another alternative formulation
that was suggested by a reviewer replaces the expression

in the objective function with
where the division is performed component-wise. A potential
advantage of this formulation is that the resulting weights

would depend exclusively on the membership functions.
We have found in initial experiments that this approach can
provide reasonable results, although convergence is slower and
the resulting membership functions behave differently than
those produced by FCM or AFCM. Further investigation is
necessary to fully determine the benefits and disadvantages of
this approach.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm for obtaining fuzzy seg-
mentations of images that have been corrupted by intensity
inhomogeneities. The algorithm is fully automated, except for
the initial specification of some parameters. In the experi-
ments performed, AFCM yielded accurate segmentations in
the presence of intensity inhomogeneities and can be directly
substituted into current methodologies that require: 1) hard
segmentations; 2) soft segmentations; 3) gain field estimates;
or 4) inhomogeneity corrected images. We are currently using
AFCM in conjunction with deformable surface algorithms for
the reconstruction of the human cerebral cortex from MR
images [23].

Several areas require further research. One disadvantage of
AFCM is that it tends to look for clusters of the same shape
and size. AFCM can, however, be extended to find differently
shaped and sized clusters in the same manner as FCM [37],
[38]. This extension would take advantage of the covariance
characteristics of each tissue, potentially resulting in improved
segmentation accuracy for multispectral images. However,
because of the increased complexity that would be involved,
issues such as sensitivity to initial conditions and speed of
convergence may arise. Another approach to this problem is
to use AFCM as a preprocessing step to a finite Gaussian
mixture model [34] analysis of the data, where AFCM is
used to correct the inhomogeneity and the fuzzy membership
functions are treated as initial posterior probabilities for an
expectation-maximization algorithm [25], [26]. This approach
leads to a statistically optimal partitioning of the data as long
as the assumption of a Gaussian mixture model is correct.
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Because AFCM does not place any contextual constraints
on the membership functions it can be sensitive to excessive
noise and other artifacts, such as inaccuracies in the extracra-
nial tissue removal. Further research on incorporating spatial
information through Markov random fields or atlas information
may alleviate this sensitivity.

Additional validation studies are required if the method is
to be used for clinical studies. Furthermore, the convergence
properties of the algorithm require further investigation al-
though, in practice, we have found it to be very stable and to
always converge. Finally, although the smoothness parameters
are fairly robust to selection, a method for optimally select-
ing their value would prove beneficial in ensuring accurate
performance.

APPENDIX A
AFCM ALGORITHM FOR VECTOR GAIN FIELDS

In Step 2 of AFCM, the membership function computation
of (5) is replaced by

(16)

In Step 3, the centroid computation of (6) is replaced by

(17)
In Step 4, the difference (7) governing the gain field is replaced
by

(18)

Note that in this case, the difference equation must be solved
for each component of the data.

APPENDIX B
DERIVATION OF AFCM EQUATION

In this section, we derive the scalar gain field AFCM equa-
tions. The derivation in the vector gain field case is analogous.
The derivation of (5) is almost identical to the derivation
of the membership function equation in the standard FCM
algorithm [20], [21]. We first rewrite the objective function
using a Lagrange multiplier to enforce the constraint that

. Ignoring the regularization terms, since these
will be zero when the partial derivative with respect to

is taken, this yields

Taking the partial derivative with respect to and setting
the result equal to zero yield

(19)

Substituting into the constraint equation on the member-
ship functions results in

Substituting the value of back into (19) and rearranging
yields (5).

The derivation of (6) proceeds as follows. Any real, finite-
dimensional inner product norm must satisfy for
some positive definite matrix . Substituting this identity into
(3), taking the partial derivative with respect to the centroids

, and setting the result to zero yields

Using the fact that is positive definite and rearranging leads
to (6).

To derive (7) we use the following lemma

which was proven in [39]. Taking the partial derivative of (3)
with respect to the gain field yields

Dividing through by 2 and rearranging yields (7).

APPENDIX C
CONVOLUTION MASKS

Standard finite differences were used for computing the
convolution kernels and used in the difference equation
(7). For 2-D images, the resulting kernels are

For 3-D images, we provide the kernels in slices, with
the corresponding slice numbers denoted in the superscript.
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All kernels are symmetric. Note that for data with extremely
anisotropic voxels, asymmetric kernels may be desirable
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