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Adaptive Fuzzy Segmentation of
Magnetic Resonance Images

Dzung L. PhamStudent Member, IEEEand Jerry L. Prince,Member, IEEE

Abstract—An algorithm is presented for the fuzzy segmentation In MR images, intensity inhomogeneities are typically
of two-dimensional (2-D) and three-dimensional (3-D) multispec- caused by nonuniformities in the RF field during acquisition,
tral magnetic resonance (MR) images that have been corrupted although other factors also play a role [4], [5]. Similar
by intensity inhomogeneities, also known as shading artifacts. The _ . . -
algorithm is an extension of the 2-D adaptive fuzzyC-means al- artifacts also OFcur in computed tomogrgphy Images, Que
gorithm (2-D AFCM) presented in previous work by the authors. t0 beam hardening effects, as well as in microscopy and light
This algorithm models the intensity inhomogeneities as a gain photography, due to nonuniform illumination. The result is
field that causes image intensities to SmOOth|y and SIOle vary a Shadlng eﬂ:ect Where the p|Xe| or Voxel |ntens|t|es Of the

through the image space. It iteratively adapts to the intensity oome tisgue class vary over the image domain. It has been
inhomogeneities and is completely automated. In this paper, we

fully generalize 2-D AFCM to three-dimensional (3-D) multispec- ShOWn that the shading in MR images is well modeled by the
tral images. Because of the potential size of 3-D image data, product of the original image and a smooth slowly varying
we also des.cribe a new faster mul’gigrid-based algorithm for its gain field [6], [7]. Typically, corrupted images are segmented
implementation. We show, using simulated MR data, that 3-D sing either a two-step approach or a segmentation algorithm

AFCM vyields lower error rates than both the standard fuzzy . i . .
C-means (FCM) algorithm and two other competing methods, that simultaneously classifies the voxels while compensating

when segmenting corrupted images. Its efficacy is further demon- for the shading effect.
strated using real 3-D scalar and multispectral MR brain images. In the two-step approach, the image is first corrected to
Index Terms—Clustering methods, fuzzy sets, image Segmen_remove intensity inhomogeneities_. This c_orrection is then
tation, magnetic resonance imaging. followed by a standard segmentation algorithm that assumes
no inhomogeneity is present. Numerous methods have been
proposed in the literature to perform the correction step.
Several research groups have used homomorphic filtering
ISSUE classification is a necessary step in many med- an attempt to remove the multiplicative effect of the
ical imaging applications, including the quantificatioinhomogeneity [8]-[10]. It was shown in [10], however, that
of tissue volumes, the detection of pathology, and computeemomorphic filtering can sometimes distort an image rather
integrated surgery. Classification of voxels exclusively intthan correct it. In their work, Dawart al. [6] used manually
distinct classes, however, is difficult because of artifacts susblected reference points in the image to guide the construction
as noise and partial volume averaging, where multiple tief a spline correction surface. Meyet al. [11] used an edge-
sues are present in a single voxel. To compensate for théssed segmentation scheme to find uniform regions in the
artifacts, there has recently been growing interest in sdfthage, followed by a polynomial surface fit to those regions.
segmentation methods [1]-[3]. In soft segmentations, voxed$ed et al. [12] corrected the inhomogeneity by estimating a
may be classified into multiple classes with a varying degregin field that sharpens the histogram of the image. The latter
of membership. The membership thus gives an indication ¥free methods used either disconnected regions in the original
where noise and partial volume averaging have occurrediihage or a subsampled image to estimate the gain field, thereby
the image. Standard soft segmentation algorithms, howewvest taking advantage of all available image data. In [13], Lee
cannot effectively compensate for intensity inhomogeneitiesnd Vannier correcte®; -weighted scans using an extension of
a common artifact in magnetic resonance (MR) images. the fuzzyC-means (FCM) algorithm. Images were segmented
into two classes, consisting of background and nonbackground
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to a first-order regularization term. Only hard segmentations,FCM is formulated as the minimization of the following

however, were obtained with these methods. objective function with respect to the membership functions
Wells et al. [7] proposed an expectation-maximization aland the centroids [1], [21]:

gorithm that modeled the inhomogeneities as a bias field of

the image logarithm. This method was later extended in [18]. C
The Wellset al. method iterates between a classification step Jren = Z Z wllys = vall®. (1)
and a step to estimate the inhomogeneity, using an approxi- JCR k=1

mate spatially invariant, low-pass filter. Because training data

obtained through manual interaction is required to model thfere, 2 is the set of voxel locations in the image domain,
distributions of the tissue intensities, it is a supervised methgds a parameter that is constrained to be greater than one,
[1]. Their method is capable of obtaining soft segmentations, is the membership value at voxel locatigrfor classk
based on posterior probabilities. o such thaty s_ uj, = 1, y; is the observed (multispectral)

In a recent letter [19], we presented some initial resuligage intensity at locatios, and vy, is the centroid of class
on an unsupervised segmentation algorithm called the tWo- The total number of classe® is assumed to be known.
dimensional (2-D) adaptive fuzzg’-means algorithm (2-D 11, parametery is a weighting exponent on each fuzzy
AFCM), designed for segmenting 2-D scalar images corruptagh nhership and determines the amount of fuzziness of the
by intensity inhomogeneities. Baseq on FCM_[ZO], [21], th?esulting classification. Fo = 1, Jren reduces to the
advantages of 2-D AFCM are that it automatically producesssical within-group sum of the squared errors objective

soft segmentations, it is robust to inhomogeneities, andf| ction and FCM becomes equivalent to th&means or
computes a smooth gain field based on all pixels in the imag ODATA clustering algorithms [21]. A commonly used value
Although this algorithm is suitable for the segmentation q ¢ = 2 [22], [24], [25]. The operatof] - || is any inner

MR images obtained using single or multislice acqU|S|t|onr?_0duct norm oriR”, where P is the number of channels or

it cannot be used in volumetric acquisitions where the in- : : o
" . . . ectra in the image andl- || = /{-, -). By specifying the
homogeneities are three-dimensional (3-D) in nature or oh ! 'mag - | (-, -). By specifying

multispectral data. In this paper, we generalize AFCM t%p_propnate norm, FCM can be applied J.[O data that POSSESS
; : 2 ellipsoidal shaped clusters, although typically the Euclidean
3-D multispectral images. Our generalization also allows f%rorm is used

the adjustment of the hardness or fuzziness of the resultin S . . L .
segmentation and for the segmentation of data with eIIipsoidaIg—JThe FCM objective function (1) is minimized when high

. ) .membership values are assigned to voxels whose intensities
shaped clusters. A novel algorithm is presented for computm(l;e close 1o the centroid for its particular class and low
the gain field, which typically yields a threefold improvemen bershi | ianed ph th | intensity |
in speed over a standard multigrid approach, without reduci mbership values are assigned when the voxel intensity 1s

accuracy. This speed improvement is especially significa from the centroid. Taking the first derivatives of (1) with
when working with large 3-D data sets respect ta:;; andv; and setting those equations to zero yields

It was shown in [19] that 2-D AFCM segments imageQecessary conditions for (1) to be minimized. Iterating through

corrupted by inhomogeneities as accurately as FCM segmefieSe two necessary conditions leads to a grouped coordinate
uncorrupted images. The accuracy of the FCM segmengf-scent_ s_cheme for minimizing the_ objective func'_uon [20],
tion itself, however, was not quantified. We provide in thig21l: This is the standard FCM algorithm. The resulting fuzzy
paper several new results using simulated data that sheG@mentation can be converted to a hard or crisp segmentation
that the segmentations obtained using FCM on uncorrupt®y @ssigning each voxel solely to the class that has the
images and AFCM on corrupted images are indeed accurftghest membership value for that voxel. This is known as a
in terms of classification and modeling of partial volum&aximum membership segmentatidhe advantages of FCM
effects. Moreover, we show that, under default initialization@re that it is unsupervised (i.e., it does not require training
AFCM’s performance on corrupted 3-D images is superior #ata) and it is robust to initial conditions when applied to

the performance of the methods presented in [12] and [15]_data with well-separated clusters [26]. However, FCM assumes
that the centroids of the image are spatially invariant, which

[I. BACKGROUND is not true of images that have been corrupted by intensity

In this section, we give a brief overview of FCM andnhhomogeneities.
2.D AFCM. FCM has been used with some success in theln order to preserve the advantages of FCM, we proposed
soft or fuzzy segmentation of MR images [22]-[24], as welhe following objective function [19], [27] for segmenting 2-D
as for the estimation of partial volumes [3]. It clusters dafgcalar images possessing intensity inhomogeneities:
by computing a measure of membership, called the fuzzy
membership, at each voxel for a specified number of classes. c 2
The fuzzy membership function, constrained to be between Jarcmzp = Z Z wh(y; — g5u)? + M Z Z

zero and one, reflects the degree of similarity between the JEQ k=1 JjEQ r=1
data value at that location and the prototypical data value or 2

centroid of its class. Thus, a high membership value near unity “(Drx9)7 + A2 Z Z Z

signifies that the data value at that location is close to the jeq r=1 s=1

centroid for that particular class. (D% Dy % g)f (2)
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wherey; is the (scalar) pixel intensityy; is the centroidg; v, and the gain fieldy:

is an unknown gain fieldD, is a (known) finite difference

operator along theth dimension of the image. The notation < ) R
(D * g), refers to the convolution of with the kernelD and Jarem = Z Z U’Z’k”Yj —givil"+ A\ Z Z

taking the resulting value at thi¢h pixel. Equation (2) models JEQ k=1 JEQ r=1

the brightness variation of the inhomogeneity by multiplying ) R B )

the centroids by the gain fielg;. The last two terms are first- (Dr % g)j + X Z Z Z(D" *Dsxg)j. (3)
and second-order regularization terms used to ensuregthat JEQ r=1 o=l

is spatially smooth and slowly varying. The finite differencq_
operators act like derivatives, except that they are performg_ images wherRz — 3. For B — 2, ¢ — 2, and scalar image

on a dls_crete domgm. AFCM, like FCM, does not place a.ne(ata, (3) reduces to the 2-D AFCM objective function given
assumption of spatial smoothness on the membership function

u;. Note that becausé, renvep @assumes scalar data, the norrr'1n %2)' If the gain f|_e Id is "?‘SSF’med to pe .avector figld then
operator in (1) does not come into play. In addition, values e use the following objective function:
q # 2 and 3-D images are not considered in [19]. c P R
Note the similarities between (1) and the AFCM objective _ q 2
function. The differences lie in the inclusion of the gain Jareny = Z Z Ullys = Gvall” + A Z Z Z
field ¢ within the norm operator and the addition of two
regularization terms op. If we assume that the membership N2
valuesu and the centroids are known, then the gain field that (Dr = [gli) + A2 Z Z Z Z
minimizes.Jarcnep IS the field that makes the centroids close
to the data, but is also slowly varying and smooth. Without
the regularization terms, a gain field could always be found
that would set the objective function to zero. Xf and \» whereG; is a diagonal matrix whose entries are equal to the
are set sufficiently large, then the gain field is forced to @mponents of the” component vectog; at each voxel;.
constant and the AFCM objective function essentially reducége notationx]; means theth component of the vecto.
to a special case of the standard FCM objective function. In!n practice, we have found in double-echo MR data that the
[19], (2) was minimized by taking its first partial derivativescalar gain field assumption provides nearly identical results
with respect tou, v, andg, and iterating through these thred© the vector gain field assumption and is also faster, requiring
necessary conditions. The necessary conditiongoyields fewer computations. Furthermore, the algorithm derived from

a space-varying difference equation that was solved usind"§ Scalar case is notationally cleaner and therefore more easily
standard multigrid approach (see Section IlI-C). explained. For these reasons, we focus mainly on the scalar

assumption for the remainder of this paper. Equations for the
vector case are similar and are provided in Appendix A.

. ADAPTIVE FUzzY C-MEANS The scalar gain field objective functiofyrcym in (3) can

. . . L . be minimized by taking the first derivatives dfrcn with
In this section, we generalize the AFCM objective functlopespect tou;x, Vi, and g;, setting them equal to zero, and
ks Vi » ,

to 3-D multispectral images and describe an algorithm Qg 4iing through these three necessary conditions/fatey
minimizing the ObJ?Ct'Ve function. We also describe an imy, e 4t 4 minimum. This yields the following algorithm (the
plementation that yields much faster results than the Stand@fﬂjations for which are derived in Appendix B).

is equation is applicable to 2-D images whn= 2 and to

JC82 k=1 i jC r=1

(D, * Dy * [g]7)2 4)

J

multigrid approach. Algorithm 1—AFCM:
1) Provide initial values for the centroidsy,, & =
A. Objective Function 1,---, C and set the gain field; equal to one for

When working with multispectral MR data corrupted by al j € Q. _ .
intensity inhomogeneities, there are two possible assumptiong) Compute membership functions as follows:
one can make about the gain field: 1) the gain field is a scalar

field and 2) the gain field is a vector field. The first assumption S 7 g;vil| ¥ (@D 5)
implies that the brightness variation in each component or ik c
spectrum of the acquired image is identical, while the second ZH}’J' — gjvi|| =%/ a=D)
assumes that they can be different. In [4], it was found that for =1
spin-echo acquisitions, the inhomogeneity was nearly identical
for different pulse echo times (TE) when using a body coil,  forallj € @ andk =1, ---, C.
but not identical when using a head coil. This indicates that3) Compute new centroids as follows:
in different situations, either assumption might be appropriate. a . o
We therefore consider both cases. Zuﬂvg]y]
If a scalar gain field is assumed, we define AFCM to be Vi = JEQ—, =1, ---,C. (6)
an algorithm that seeks to minimize the following objective Zufkgf

function with respect to membership functiomsthe centroids FISe
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4) Compute a new gain field by solving the followingC. Solution to the Gain Field

space-varying difference equation fgr. In Step 4 of AFCM, a new gain field is computed given

the current values of the centroids and membership functions.

C C
This is the most time-consuming step in AFCM and deserves
9 {y.vi) =g; 9 vy, Vi H p ) o .2 .
;uﬂk(yﬂw 9i ;uﬂk(vk’ Vi) + AL(HL ), special attention in its numerical implementation. Because the
B . difference equation (7) is space varying, the gain field cannot
+ o(H * 9); ™ quation (7) ' space varying, the 9

be found using standard frequency domain filters. The equation
could be solved iteratively using the Jacobi or Gauss—Seidel

h th lution ki /15 dH i b
where fhe convolution kerels, and.ti are given bY o pemes [30], [31], but these methods take a large number

R of iterations to converge. In [19] and [27] this equation was
H = Z( D, + D,); (8) solved, using a standard mulyigrid algorﬁthm at egch iteration
—1 of AFCM (for a general overview of multigrid algorithms, see

R R [17] or [31]). For 2-D images, this approach is sufficiently
Hy; = Z Z ((D,, x D) * (15,, * DS))]. (9) fast, but for large 3-D images, execution times can grow to
=1 s=1 several hours. We now describe a modified multigrid algorithm
5 that yields significantly faster overall execution time, without
where D is the mirror reflection of the finite differenceloss of accuracy. Its premise is that during early iterations
operatorD. H; andH; are given explicitly in Appendix of AFCM, only an approximate solution to the gain field is

-

C for 2-D and 3-D images. required. Thus, a subsampled solution is used and later refined
5) If the algorithm has converged, then quit. Otherwise, g the number of iterations increases.
to Step 2. To see how (7) can be solved efficiently, we first write it in

We define convergence to be when the maximum changetrix form. We begin by defining the functiorfsandw to be
in the membership functions over all pixels between iterations

is less than a given threshold value. In practice, we used a < .
threshold value of 0.01. Methods for determining initial cen- wj = Z wi (Vi Vi) (10
troids in Step 1 are described in Section IlI-B. The solution to k=1
the difference equation in Step 4 is described in Section 1lI-C. 1 & 4
fj = — Z u,.k<yj, Vk>. (11)
wi i

B. Initial Centroids

. - : : Then, (7) can be written as
AFCM requires an initial estimate of centroid values. Proper )

selection will generally improve accuracy and convergence
of the algorithm. We propose two methods for automatically

selecting initial centroids. The first method may be applledherefw andm have as their element§w; andg;, respec-

genera!ly to all scalar.data, while the second method is specﬁll\(l:ely’ stacked in vector formW is a diagonal matrix withs;
to multispectral MR images.

. . s its diagonal elements, ail; and H, are matrix versions
If the given data is scalar-valued, then one can apply tﬁl 9 i >

approach described in [19] and [27], where the modes Of?rga?%hzngbiztiesfilgI?(?1:/:1 i (tgt—;(?lille{slA—ir_n)\Q:I?), ;:cv Zsiese
critically smoothed kernel estimator of the image hismgrar&'ecomposed A =D-1L—U whereD is diag;vc;nal Lis
are used to determine the initial centroids. The approachI Sver triangular, andJ is upper 'triangular then the w;aighted
essentially the same as the bump-hunting algorithm desc:rib‘]e(,j\lc’{obi iteration’ is given by [31] '

by Silverman in [28]. Briefly, a kernel estimator of the

histogram is smoothed in an iterative fashion until it possesses
a number of modes equal to the desired number of claSses

These modgs are then numerically co mputed, using first avr\}HereI is the identity matrix, and is a weighting parameter
second derivatives of the kernel estimator, and are used

nitial centroid (%S practice, set to 0.3 and not changed). To solve (12)
al centroias. qfﬁciently, we apply Jacobi iterations in a multigrid-based

For mult_lspectral data, manlpulat_lon of a mu_lt'.d.'menS'OH%cheme. Computational complexity is drastically reduced by
kernel estimator can be computationally prohibitive. In th|§

L . : lacing the iterations that would normally take place on a
case, one can obtain initial centroids by applying the approaﬁ%% grid with iterations on a coarse grid
described in .[22]' This approach requirgpriort knowled_ge The basis of a multigrid algorithm is the coarse grid correc-
of the approximatéd7, 1, and proton spin density of the t|ssu§i0

X . scheme, where an estimate of the solution is refined b
classes being segmented. Most of these values for differ ng y

: ) . roximating the error of the estimate on a coarse grid, then
tissue classes have been documented in the literature (cf. [2u dating the estimate with the error. i is an approximate
These values can then be used in an imaging equation derig L tion to Am — f. the error is défined 26 — m — 1

for the corresponding pulse sequence (e.g., spin echo) to ObtﬁLl n the error itserlz 'satisfies '
expected intensity values. This rough initialization is normally

sufficient for AFCM to yield good convergence properties. Ae =1, — Am (14)

fw =Wm + ()\1H1 + )\QHQ)ID (12)

m« [(1 —w)I+wD L +U)jm+wD™'f, (13)
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wherer = f,, — Am is called the residual. Thus, the error
e satisfies an equation of the same form as the equation for
m and can be approximated by applying Jacobi iterations at a
resolution lower than the original resolution af. The coarse
grid correction scheme is summarized as follows.

Algorithm 2—Coarse Grid Correction Scheme:

1) Given an initial guess of the solution, performJacobi
iterations onA‘m‘ = f!, and assign the result th'.

2) Compute a coarse grid residualt* by computing
r' = f{, — Alm’ followed by a REDUCE operation.

3) Solve for the coarse grid error by performing Jacobi (@)
iterations on the error equatioA’*te!t! = ri+t,

4) Apply an EXPAND operator to the error and update the

” Level 0

. . . Level 3
fine grid estimatan’ «— m' + &'
5) Performu, Jacobi iterations oA'm' = f! with the
updatedm’ as the initial estimate.
A REDUCE operator is a transformation from a high- Lol 2

resolution representation to a representation with half the
resolution along each axis, and an EXPAND operator is a low-
to-high resolution transformation. Our 3-D REDUCE operator
is simply the replacement of each eight-pixel X22 x 2)
neighborhood with the average of the neighborhood. Our 3-D
EXPAND operator is the replication of each low-resolution
pixel to an eight-pixel neighborhood. By iteratively applying Level 0
these operators, a multigrid pyramid is formed, as illustrated )

in Fig. 1(a). The superscripts in Algorithm 2 are used to o o _ o
denote the pyramid level of the vector or operator. Level ZeE&gc 1.Ie Multigrid. (a) A four-level multigrid pyramid. (b) A full multigrid
represents the original resolution of the image. The operator

A at a pyramid level other than zero is determined simply by

performing a REDUCE operation on the diagonal elements 8f AFCM, using a truncated full multigrid cycle, proceeds
‘W. SinceH; andH, represent spatially invariant operators‘?ls folloyvs. . .
Algorithm 3—AFCM Using Truncated Multigrid Cycle:

these are well-defined at any resolution.
A V-cycleis a recursion of the coarse grid correction upon 1) Set the size of the multigrid pyramid to some valtie

itself to coarser resolutions. In other words, the error (14) also ~ SetL = K_— 2. _ ) _

has its own error that can be solved using an embedded coars®) Run the entire AFCM algorithm until convergence, using

grid correction and this is repeated for multiple resolutions. A & truncated multigrid cycle at level to solve for the

full multigrid V' cycle is a sequence df cycles which is gain field at each iteration. .

first initialized by repeatedly applying Step 2 of Algorithm 3) If L > 0, decreasel by one. Using the most recent

2 until the top of the multigrid pyramid is reached. It then ~ valués ofw, v, and g as initial values, go to Step 2.

performs a sequence 6f cycles that increase in resolution Otherwise, ifL = 0, terminate.

levels until the bottom of the pyramid is reached. A four-level This modified multigrid algorithm greatly increases the

full multigrid V cycle is illustrated in Fig. 1(b). By the time Speed of AFCM during its early iterations. As the number

the original resolution has been reached, the algorithm Halsiterations increases, the truncation level reduces toward the

typically converged to its final solution. original resolution and the iterations become slower. If a result
In [19] and [27] the gain field was computed by applyingﬁs required quickly, one can terminate Algorithm 3 at some

one full multigrid V cycle at each iteration of 2-D AFCM. value of L > 0. This provides an approximation of the final

For 3-D images, we propose a new faster method that ta)@Qlution and, as we show in Sectlon_IV,_the approximation

advantage of the fact that during early iterations of AFCMEITOr decreases rapidly as the resolution increases.

the estimates of the centroid and membership functions are

poor and an exact solution to the gain field is not necessary. IV. RESULTS

We define a truncated multigrid cycle at levélto be a ~ AFCM was implemented in C on a Silicon Graphics 02

full multigrid V' cycle that terminates the first time thgh system with an R10000 processor running IRIX 6.3. It has

pyramid level is reached. In Fig. 1(b), the termination pointseen tested on both real MR data as well as simulated

of a truncated multigrid cycle are shown as open circles. FBIR brain images obtained from the Brainweb simulated

a truncated multigrid cycle at levedl > 0, the estimated gain brain database at the McConnell Brain Imaging Center of

field is an approximation of the final solution on a coarsihe Montreal Neurological Institute, McGill University [32].

grid but it can be computed quickly. The implementatioSimulated brain data sets of varying noise, inhomogeneity, and

Level 1



742 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 9, SEPTEMBER 1999

@ (b)

© (d)

Fig. 2. FCM and AFCM membership functions. (a) Simulated MR phantom. (b) GM partial volume truth model. (¢c) FCM GM membership function.
(d) TM-AFCM GM membership function.

contrast are available on the World Wide Web at the websipeed increase is not achieved at the cost of segmentation
listed in the references section. The inhomogeneity in theaecuracy.
data sets was simulated by multiplying the image by an RF . ]
field recovered from an actual MR scan [32]. A. Visual Evaluation of Performance on Simulated Data

In this section, we present the application of AFCM only Fig. 2 shows the results of applying FCM and AFCM on a
to 3-D brain images. For 2-D results, readers are referr8tainweb simulated MR brain image. This brain image was
to [19]. Extracranial tissues were removed from all imagesmulated with7};-weighted contrast, 1-mm cubic voxels, 3%
prior to applying any segmentation algorithm. For the reabise, and 40% image intensity inhomogeneity. The number
MR data, this was performed using a semiautomated technigietissue classes was assumed to be three, corresponding to
described in [33]. In all results that follow, the value @f gray matter (GM), white matter (WM), and cerebrospinal
was set to two and the standard Euclidean distance norm vilagd (CSF) tissue classes. Background pixels were ignored.
used. We denote the AFCM results computed with the fullig. 2(a) shows a slice from the simulated data set and
multigrid V' cycle as FM-AFCM and the results computedrig. 2(b) shows the true partial volume model of the GM
with the truncated multigridv” cycle as TM-AFCM. Using tissue class that was used to generate the simulated image.
FM-AFCM, execution times for a 3-07-weighted MR data Fig. 2(c) and (d) shows the GM membership function obtained
set with 1-mm cubic voxels are typically between 45 miby applying FCM and TM-AFCM, respectively, to the 3-D
and 3 h. Using TM-AFCM, execution times are betweedata set. Because of the shading effect present in the data, the
10 min and 1 h. Quantitative evaluation indicates that thiECM membership function deteriorates near the bottom of the
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() (b)

(c) (d)

Fig. 3. Comparison of hard segmentations. (a) Truth model. (b) FCM max membership segmentation. (c) AMRF segmentation. (d) TM-AFCM max
membership segmentation.

image. The AFCM result, however, shows less speckling at TABLE |
the bottom of the image and is very similar to the true partial ERROR MEASURES FROMSMULATED DATA RESULTS
volume image. Both results do, however, show some overall ' Frror measre

Method || 0% MSE | 20% MSE | 40% MSE | 0% MCR | 2

grain because of the effects of noise and because no constraint— , e , Lo
FCM 0.0191 g?.;_z7z 0.0517 3.988%

i ) . : B )

on spatial smoothness is placed on the membership functionsiarest T oozio | 6088 | 0oz | 4171% 5.065%
)
)

%MCR | 40% MCR
9.046%

in FCM or AFCM CTM-AFCM 0.0210 0.0214 0.0244 4.168% 4.322% | 4.938%
©

(
) . . EM1 0.0437 0.0491 0.0770 6.344% 7.5919 13.768%
Fig. 3 shows the results of three different segmentation 0.0335 | 00391 | 00587 | 4240% | 5438% | 9.604%
algorithms applied to the same data set described in the AMEE AMTGK | aTo0% | GBI
] : . MNIEFCM - [ L979% | 49T0% | 5.625%
previous example. Fig. 3(a) shows the true hard segmentatiofii-arcwm - - T 4I56% | 4063% | 4994%
H H H if‘I\'IZ—J\FCI\rI - T e 4.125% 4.760% 5.060%
of the simulated data. CSF is labeled as dark gray, GM as I|ghmmwr SR | ST TS

gray, and WM as white. Fig. 3(b)—(d) shows the maximum—
membership segmentation produced by FCM, the segmenta-

tion produced by the adaptive Markov random field (AMRF also spatially smoother than the other methods. This is because
method used in [15] and [33], and the maximum membershiptakes into account pixel dependency, while both FCM and
segmentation produced by TM-AFCM, respectively. Clearla\FCM classify pixels independently.

the AFCM segmentation is most similar to the truth model.
Both the FCM and AMREF results segment much of the WM

GM near the bottom of the image. The AMRF segmentation & Quantitative Evaluation of Performance on Simulated Data

Table | summarizes error measures resulting from applying
1This method is also very similar to the one described in [16]. the FCM, FM-AFCM, TM-AFCM, and the AMRF algorithms
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to Brainweb simulatedl;-weighted data sets (1-mm cubic TABLE I
voxels, 3% noise) with varying levels of inhomogeneity. Errors MISCLASSIFICATION RATE AS A FUNCTION OF A AND A2
were also computed from applying the unsupervised EM ’A* ol 1;4' ) 104&1 I
. .. . . 5% X 3 % x 10° | 5 x 107 x 10°
algorithm for finite Gaussian mixture models [34]. EM1 refers e e e T T
to the standard model and EM2 refers to the model where vari- Lx 101 5385 | 5073 | 4550 | 4342 a.ogl g;

H - 5 x 10 1.763 4.686 4.441 4.295 5.105 5.

ances and mixture coefficients are assumed equal. The latter {01 | Jan | auso | a2 | 420 | 5111 | 5%
model was used, since it is conceptually and algorithmically b 107 | 4241 | 4244 1 4202 | 4403 | 5178 | 5487
1 x 108 4./18%7 4.491 4.596 4.739 5.280 5.496

similar to FCM, iterating between estimating the mean of each
tissue class and computing a soft segmentation. In addition, er-
ror measures were also computed for a segmentation obtaigeé can potentially achieve much lower errors in each of the
by first applying theN3 inhomogeneity correction softwvareAFCM, AMRF, and MNI-FCM methods if more information
[12] obtained from the Montreal Neurological Institute, theabout the inhomogeneity is knowanpriori, thereby allowing
applying FCM. The results of this method are given in theome tailoring of their parameters.
row labeled MNI-FCM. Errors for intermediate results of TM- Results of the TM-AFCM algorithm using thith pyramid
AFCM at each resolution level are shown in the rows labelggvel estimate show that in the 20 and 40% inhomogeneity
TML-AFCM, which stands for truncated multigrid AFCM atcases the error is reduced rapidly ass decreased. Because
level L. Two error measures were used. The first measure wag gain field is slowly varying and spatially smooth, the
the mean squared error (MSE) between the true GM partigifference in error between the level one and level zero results
volume and the GM fuzzy membership function. The secorigl small. However, in the zero inhomogeneity case, the error
error measure was the misclassification rate (MCR), definedigsactually increased. This is, again, because each increase
the number of pixels misclassified by the algorithm divided biyy resolution adds additional degrees of freedom in how
the total number of pixels in the image. For FM-AFCM andhe multiplier field can vary. Note also that the TM-AFCM
TM-AFCM, the parameters; and A, were fixed to a default algorithm actually produces lower errors than FM-AFCM. We
value of 2x 10* and 2« 10°, respectively. Default parametersspeculate that the slow increase in resolution provided by FM-
were also used for all other segmentation methods. AFCM allows it to avoid local minima in the AFCM objective
Columns 1-3 show the MSE resulting from segmentinfginction better than TM-AFCM. Further comparisons between
data sets with 0, 20, and 40% inhomogeneity, respectivetitie two approaches are discussed in Section IV-F.
Similarly, columns 4—-6 show the MCR for the same respective o o
data sets. The MSE columns show that AFCM is capatfe Variation of Regularization Parameters
of estimating partial volume coefficients with a reasonable Table Il shows the MCR after applying TM-AFCM to
accuracy, even in the presence of inhomogeneities. MSE errthte simulated data set (1-mm cubic voxels, 3% noise, 20%
for the EM methods were computed based on their posterinhomogeneity) when varying the regularization parameters
probability estimates. These probabilities tend to be too hakd and \,. The 20% inhomogeneity was used because this is
for 13-weighted data, however, and this is reflected in the default setting of the Brainweb database and is likely to be
higher errors. Although none of these methods explicitly modgle level of inhomogeneity encountered in m@stweighted
partial volume effects, it has been shown in previous woR acquisitions. The table shows that even if the parameters
that FCM can behave similarly to partial volume estimatioare varied by an order of magnitude higher or lower than the
approaches [35]. optimal values, AFCM will still yield lower errors than FCM.
The MCR columns show that as the inhomogeneity #Sor those values tested, the error was rarely significantly larger
increased, the errors for all methods also increase. Howeuwbdan the FCM error. However, the lowest error obtained was
the AFCM methods are much more robust to increased inheever lower than the FCM error on the zero inhomogeneity
mogeneity than the other methods, with TM-AFCM achievingnage (see Table I). Selecting larger values fqr and A;
slightly lower errors than FM-AFCM. In the case of 40%generally leads to more conservative results, since AFCM
inhomogeneity, AFCM provides an improvement of nearlyeduces to FCM in this case.
50% over FCM, nearly 30% over the MRF methods, and ) -
over 10% over the MNI-FCM method. At zero inhomogeneity?- €orrection of Inhomogeneities
both the FCM and AMRF methods perform slightly better Fig. 4 shows the results of using AFCM to correct the
than AFCM, while AMRF yields the lowest error. This isinhomogeneity in an actual 3-I; -weighted MR image data
expected since the AMRF method provides some smoothiget. Fig. 4(a) shows a slice from the original data set. Fig. 4(b)
of noise, while FCM and AFCM do not. The increase in err@shows the same slice after correction by AFCM. The correc-
of AFCM over FCM in the zero inhomogeneity case is dugon was obtained by multiplying the original image by the
to the additional freedom of the gain field. This effect is alseciprocal of the estimated gain field. The corrected image
seen in the errors resulting from the MNI-FCM method. Ondoes not exhibit the left to right shading present in the original
could easily reduce the error by increasing the regularizationage. Fig. 4(c) shows the computed gain field for that slice.
terms if the amount of inhomogeneity was known to be lowlhe gain field is actually computed everywhere in the image
The difference in error is small, however, and, overall, AFCMomain but, for visual purposes, it has been masked by the
performs well on images of varying inhomogeneity, withoubrain area. Note the bright area on the upper left quadrant of
the need for modifying the regularization parameters. Note ththe image has been captured by the gain field.
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(@) (b)

(©

Fig. 4. Correction of inhomogeneity using TM-AFCM. (a) Slice from original MR image. (b) MR slice after AFCM correction. (c) Gain field
computed using AFCM.

Fig. 4(d) and (e) shows histograms of the slice befofading. Fig. 5(e) and (f) shows the contour of where the GM
and after the correction has been performed. On a typicabmbership function is equal to the white matter membership
histogram of an uncorrupted MR image, three modes ditection, overlayed on the PD-weighted slice. The inhomo-
present corresponding to (from left to right) CSF, GM, andeneity has the effect of shifting the boundaries between tissue
WM. The original histogram in Fig. 4(d), however, exhibitclasses. On the upper right-hand side of the image, the FCM
an additional mode around an intensity of 80 that corresponctsntour has shifted inward toward the center of the image,
to the bright WM on the upper left of the image slice. Thavhile on the left of the image, the contour has shifted out-
corrected histogram does not possess this additional mode armad. The AFCM contour however, conforms to the GM-WM
also shows a significant improvement in contrast between theundary, as seen on the original images much more accu-

modes corresponding to GM and WM. rately. Note that the ring of gray matter outside the brain region
) is due to errors in the brain extraction preprocessing step.
E. Multispectral Data The vector gain field version of AFCM (see Appendix A)

Fig. 5 shows the results of FCM and TM-AFCM whenwas also applied to the same data set. Although differences
applied to a spin-echal-weighted and proton spin densitybetween the vector gain field segmentation and scalar gain field
(PD) weighted] multispectral MR data set. Fig. 5(a) and (l§egmentation were negligible in this case and in most other
shows a PD-weighted and the correspondifigweighted data to which we have applied AFCM, the PD-weighted com-
slice, respectively, from the data set. Fig. 5(c) and (d) showsnent of the estimated vector gain field typically possessed
the GM membership functions computed by FCM and AFCMyreater variation. This topic requires further investigation.
respectively. One can see that the FCM membership function . o
has a noticeable fading on the left side. There is also &n Comparisons of Truncated and Full Multigrid Approaches
increase in noise in the FCM membership function on the rightIn this section, the behavior of the AFCM objective function
side of the image. The AFCM membership function, howeveunder the full and truncated multigrid approaches is examined.
is markedly cleaner from noise and does not exhibit the saffike objective function was evaluated at each iteration using
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Fig. 4. (Continued) Correction of inhomogeneity using TM-AFCM. (d) Histogram of slice before correction. (e) Histogram after correction.

both approaches for the McGill phantom data set with 3%uncated multigrid results show increased spacing between
noise and 20% inhomogeneity, as well as a real 3> markers as it moves from coarser resolution levels to finer
weighted MR data set with 1-mm cubic voxels. Fig. 6(adevels. At the finest resolution, both methods require an equal
and (b) plots the objective function over time for these twamount of time for each iteration.

data sets, respectively. Each data point marker on the plot8oth plots show that during early iterations of AFCM, the
represents the value of the objective function taken after eambjective function decreases much more rapidly using the
iteration of AFCM. The full multigrid AFCM curves possesdruncated multigrid approach. This is because the truncated
uniform spacing between each marker, since each iteratimethod quickly computes an approximation of the gain field,
requires equal computational expense. On the other hand, dflewing for more iterations of AFCM to take place and
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@) (b)

(c) (d)

(e) ®

Fig. 5. FCM versus AFCM for double-echo MR data. (a) Slice from PD-weighted MR image. (b) Slice Fseweighted MR image. (c) FCM GM
membership function. (d), TM-AFCM GM membership function. (e) FCM isocontour superimposed on PD-weighted image. (f) TM-AFCM isocontour
superimposed on PD-weighted image.

yielding better estimates of the membership functions amgethods use the same stopping criterion (see Section IlI-A).
centroids. In the case of Fig. 6(b), the objective functiomhis corroborates the results in Section IV-B, where the trun-
began to flatten horizontally during the later iterations aated multigrid approach achieved slightly lower segmentation
level three, but upon switching to level two, it resumed arrors than the full approach. For both examples shown,
steeper slope. The truncated multigrid approach also achieveatearease in the objective function was monotonic for both full
lower minimization of the objective function, even though botand truncated multigrid approaches. Note that the data set used
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Fig. 6. Plots of objective function over time for FM-AFCM and TM-AFCM: application to (a) phantom data with 3% noise, 20% inhomogeneity and
(b) real Ty-weighted MR data set.

to generate Fig. 6(b) possessed lower levels of inohomogeneitythe image, AFCM has a potential advantage over these

than the phantom data and, thus, fewer iterations of AFCMethods and other similar methods that use subsampling or
were required. regression techniques to compute the gain field (cf. [11], [12],
[14], [16]). Although the inhomogeneities are typically slowly

varying, there can be specific regions in the image where the
V. DiscCusSsION inhomogeneities vary more quickly. This can be difficult to

It was shown in Section IV-B that AFCM was more ro-characterize when the field is subsampled. The key to the
bust to intensity inhomogeneities than two other establishezbustness of AFCM lies in the spatially varying difference
methods. Because the gain field is computed at every po@guation (7), which governs how the gain field is estimated.
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To better understand the action of (7) it is helpful to vievis automatically set to zero outside the object of interest. Thus,
it as a smoothing filter. If the membership functions anthe background plays little or no role in the data term of (15).
centroids are assumed to be known, then (7) can be showit is possible to give a statistical interpretation to (15) (cf.
to be a necessary condition for the solution of the variation@6]). This interpretation might prove beneficial if an optimal
problem selection of the parameteks and\, is desired given the data.
We showed in Section IV-C, however, that AFCM is fairly

R . .. . . .
o e a2 N2 insensitive to the selection of these parameters and, in practice,
arg o z;l wi(fi = 9i)"+ A Z“ Z(D” *9;) one can normally use a set of standard fixed parameters.
- P g Several variations on the objective function (3) are possible,
N2 which lead to algorithms similar to AFCM. An obvious alter-
+A Z Z Z(D” *Ds x95) (15) native would be to allow the gain field to multiply the observed

jesr=L =l intensitiesy;, rather than the centroids;. This leads to a

where the functionsy and f were defined in Section 111-C. We slightly more computationally complex difference equation for
refer to the first term in (15) as the data term and the last tilee solution of the gain field. Another alternative formulation
terms as the smoothing terms. Thus, the difference equatfbat was suggested by a reviewer replaces the exprefgion
governing the gain field can be seen as a smoothing of thex|| in the objective function withly ; /vi.—g;(1, - -+, 1]7],
function f wherew is a weighting function that controls wherewhere the division is performed component-wise. A potential
the gain field should be close jo In areas of the image whereadvantage of this formulation is that the resulting weights
w; is large relative to\; and )., the data term dominates andw; would depend exclusively on the membership functions.
g; is forced to be equal or close ;. On the other hand, We have found in initial experiments that this approach can
wherew; is small, then the smoothing terms dominate gnd Provide reasonable results, although convergence is slower and
is forced to be equal or close to the value of its neighbors.the resulting membership functions behave differently than
The functionf is essentially a function of the ratios of thethose produced by FCM or AFCM. Further investigation is
observed intensity to the centroids. This is more easily se@@cessary to fully determine the benefits and disadvantages of
when considering the special case whep = 1 for some this approach.
be{l,- --,C}, andy; is a scalar. In this casg; = y; /vy,
the observed intensity divided by the centroid. In an ideal
image, the intensity of each class would be constant and equal
to the centroid. Thus, any gain field effect could be computed
using this ratio. The membership functions weight the ratio We have presented an algorithm for obtaining fuzzy seg-
according to which centroid the observed intensity is closeshentations of images that have been corrupted by intensity
The functionw, is small when the membership functiondnhomogeneities. The algorithm is fully automated, except for
are low for all classes, implying that the intensity is athe initial specification of some parameters. In the experi-
outlier. This corresponds to either partially volume-averagedents performed, AFCM yielded accurate segmentations in
pixels or pixels originating from unconsidered tissue classdhe presence of intensity inhomogeneities and can be directly
The smoothing terms therefore dominate in these areassobstituted into current methodologies that require: 1) hard
the image. The functionv; also has a dependency on theegmentations; 2) soft segmentations; 3) gain field estimates;
magnitude of the centroid vectors. This property originates 4) inhomogeneity corrected images. We are currently using
from the AFCM objective function (3) and the desire tAAFCM in conjunction with deformable surface algorithms for
minimize ||y; — g;v&||. When the magnitude of a centroid isthe reconstruction of the human cerebral cortex from MR
large, small variations ig; result in a larger normed differenceimages [23].
than when the centroid is small. Thus, a greater weight isSeveral areas require further research. One disadvantage of
necessary on the data term to equalize the differences. TRCM is that it tends to look for clusters of the same shape
reason why this dependence is necessary is because clagndssize. AFCM can, however, be extended to find differently
with higher intensity will locally possess a higher signal-toshaped and sized clusters in the same manner as FCM [37],
noise ratio than classes with lower intensity. Thus, gain fie[88]. This extension would take advantage of the covariance
estimates from areas of the image with higher intensity can blearacteristics of each tissue, potentially resulting in improved
trusted more than estimates from areas of low intensity. segmentation accuracy for multispectral images. However,
The spatially varying nature of (7) simplifies dealing wittbecause of the increased complexity that would be involved,
boundary conditions. In MR images, it is common to attemjgsues such as sensitivity to initial conditions and speed of
to segment an object such as a brain surrounded by emponvergence may arise. Another approach to this problem is
space. Thus, boundary conditions can become a problem withuse AFCM as a preprocessing step to a finite Gaussian
spatially invariant filtering methods since it is undesirable tmixture model [34] analysis of the data, where AFCM is
blur the background with the object. In [8] and [9] it wasised to correct the inhomogeneity and the fuzzy membership
necessary to fill the background with the average intensitynctions are treated as initial posterior probabilities for an
of the object, while in [7] a predefined region of interest wasxpectation-maximization algorithm [25], [26]. This approach
required in certain cases. In AFCM, when a background tissiéads to a statistically optimal partitioning of the data as long
class with a centroid approximately equal to zero is used, as the assumption of a Gaussian mixture model is correct.

VI. CONCLUSIONS AND FUTURE WORK
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Because AFCM does not place any contextual constraimstaken, this yields
on the membership functions it can be sensitive to excessive o o

o . ; . wlyllys = gival? +ri{ 1= upn ) )
nial tissue removal. Further research on incorporating spatia jrere ot Pt
information through Markov random fields or atlas information

Additional validation studies are required if the method i€ result equal to zero yield
to be used for clinical studies. Furthermore, the convergence

: : : — gVl

though, in practice, we have found it to be very stable and to
always converge. Finally, although the smoothness paramet@ubstitutingu,;, into the constraint equation on the member-

noise and other artifacts, such as inaccuracies in the extracy%—F oM = Z
may alleviate this sensitivity. Taking the partial derivative with respect ig; and setting
. 1/(a-1)
properties of the algorithm require further investigation al- Ujp = <q||y—1> . (19)
J
are fairly robust to selection, a method for optimally selecship functions results in

ing their value would prove beneficial in ensuring accurate B q
performance. Ki="¢ :
> llys — givll 2
APPENDIX A o =t _ _
AFCM ALGORITHM FOR VECTOR GAIN FIELDS Substituting the value of; back into (19) and rearranging

elds (5).
The derivation of (6) proceeds as follows. Any real, finite-
dimensional inner product norm must sati§fj| = £* Qf for

In Step 2 of AFCM, the membership function computatioxI
of (5) is replaced by

y; — Gyvi|| "2/ (@D some positive definite matri@Q. Substituting this identity into
Ujk = — J 7k , (3), taking the partial derivative with respect to the centroids
Z ly; — Gjvi||~2/(a—D v, and setting the result to zero yields
=1 —ZZu(I, ngyx—i-ZZuq» Qv =0 k=1,---,C.
a5 _ kI J jkIj ? ) )
jeQ k=1 --- C. (16) ico ico
In Step 3, the centroid computation of (6) is replaced by Using the fact tha€} is positive definite and rearranging leads
to (6).
Zugk[Gij']i To derive (7) we use the following lemma
j . g -
[Vk]izj—v kI].,"',C,'LI].,"',P. - [H*g]QZQ(H*H)*g
> ullgl? 99; Z ’ ’

JjEQ
! (17) which was proven in [39]. Taking the partial derivative of (3)

In Step 4, the difference (7) governing the gain field is replacadth respect to the gain field; yields

by . .
< -2 Zu3k<Yj7 Vi) + 2¢; Z u;z»k(Vk, Vi)
k=1 k=1
[yl ; wip[vVali + 201 [Hy * g; + 2A2[Ha % g]; = 0.
= [g;): EC: uf»k[Vk]? A (Hy % [g)); + Ao(Ho * [g]i); Dividing through by 2 and rearranging yields (7).
i ’:11, <o P (18) APPENDIX C

CONVOLUTION MASKS

Note that in this case, the difference equation must be solvedStandard finite differences were used for computing the
for each component of the data. convolution kerneld?; andH- used in the difference equation
(7). For 2-D images, the resulting kernels are

APPENDIX B 0 -1 0

DERIVATION OF AFCM EQUATION H=(-1 4 -1

In this section, we derive the scalar gain field AFCM equa- 0 -1 0
tions. The derivation in the vector gain field case is analogous. 0 0 1 00
The derivation of (5) is almost identical to the derivation o 2 -8 2 0
of the membership function equation in the standard FCM Hy=11 -8 20 -8 1
algorithm [20], [21]. We first rewrite the objective function 8 g _513 g 8

using a Lagrange multipliex; to enforce the constraint that
Ef:l u;, = 1. Ignoring the regularization terms, since these For 3-D images, we provide the kernels in slices, with
will be zero when the partial derivative with respect«#@. the corresponding slice numbers denoted in the superscript.
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All kernels are symmetric. Note that for data with extremelyio]
anisotropic voxels, asymmetric kernels may be desirable

[11]
» 0 00
H?>=|0 -1 0 12
0 00
0 -1 0
Hl=|-1 6 -1 (3]
0 -1 0
00000 4]
00000
Hy’=|0 0 1 0 o0 (15]
00000
00000 [16]
00 0 00
0 0 2 0 0 [17]
Hy*=]0 2 -12 2 0
00 2 00 (18]
0 0 0O 0 0 [19]
0 0 1 0 0
0 2 -12 2 0 [20]
H3=|1 -12 42 -12 1
0 2 -12 2 0 21
0 0 1 0 0
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