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We develop a systematic coarse-graining procedure for modeling red blood cells (RBCs) using

arguments based on mean-field theory. The three-dimensional RBC membrane model takes into account

the bending energy, in-plane shear energy, and constraints of fixed surface area and fixed enclosed volume.

The coarse-graining procedure is general, it can be used for arbitrary level of coarse-graining and does not

employ any fitting parameters. The sensitivity of the coarse-grained model is investigated and its behavior

is validated against available experimental data and in dissipative particle dynamics (DPD) simulations of

RBCs in capillary and shear flows.
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The human red blood cell (RBC) has a biconcave shape
with the diameter of about 8 �m. The RBC membrane is
composed of a lipid bilayer and an attached cytoskeleton.
The cytoskeleton consists primarily of spectrin proteins,
which form the network by linking short actin filaments,
resulting in junction complexes. The importance of under-
standing the mechanical properties of RBCs motivated a
number of experimental [1–5] and theoretical studies [6–
9]. Continuum- and molecular-based numerical models
[10–19] have also been developed and applied to RBC
simulations. The level of detail of the RBC membrane
description in these studies varies. The model developed
in Ref. [12] and later extended in Ref. [13] describes the
RBC spectrin network with resolution down to individual
junction complexes but it involves about 3� 104 degrees
of freedom (DOF). It was successfully validated against
experimental data of the mechanical response of an indi-
vidual cell, however application of the model in flow
simulations requires prohibitively expensive computations.
In this Letter, we develop a systematic coarse-graining
procedure, which allows us to reduce the number of
DOFs in the RBC model by 2 orders of magnitude.
Together with a coarse-grained flow model, such as the
dissipative particle dynamics (DPD) method, it could lead
to efficient simulations of RBCs in microcirculation.

The membrane model consists of a collection of points
fxn; n 2 1 . . .Ng, which are the vertices of the RBC sur-
face triangulation. The area of triangle� 2 1 . . .� formed
by vertices (l, m, n) is given by A� ¼ jðxm � xlÞ � ðxn �
xlÞj=2. The length of the link i 2 1 . . . S connecting verti-
ces m and n in the triangulation is given by Li ¼ jxm �
xnj. The Helmholtz free energy of the system is

FðfxngÞ ¼ Fin-plane þ Fbending þ Fvolume þ Farea: (1)

The in-plane free energy term

Fin-plane ¼
X

i2links

VWLCðLiÞ þ
X

�2triangles

C=A�; (2)

includes the wormlike chain (WLC) potential for individ-

ual links

VWLCðLÞ ¼ kBTLmax

4p

3x2 � 2x3

1� x
; (3)

where x ¼ L=Lmax 2 ð0; 1Þ, Lmax is the maximum length
of the links and p is the persistence length; the parameter C
in the hydrostatic elastic energy term is set as described in
Ref. [12], i.e.,

C ¼ 3
ffiffiffi
3

p
kBTL

3
maxx

4
0

64p

4x20 � 9x0 þ 6

ð1� x0Þ2
: (4)

The bending energy [20] is given by

Fbending ¼
X

adjacent�;�pair

kbend½1� cosð��� � �0Þ�; (5)

where kbend is the average bending modulus [21], while �0
and ��� are the spontaneous and the instantaneous angles

between two adjacent triangles, respectively. Well known
expressions for the total volume and area terms in the
Eq. (1) are used here [22]. The forces are obtained from
fn ¼ �@FðfxngÞ=@xn, while the evolution of the velocity
and coordinates of the typical point n 2 1 . . .N is de-
scribed by Newton’s equations of motion

dxn

dt
¼ vn;

dvn
dt

¼ fn þ fextn ; (6)

where vn is velocity and f
ext
n is the external force applied on

the point.
The model used in Ref. [13] consisted of N ¼ 23 867

points, each representing a junction complex in the RBC
spectrin network. The average length of links L0 was
75 nm. The maximum extension length Lmax was taken
to be 3:17L0 and the persistence length was p ¼ 7:5 nm.
The average bending modulus was kbend ¼ 200kBT and the
spontaneous angle �0 ¼ 1�. The model produced results in
good agreement with the optical tweezers experiment data
[13]. (Wewill refer to this model as ‘‘fine’’ model and mark
its parameters with superscript ‘‘f’’ later in the text.)
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In a series of experiments [2] it was shown that RBCs
subject to a transient shear flow after relaxation recover a
biconcave shape in which the rim of the cell is always
formed by the same part of the membrane. These results
suggest that there is an elastic energy stored in the mem-
brane components that has a minimum when the RBC is in
discocyte state and that the local components of the mem-
brane are not strained in the biconcave resting shape [4,19].
Therefore, the material reference state for the in-plane
elastic energy of the model is chosen to be a biconcave
shape. The average shape of the unstressed biconcave RBC
measured experimentally is given by a set of points with
coordinates (x, y, z) in 3D space satisfying the following
equation

y¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 þ z2

R2

s �
c0 þ c1

x2 þ z2

R2
þ c2

ðx2 þ z2Þ2
R4

�
; (7)

where ðR; c0; c1; c2Þ ¼ ð3:91 �m; 0:013 580 5; 1:001 279;
�0:561 381Þ [23]. We used the following procedure to
obtain the initial biconcave shape: First, the points are
uniformly distributed over the analytic shape (7) and
used as vertices for the surface triangulation. Next, the
motion of the points is restricted to the biconcave shape,
while their positions are updated due to the relaxation of
the free energy of the model. During this process, the links
are swapped to ensure that for each pair of adjacent tri-
angles the edge between the triangles is the shorter diago-
nal connecting pairs of opposite vertices. The final state is
obtained after sufficiently long-time equilibration.

We develop a coarse-grained model by using a smaller
number of points (N < 23 867) to represent the RBC. The
equilibrium length of the links depends on the number of
particles used. The simple approximation, based on a
geometric argument of average increase of membrane
area per point,

Lc
0 ¼ Lf

0

ffiffiffiffiffiffiffi
Nf

Nc

s
(8)

used here gave good results, where Nf and Nc are number
of points in the fine and coarse-grained models, respec-
tively, and Lc

0 is the equilibrium length of the links in the

coarse-grained model. The average angle between the pairs
of adjacent triangles increases as we coarse-grain the
model. Therefore, using a similar geometric argument,
we adjust the spontaneous angle as

�c0 ¼ �f0
Lc
0

Lf
0

: (9)

To set the parameters in the in-plane shear energy equa-
tion we use a mean-field argument [12,24]. The mean-field
approximation is analytic and the expressions for the pa-
rameters of the network can be derived as in Ref. [25]. For
the shear modulus of the cell membrane we obtain

�0¼
ffiffiffi
3

p
kBT

4pLmaxx0

�
3

4ð1�x0Þ2
�3

4
þ4x0þ x0

2ð1�x0Þ3
�
; (10)

and for the elastic area compression modulus

K ¼
ffiffiffi
3

p
kBT

4pLmaxð1� x0Þ2

�
�
3

2
ð6� 9x0 þ 4x20Þ þ

1þ 2ð1� x0Þ3
1� x0

�
: (11)

We notice that for a fixed value of x0 ¼ L0=Lmax, the shear
and elastic area compression moduli [26] of the coarse-
grained membrane are equal to the original moduli if the
persistence length is adjusted as

pc ¼ pf L
f
0

Lc
0

: (12)

The system of Eqs. (4), (8), (9), and (12) provides us
with a complete set of parameters for the model at arbi-
trary level of coarse-graining, as long as the number of
points is sufficient to describe the deformation of the cell
adequately. The parameters of the model for different
values of coarse graining used later in the text are listed
in Table I.

TABLE I. Effective parameters of the model (SI units) at
different levels of coarse graining at temperature T ¼ 300 K.
Parameters are described in the text.

N L0 Lmax p C �0

23 867 7:50� 10�8 3:17L0 7:50� 10�9 1:81� 10�34 1.00�

5000 1:63� 10�7 3:17L0 3:43� 10�9 4:13� 10�33 2.18�

500 5:18� 10�7 3:17L0 1:08� 10�9 4:13� 10�31 6.90�

100 1:15� 10�6 3:17L0 4:85� 10�10 1:03� 10�29 15.44�
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FIG. 1 (color online). Axial and transverse diameters of the
RBC versus stretching force. The optical tweezers experimental
data from [3] shown with symbols. The simulation results at
different levels of coarse-graining are shown with lines. Blue
line: N ¼ 23867, red line: N ¼ 5000, green line N ¼ 500 and
magenta: N ¼ 100. Inset: Persistent length sensitivity study for
N ¼ 500. Blue line: p is specified according to Eq. (12).
Magenta line: p ¼ 7:5 nm. Green and red lines: p is set 10%
above or below the value given by Eq. (12), respectively.
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To verify the coarse-graining procedure, we first per-
form a set of cell stretching experiments at different levels
of coarse graining. The data used to investigate the per-
formance of the model was taken from the optical tweezers
experiments [3]. Initially, the model is at rest with the large
diameters of the model located in the xz plane. We find the
5% of points with the largest x coordinates. During the
simulations, we apply the time-dependent force fextn ¼
fexttotalðtÞ=ð0:05NÞ to each of these points. Similarly, a force

fextn ¼ �fexttotalðtÞ=ð0:05NÞ is applied to the 5% of points

with the smallest x-coordinates at rest. The axial and
transverse diameters are computed as jmaxn21::Nxn �
minn21::Nxnj and 2�maxn21::N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2n þ z2n

p
, respectively.

The results of the simulations are shown in Fig. 1 and are
in good agreement with experimental data. For N ¼ 100,
the model gives a very crude approximation of the RBC
surface as shown in Fig. 2. We start to observe deviations of
the axial and transverse diameters, which become more
pronounced as we coarse-grain the model further (N ¼ 50,
not shown here). Therefore, we conclude that N > 100 is
required to represent the deformation of the RBC accu-
rately. To assess the sensitivity of the results for the coarse-
grained model on the parameters we perform additional
simulations, where we use the fine model persistence
length (i.e., set p ¼ 7:5 nm) or prescribe it 10% above or

below the value given by Eq. (12). In the later cases we
observe linear deviations in the axial and transverse diam-
eters, while in the former case the model produces erro-
neous results as shown in the insert in Fig. 1 for N ¼ 500.
Next, we apply the coarse-grained model to simulate the

motion of the RBC in a microchannel using dissipative
particle dynamics (DPD), a mesoscopic method which
describes clusters of molecules moving together in a
Lagrangian fashion subject to soft quadratic potentials;
see Refs. [27,28]. The RBC is modeled as a collection of
N DPD particles. This model is immersed in DPD fluid.
The RBC particles interact with the fluid particles through
DPD potentials [28] and the temperature of the system is
controlled through the DPD thermostat [28]. The deforma-
tion and motion of the RBC are computed based on Eq. (6),
in which the external force, fextn , comes from the interaction
with the surrounding DPD fluid. The flow domain is a tube,
45 �m in length and 10 �m in diameter [29]. In the
capillaries of this diameter, the blood velocity is typically
about 1 mm=s [30]. The no-slip condition at the fluid-solid
interface is achieved by using adaptive control [31] with
uniform density profile prescribed in the near-wall region.
Initially, the fluid is at rest and the RBC is placed in the
middle of the channel. We apply a body force in the axial
direction to drive the flow in the tube. The RBC deforms
under the flow conditions and after some transition period
assumes the parachute type shape shown in Fig. 3, which is
commonly observed in experiments [5]. After the body
force is turned off the flow slows down and eventually
the DPD fluid returns to rest, while the RBC recovers its
equilibrium biconcave shape. The results of Fig. 3 are
shown for N ¼ 500, but similar results are obtained for
more refined models (e.g.,N ¼ 5000) if the parameters are
scaled appropriately using Eqs. (4), (8), (9), and (12).
Using DPD, we have also simulated the motion of the

RBC in shear flow. An unsteady tumbling solidlike motion
was observed, while at high shear stress a tank-treading
motion, characterized by membrane rotation about the
internal fluid, was predicted in agreement with [19], see
Fig. 4. Swinging motion in which the RBC oscillated twice
about the mean inclination angle in each tank-treading
cycle [4,19] was also observed. The motion in the inter-
mittent region [4,19] had characteristics of both tank tread-
ing and tumbling, however it was difficult to separate

FIG. 2. RBC shape evolution at different stretch forces (0, 90,
and 180 pN) predicted by the model at different levels of coarse-
graining. Upper row: N ¼ 23 867 (surface triangulation not
shown), middle row: N ¼ 500, lower row: N ¼ 100.

a b c d e

FIG. 3 (color online). Successive snapshots of deformation of the coarse-grained model (N ¼ 500) from the DPD simulations of the
RBC flow in a microchannel. From left to right: (a) The model is placed in the channel with the fluid at rest. (b),(c) The deformation of
the model 0.008 and 0.016 seconds after the body force driving the flow is applied. (d) The shape of the model at steady flow. (e) The
model recovers its equilibrium biconcave shape 0.2 seconds [32] after the body force is turned off. (Only a portion on the microchannel
is shown for clarity.)
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clearly these two regimes. The shear stress dependent
transition of motion can be explained on the basis of the
elastic energy storage in the RBC membrane [4,19].

In this Letter we have developed a coarse-grained model
of RBC and applied it in DPD flow simulations. The model
can be used with other particle based methods, such as
smoothed particle hydrodynamics (SPH) or lattice
Bolzmann method (LBM), as well as continuum-based
methods. For RBC suspensions, appropriate interaction
models should be employed.

This work was supported by the NSF/IMAG, and com-
putations were performed on the IBM Blue Gene at SDSC
(an NSF supercomputing center).
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FIG. 4 (color online). Transition from tumbling (h, x, 5) to
tank treading (�, v, 4) of coarse-grained (N ¼ 500, 1000,
5000, respectively) RBC model in shear flow in DPD simula-
tions.
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