
UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTAMENT DE LLENGUATGES i SISTEMES INFORMÀTICS

PROGRAMA DE DOCTORAT EN INTEL.LIGÈNCIA ARTIFICIAL

TESI  DOCTORAL

DAI-DEPUR: AN INTEGRATED SUPERVISORY MULTI-LEVEL
ARCHITECTURE FOR WASTEWATER TREATMENT PLANTS

Memòria presentada per en Miquel Sànchez i Marrè,
per a optar al títol de Doctor en Informàtica per la
Universitat Politècnica de Catalunya

Director: Dr. Ulises Cortés García

Barcelona,  Hivern de 1995/1996



A l'Anna,
 pel seu recolzament,
per la seva paciència,

 i  pel seu amor .



i

Contents

Contents i
Resum vii
Abstract ix
Agraïments xi
Preface xiii
List of Figures xv
List of Tables xix

1 Introduction 1
1.1 Motivations 1

1.1.1 Shortcomings in Classical Process Control Methods 2
1.1.2 Limitations of Knowledge-Based Systems 4

1.2 Wastewater Treatment Plants Process 7
1.2.1 Wastewater 7
1.2.2 Wastewater Treatment 9

1.2.2.1 Preliminary Treatment 9
1.2.2.2 Primary Treatment 9
1.2.2.3 Secondary Treatment 10
1.2.2.4 Advanced Treatment 11

1.2.3 Wastewater Operation and Control 12
1.2.3.1 Aeration and Dissolved Oxygen Control Method 12
1.2.3.2 Return of Activated Sludge Control Methods 13
1.2.3.3 Waste of Activated Sludge Control Methods 13

1.3 Issues 14
1.4 Scheme of the Thesis 17

2 The State of the Art 21
2.1 Process Control 21

2.1.1 Automatic Process Control applied to WWTP 23
2.1.2 Real-Time Systems 26

2.1.2.1 Are WWTP Real-Time Systems ? 29
2.2 Artificial Intelligence applied to Process Control and Supervision 30

2.2.1 Intelligent Control 32
2.2.2 Knowledge-Based Systems applied to WWTP 34

2.2.2.1 Design Systems 34



ii

2.2.2.2 Diagnosis and Decision-Aided Systems 35
2.2.2.3 Control Systems 37

2.3 Knowledge-Level Theory 38
2.3.1 Generic Tasks 38
2.3.2 Inference Structures 39
2.3.3 Deep versus Surface Knowledge 39
2.3.4 Problem-Solving Methods 40
2.3.5 KADS 40
2.3.6 Componential Framework of Expertise 41

2.4 Integrated Architectures 42
2.4.1 SOAR 45
2.4.2 Task Control Architecture 46
2.4.3 THEO 47
2.4.4 PRODIGY 47

2.5 Multi-Level Architectures 48
2.5.1 Meta-Level Architectures 49

2.6 Distributed Artificial Intelligence 52
2.6.1 Models 52
2.6.2 General Applications 55

3 DAI-DEPUR: an Integrated Supervisory Multi-level Architecture 57
3.1 Introduction 57
3.2 Knowledge-Level Analysis of WWTP 59
3.3 Integrated Multi-level Architecture 60
3.4 Distributed Problem Solving 64

4 The Data Level 67
4.1 Domain Models 67

4.1.1 On-line Data 67
4.1.1.1 External Interface 69

4.1.2 Calculated and Inferred Data 70
4.1.3 Off-line Data 71

4.1.3.1 Microbiological Information 74
4.1.3.2 Off-line Data Interface 78

4.2 System Evaluation Task 79
4.3 Data Gathering Method 80



iii

5 The Knowledge/Expertise Level 81
5.1 Introduction 81
5.2 Domain Models 82

5.2.1 Numerical Control Knowledge 82
5.2.2 Expert Knowledge 87

5.2.2.1 Inference Rules 87
5.2.2.2 Distributed Agents' Knowledge 92

5.2.3 Experiential Knowledge 95
5.2.3.1 Missing Information 98
5.2.3.2 The Table of Attributes 99
5.2.3.3 Cases 100

         5.2.3.4 Case Library 101
5.3 Tasks 102

5.3.1 Diagnosis 102
5.3.2 Adaptation 104

5.4 Methods 104
5.4.1 Expert Knowledge Methods 104

5.4.1.1 Expert Knowledge Acquisition 104
5.4.1.2 Rule-Based Reasoning 109

5.4.2 Experiential Knowledge Methods 114
5.4.2.1 Learning from Observation 114
5.4.2.2 Case-Based Reasoning 115
5.4.2.3 Learning from Experience 124
5.4.2.4 Introspection 129

6 The Situations Level 131
6.1 Introduction 131
6.2 Domain Models 131

6.2.1 Generic Situations 132
6.2.2 Specific Situations 139

6.3 Supervision Task 140
6.4 Combination Method 144

7 The Plans Level 147
7.1 Introduction 147
7.2 Domain Models 147

7.2.1 Identified Situation 148
7.2.2 Proposed and Adopted Plans 149



iv

7.3 Tasks 154
7.3.1 Plan Validation 154
7.3.2 Actuation 154

7.4 Methods 155
7.4.1 Operator's Validation 155
7.4.2 Expert/Experiential Actuation 155
7.4.3 Numerical Control Actuation 156

8 Experimental Evaluation and Validation 157
8.1 Introduction 157
8.2 Single Validation of the Components 158

8.2.1 Numerical Control Knowledge Validation 158
8.2.2 Expert Knowledge Validation 159

8.2.2.1 The Data Stream 161
8.2.2.2 K-means Method 161
8.2.2.3 Results obtained with LINNEO+ 162
8.2.2.4 Results obtained with K-means Analysis 164
8.2.2.5 Comparison of Classification Results 168
8.2.2.6 Obtained Situations versus a priori Defined Situations 169

8.2.3 Experiential Knowledge Validation 171
8.2.3.1 The Similarity Measure 172
8.2.3.2 The CBR Competence 174
8.2.3.3 The CBR Performance 175

8.3 Global Evaluation of DAI-DEPUR 179
8.3.1 Simulations 179
8.3.2 Validation on a Scale Pilot WWTP 179
8.3.3 Validation on a Real WWTP 182

9 Application 183
9.1 Introduction 183
9.2 Executing DAI-DEPUR 183

9.2.1 Main Menu 183
9.2.2 User Interaction 184
9.2.3 Simulation Tool 186
9.2.4 Inspection Facilities 186
9.2.5 Output Displays 188

9.3 Examples of Application 190
9.3.1 Uncontrolled Denitrification: Rising 191



v

9.3.2 Deficient Sludge Settling: Filamentous Bulking 192
9.3.3 Toxic Shock 195

9.4 Implementation 197

10 Conclusions and Future Work 201
10.1 Research Discussion 201
10.2 Contributions 203
10.3 Future Work 204

Appendixes

A Glossary 207
B "Generalitat de Catalunya" Government's Law on Wastewater

Treatment Plants 221
C Classification's Data and Results 231
D Case Library 247
E Tools 251

Bibliography 253



vi



vii

Resum

En aquesta tesi es presenta la recerca i el treball fet en el disseny i la implementació
d'una arquitectura integrada multi-nivell de supervisió en temps real, de plantes de
tractament o estacions depuradores d'aigües residuals (EDAR). La recerca
desenvolupada recull una doble font de problemes: per una banda, la insuficiència
dels mètodes habituals d'Enginyeria Química aplicats a les EDARs, i per l'altre, les
limitacions dels Sistemes Basats en el Coneixement, en ésser enfrontats amb
problemes del món real.

La gestió, control i supervisió d'una EDAR és una tasca molt complexa i perillosa,
degut a les característiques de les EDARs i a les catastròfiques conseqüències a que
pot donar lloc un mal funcionament de la planta. Les tècniques habituals –
algorismes de control numèric– no són capaces de controlar la EDAR, tret de quan es
troba en unes condicions de funcionament normals. Necessiten la integració d'altres
tècniques que permetin incorporar el coneixement expert dels operadors de les
plantes i dels llibres, així com les experiències adquirides en el funcionament passat
de la planta sota control.

Els Sistemes Basats en el Coneixement (SBC) tenen una sèrie de mancances, sobretot
quan s'apliquen a sistemes complexos del món real: no solen estar preparats per a
fer front a situacions inesperades, la majoria dels SBC no aprenen de les seves
experiències, hi ha greus dificultats per a l'adquisició del coneixement, les bases de
coneixement solen ser poc reusables, i la complexitat creixent dels SBC monolítics.

L'arquitectura, anomenada DAI-DEPUR, es fruit de la integració de diverses
tècniques d'Intel.ligència Artificial amb d'altres d'Enginyeria de Control, i amb
altres d'Enginyeria Química: tècniques de control numèric –un algoritme de control
predictiu–, models d'Enginyeria Química, raonament basat en el coneixement,
raonament basat en casos, adquisició semiautomàtica de coneixements,
aprenentatge, adquisició de dades on-line i off-line, etc.

L'objectiu global de supervisió es duu a terme de forma distribuida mitjançant una
sèrie de tasques: evaluació del sistema, diagnosi local dels subsistemes, adaptació,
diagnosi global, supervisió, validació i actuació. El coneixement expert està
distribuit entre diferents bases de coneixement que cooperen per a la supervisió
global de la planta. La arquitectura és multi-nivell, essent estructurada a partir de
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l'estudi dels diferents tipus de coneixement i de les diferents tasques a realitzar.
Aquest fet, doncs, proporciona una certa independència als diferents nivells que la
composen: nivell de dades, nivell de coneixement/expertesa, nivell de situacions i
nivell de plans d'actuació.

La implementació de DAI-DEPUR s'ha realitzat utilitzant certes eines com G2 –un
shell per a sistemes experts en temps real–, LINNEO+ –una eina no supervisada per
a l'adquisició semiautomàtica de coneixements, GAR –un generador automàtic de
regles de inferència–, i el llenguatge de programació Lisp per a la implementació
d'un sistema de raonament basat en casos.

L'evaluació del sistema, que ha donat bons resultats, s'ha fet a dos nivells. Primer,
s'han validat els tres grans components de l'arquitectura: el coneixement de control
numèric, el coneixement expert i el coneixement experiencial. En segon lloc s'ha
procedit a una validació global de DAI-DEPUR, que també consta de tres fases:
simulacions del funcionament de la planta validades pels experts, validació en una
planta pilot que s'ha construït a tal efecte, i la propera evaluació en una planta real,
mitjançant un acord amb la Junta de Sanejament de la Generalitat de Catalunya.

Finalment es mostren varis aspectes de l'execució de DAI-DEPUR i es detallen uns
quans exemples d'aplicació per a mostrar el procés global de supervisió de la planta
on interactuen les diverses tècniques implementades, la EDAR i l'operador, a través
de vàries interfícies.

Paraules Clau

Arquitectures Integrades, Arquitectures Multi-nivell, Arquitectures Distribuïdes,
Raonament basat en el coneixement, Raonament basat en casos, Adquisició de
coneixements, Aprenentage, Supervisió i Control en Temps Real, Tractament
d'aigües residuals, Biotecnologia, Enginyeria Química, Enginyeria Medioambiental.
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Abstract

In this thesis, it is presented the research and work developed in the design and
implementation of an integrated multi-level architecture for wastewater treatment plants

(WWTPs) supervision in real-time. The research has coped with a double open
problems in two different areas: the insufficiency of classical Chemical Engineering
control methods applied to WWTPs, and on the other hand, some pitfalls of
Knowledge-Based Systems, specially when faced against real-world problems.

The management, control and supervision of a WWTP is a very complex and
dangerous task, due to the features of a WWTP and to the catastrophic
consequences that can be achieved by an incorrect WWTP operation. Usual used
techniques –numerical control algorithms– are not able to control the WWTP if it is
not operating in normal conditions. They need the integration of other techniques
that allow to include the expert knowledge provided by the WWTP's operators and
the literature, and the experiential knowledge acquired in the past operation of the
WWTP under supervision.

Knowledge-Based Systems (KBS) have some pitfalls, specially when faced against
complex real-world domains: their scope is limited to the forecasted situations in
the domain, i.e. brittleness; most KBS do not learn from their experiences; the
knowledge acquisition problem; low reusability of knowledge bases, and the
increasing complexity of monolithic problem solving systems

The architecture, called DAI-DEPUR, is the result of the integration of several
Artificial Intelligence techniques with some Control Engineering methods, and with
some Chemical Engineering techniques: numerical control methods –a predictive
control algorithm–, Chemical Engineering models, rule-based reasoning, case-based
reasoning, semi automated knowledge acquisition, learning, on-line and off-line
data acquisition, etc.

The global issue of supervision is carried out in a distributed way by means of
several tasks: system evaluation, local diagnosis of subsystems, adaptation, global
diagnosis, supervision, operator's validation and actuation. The expert knowledge
is distributed among several knowledge bases that cooperate for the global
supervisory task. The architecture is multi-level, and it has been structured in this
way, as a result of the study of the different kinds of knowledge and tasks involved
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in the domain. This feature provides it with a certain independence among the
different levels: the data level, the knowledge/expertise level, the situations level
and the plans level.

DAI-DEPUR has been implemented by means of some tools such as G2 – a real-time
expert systems shell–, LINNEO+ –a semi-automated unsupervised knowledge
acquisition tool–, GAR –an inference rule automated generator–, and the
programming language Lisp for the implementation of the case-based reasoner.

The evaluation of the system has given good results and it has been carried out in
two stages. First, the three main components of the architecture: the numerical
control knowledge, the expert knowledge and the experiential knowledge.
Secondly, a global validation of DAI-DEPUR, also containing three steps has
followed: WWTP operation simulations validated by the experts, validation in a
pilot scale WWTP constructed to that end, and the next evaluation in a real WWTP
by means of an agreement with the "Junta de Sanejament de la Generalitat de
Catalunya".

Finally, some features of DAI-DEPUR execution are showed, and a few examples of
application are detailed, in order to outline the global supervisory process where
interact the several techniques implemented, the WWTP and the WWTP's operator
through several interfaces.

Key Words

Integrated Architectures, Multi-level Architectures, Distributed Architectures, Rule-
based reasoning, Case-based reasoning, Knowledge acquisition, Learning, Real-
time Supervision and Control, Wastewater treatment, Biotechnology, Chemical
Engineering, Environmental Engineering.
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Preface

The idea of using Artificial Intelligence techniques, particularly Expert Systems, to
the management and supervision of wastewater treatment plants was born in the
Chemical Engineering Unit of the UAB. This approach joined with the efforts of the
Knowledge-Based Systems and Machine Learning group of the Artificial
Intelligence section of the Software department (LSI) of the UPC, to overcome some
troubles in knowledge engineering and knowledge acquisition. The merge of both
paths has derived to this thesis.

The work was based on my early Master's Thesis [Sànchez, 1991] that was focused
on the use of Knowledge-Based Systems for the off-line diagnosis task in
wastewater treatment plants. That work was awarded with an accesit of the "Oms i
De Prat 1991" award in the modality of Experimental and Applied Science. The KBS
system developed was called DEPUR. DEPUR stands for DEPURation KBS system.

From this experience and joining the efforts of all groups involved in the research:
chemical engineers, control engineers, biologists, plant's operators –experts–, the
architecture for the global supervision, control and management of the wastewater
treatment plant was designed and afterwards implemented. It has been called DAI-
DEPUR, that stands for Distributed And Integrated DEPUR.

As the work is the result of this collaboration, the thesis is an interdisciplinary
research. Although this interdisciplinarity, the work is presented here from an
Artificial Intelligence point of view. It has been a challenge to produce a text that
could be meaningful and useful to both types of reader, although it is mainly
addressed to Artificial Intelligent scientists. So, it is possible that some topics are
not fully explained here, because they are mainly related to the other discipline.
Anyway, a glossary of technical words in Chemical Engineering is provided in the
appendix A.

One of the goals of our research –and that was clearly pointed by the experts in the
early stage– was that the supervisory architecture to be designed would be general
enough to be used in any wastewater treatment plant of similar technology. The
proposed architecture satisfies this requirement, because it can adapt itself through
a dynamic experiential component.
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Although the work has focused on the wastewater treatment plants, we aim that the
architecture is also useful for other real-time control processes in complex real-
world domains.

The text is written in English due to the aim of providing an easy understanding
and a wide dissemination of the work to the interested scientific community, if any.
Writing the text in a foreign language has supposed an added difficulty to the
work, and a rejection of my own loved Catalan language. As it is not written by an
Oxford scholar, but a foreign writer, be benevolent with my English grammar and
language mistakes !
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Chapter 1

Introduction

What has been now started as a science fiction novel, tomorrow will be finished as a report.
Arthur C. Clarke

1.1 Motivations

The primary objective of wastewater treatment plant (WWTP) operation is to meet
the specified requirements on the outflow water quality, in order to restore the
natural environmental balance broken by human beings activities (industrial
wastes, domestic waters, etc.). The process carried out in WWTP to accomplish that
goal is very crucial, so that a bad outflow water quality is very dangerous for the
human beings and the nature. Also, the process itself is very complex. Both of these
features make difficult to set a reliable supervisory control technology over the
wastewater treatment plants. On the other hand, Knowledge-Based Systems (KBS)–
one of the most broadly applied paradigm of Artificial Intelligence– cope with some
pitfalls, specially when faced against real world domains.

Thus, the motivations of this work were originated by a double source of unsolved
problems: the proved insufficiency of Chemical Engineering classical control
methods applied to WWTP supervision, and on the other hand, some limitations of
Knowledge-Based Systems –specially in real world domains–, in Artificial
Intelligence.



1. 1 MOTIVATIONS                1

1.1.1 Shortcomings in classical process control methods

The setting of an automatic process control over the wastewater treatment plant
system, has showed some difficulties:

• The complexity of the system There are many factors influencing the process, such
as the complex interrelations between the microorganisms coexisting in the
reactors and between these microorganisms and the substrate to be broken down.
Moreover, this substrate is also affected by the variable quantity and quality of
the wastewater stream, as illustrated in figure 1.1.

Fig. 1.1. Evolution of Biological Oxygen Demand (BOD) –a measure of the organic
matter– along the time at the input of a WWTP

• An ill-structured domain. The relationships among the concepts or attributes of
the domain are not enough known and there is not much agreement among the
experts. The relationship among the various phenomena which characterize the
system is insufficiently understood. Although different mathematical models
have been put forward to describe the relationship between the microorganisms
and the substrate, these models cannot be said to provide an entirely satisfactory
description of the cause-effect relationships occurring within the plant.

• Non-numerical or qualitative information. There are many data related to the
process which cannot be numerically quantified, and therefore cannot be used in
the context of a conventional control model. For example, water appearance,
water smell, microbiological information, state of the flocculation during
sedimentation, etc..

• Uncertainty or approximate knowledge. The variables which describe the process
are global, such as the chemical or biochemical oxygen demand, the volatile
solids, etc., and difficult to obtain on-line. Therefore, the expert also has to take
into account subjective information, based on local experience, which enables
him to identify certain states in the plant.

• A dynamic system. The system is under continuous changes that can directly
modify the performance of the process. Therefore, a real time control loop is
needed to supervise the process.
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Moreover, it can be said that the classical control methods work well on the normal

states of the plant but not in other abnormal states of working:

• How could they detect some unforeseen situations such as the mechanical
faults or cope with a toxic substances shock ?

• How could they use the subjective information accumulated through years of
experience by the experts ?

• How could they use the available but incomplete information, to solve an
specific problem ?

• How could they use the objective information provided by years of WWTP
operation?

1.1.2 Limitations of Knowledge-Based Systems

The issue of Knowledge-Based Systems (KBS) is the emulation of human problem
solving capabilities, using the same knowledge sources, within a concrete domain
[González and Dankel, 1994; Jackson, 1990; Buchanan and Smith, 1988; Clancey,
1985a; Hayes-Roth, 1984; Stefik et al., 1982]. Knowledge-based systems are formed
of a set of either declarative or procedural informations and relationships. Also,
they have certain heuristics that form the knowledge body, and some inference and
search processes. Main problems solved with knowledge-based systems are usually
solved by human experts and considered as very complex and specialized ones.

Usually, a great amount of knowledge is required to solve these kind of problems.
Typically, the knowledge body is encoded in form of inference rules that allows the
system to deduce some new conclusions, from a set of premises or data:

IF <conditions> THEN <actions>

Commonly, the reasoning method (inference engines) may be forward chaining,
backward chaining or a combination of both. Forward reasoning is guided from the
input data to the conclusions of the system, by means of deducing some new facts
from previous ones. In backward chaining, the reasoning is guided from the
conclusion(s) –that is(are) wanted to deduce– to the input data provided by users.
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Main components of KBS are: the knowledge base or long-time memory, the data
base or working memory (short-time memory), the inference engines, the user
interface, the auto-explanation module, the strategies or control module, the
knowledge engineer interface, on-line sensors/actuators interface, etc. (see figure
1.2). In the more advanced generations of KBS such as in [Puyol, 1994], the modules
of inference rules are considered as specialists in a given subdomain.

The main characteristics of Knowledge-Based Systems (KBS) point to the fact that
they could be used for the supervision and control [Sànchez et al., 1995c; Sànchez et

al., 1994a; Dym and Levitt, 1991; Stephanopoulos, 1990; Sriram and Adey, 1987;
Efstathiou and Mamdani, 1985]. In our case, we want to focus on the supervision
and control of real wastewater treatments plants. Among those characteristics we
can distinguish:
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• Usefulness in concrete domains. They are effective when applied to a certain
domain where some expert people can afford their experience and knowledge.
• Separation of knowledge base from control elements. It provides a more easily
way of building and updating knowledge-based systems.
• Getting the expertise and experience from human beings within a specific domain
into the system.
• High interactive systems.
• Natural language interfaces are usually provided for its exploitation.
• Supporting of numerical and/or symbolic information.
• Specially useful in ill-structured domains.
• Could be extended in some ways. For example, the treatment of uncertain or

approximate reasoning.

Some of the problems within the conventional process control systems have been
the focus during the last years, of much of the research efforts in Artificial
Intelligence –specially in KBS– applied to real world problems:

• Control of petrochemical plants, [Alamán et al., 1992].
• Monitoring of continuous processes, [Finch et al., 1990].
• Statistical process control, [Anderson et al., 1990; Novotny et al., 1990].
• Control of sun powered plants, [Sanz et al., 1989].
• Real time process control, [Wright et al., 1987; Moore et al., 1984].

Nevertheless, Knowledge-Based Systems do not incorporate some desired features
from human intelligence and have some technical difficulties in their development:

• Most KBS do not learn from their experiences. The use of experience is a valuable
feature to be contemplated in KBS [Aamodt, 1989].

• The knowledge acquisition problem. There are some difficulties in the process of
extracting the knowledge and experience from knowledge's sources. [Becker,
1987].

• Low reusability of knowledge bases. Knowledge acquisition strongly depends on
both the experts and the concrete domain. Thus, it is very difficult the partial or
global sharing and reuse of knowledge bases [Neches et al., 1991].
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• Brittleness. Their scope is limited to the forecasted situations in the domain.
They are not reliable when applied to unexpected situations [Steels, 1990].

• The increasing complexity of monolithic problem solving systems. As the systems
grow, it is more difficult to manage the information and knowledge contained in
them.

1.2 Wastewater Treatment Plants Process

1.2.1 Wastewater

New big urban areas produce a big amount of wastewaters. When the natural
environmental balance is broken, the water quality is getting worse due to the fact
that these wastewaters overcome the performance of auto-regulation process of the
receiving waters. In this case, society has to act in order to restore this natural
environmental balance.

Municipal wastewater treatment plants (WWTP) provide an important buffer
between the natural environment and the concentrated wastewaters from urban
areas. If released in an uncontrolled fashion, these wastewaters would degrade the
water, land and air on which life depends.

If untreated wastewater is allowed to accumulate, the decomposition of the organic
materials that it contains can lead to the uncontrolled production of large quantities
of malodorous gases. In addition, untreated wastewater usually contains numerous
pathogenic, or disease-causing, microorganisms that dwell in the human intestinal
tract or that may be present in certain industrial waste. Wastewater also contains
nutrients, which can stimulate the growth of aquatic plants, and it may contain toxic
compounds. For these reasons, the immediate and nuisance-free removal of
wastewater from its sources of generation, followed by treatment and disposal, is
not only desirable but also compulsory in an industrialized society, [Metcalf &
Eddy, 1991; Benefield and Randall, 1980].

The wastewater quality and quantity characteristics of a plant's influent, typically,
reflect the nature of the contributing area, water uses, and conditions of the
conveyance system. From the standpoint of sources of generation, wastewater may
be defined as a combination of the liquid –or water– carrying wastes removed from
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residences, institutions, commercial and industrial establishments; together with
that groundwater, surface water and stormwater may be present too. Typical data
on the individual constituents found in domestic wastewater are reported in Table
1.1. Both the constituents and the concentrations vary with the hour of the day, the
day of the week, the month of the year and, as mentioned above, with other local
conditions.

Contaminants

SOLIDS

Concentration (mg/l)

   Dissolved
   Suspended
   Settleable

ORGANIC MATERIA

250-850
100-350
5-20 ml/l

   BOD5
   TOC
   COD

NUTRIENTS

110-400
80-290

250-1000

   Nitrogen (total as N)
      organic
      free amonia

      nitrites
      nitrates

   Phosphorus (total as P)
      organic
      inorganic

PATHOGENS

20-85
8-35

12-50

0
0

4-15
1-5

3-10

   Total coliform 10 7-10 10

Table 1.1. Typical composition of untreated domestic wastewater

The main objective of wastewater treatment plants operation is to meet the specified
requirements or, if the facility is nondischarging, the applicable requirements of the
regulatory agencies for groundwater protection (see appendix B for the Catalonian
regulations). At the same time, the operation must protect the safety, health, and
well-being of the plants' employees and neighbours. In establishing the
requirements for wastewater treatment, the regulatory agencies may consider the
following, as well as compliance with minimum statutory requirements, [WPCF,
1990]:

• Prevention of disease
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• Prevention of nuisances
• Avoidance of water supply contamination
• Elimination of all pollutant discharges to navigable waters
• Maintaining clean waters for the propagation and survival of fish and other
aquatic life
• Protection of waters for personal bathing and recreational use
• Preservation of pristine waters for ecosystem protection
• Conservation of water

1.2.2 Waste water treatment

Unit operations, i.e. treatment methods in which the application of physical forces
predominates, and unit processes, i.e. treatment methods in which the removal of
contaminants is brought about by chemical or biological reactions are grouped
together to provide what is known as preliminary, primary, secondary and
advanced or tertiary treatment, if it exists. A chart of this process is depicted in
figure 1.3.

1.2.2.1 Preliminary treatment

Preliminary treatment of wastewaters may include screening, grit removal,
chemical additions, pre-aeration, odour control (where appropriate) and flow
measurement. The removal of debris in the screening area and the removal of sand,
rocks, gravel and other inorganic in the grit removal system protect downstream
treatment processes.

1.2.2.2 Primary treatment

Primary treatment is normally associated with sedimentation but occasionally uses
fine screens. Primary sedimentation separates the readily settleable and floatable
solids from the wastewater for subsequent wastewater treatment. Other benefits of
primary settling include equalization of sidestream flows and removal of the
biological oxygen demand (BOD) associated with settleable solids.
Many treatment plants use primary sedimentation tanks for thickening primary
sludge as well as solids separation from wastewater. Well-designed and operated
primary treatment facilities may remove as much as 60 to 75 % of the influent
suspended solids and up to 35 % of the biodegradable organic material.
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Fig. 1.3. Chart of a wastewater treatment plant

1.2.2.3 Secondary treatment

Most secondary treatment processes involve biological treatment, using metabolic
reactions of microorganisms to produce a high quality effluent by converting and
removing substances that have an oxygen demand. Most of these biological
processes can be classified as attached growth such as trickling filters, packed towers
and rotating biological contactors, or suspended growth systems referred to as
activated sludge.

In the basic activated sludge process, [Robusté, 1990], the wastewater goes into an
aerated tank where previously developed biological floc particles are brought into
contact with the organic matter of the wastewater. The organic matter, a carbon and
energy source for cell growth, is converted into cell tissue and oxidized end
products (mainly carbon dioxide, CO2). The contents of the aeration tank are called
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mixed liquor. The biological mass, referred to as the mixed liquor suspended solids
(MLSS) or mixed liquor volatile suspended solids (MLVSS), consists mostly of
microorganisms, inert suspended matter and non biodegradable suspended matter.
After the mixed liquor is discharged from the aeration tank, a clarifier that also is
referred to as settling tank or sedimentation tank separates the suspended solids
(SS) from the treated wastewater. The concentrated biological solids are then
recycled back to the aeration tank to maintain a concentrated population of
microorganisms to treat the wastewater. Because microorganisms are continually
produced, i.e. synthesized, in this process, a way must be provided to waste excess
biological solids produced. These solids are generally withdrawn from the clarifier,
although wasting from the aeration tank is an alternative.
Activated sludge is the most vital wastewater treatment process today. For almost a
century, it has been successfully utilized as a conventional system for carbon
removal. For the last few decades, its potential to remove nutrients, such as nitrogen
or phosphorus, has been explored and tested. Despite substantial practice and
accumulate experience, it is wide open to research and conceptual development.

In attached growth systems, the mass of microorganisms affecting treatment are
attached to supporting media as a biological film. This film, a viscous jelly-like
slime, generally comprises a large and diverse population of living organisms,
including bacteria, protozoa, algae, fungi, worms, and even insect larvae. Of the
total mass of the diverse population, most of the mass consists of microorganisms
that consume food and require oxygen to remain aerobic.
The removal of soluble organic material is a relatively rapid process. Good removal
of soluble organic material can generally be achieved at low to moderate loading of
the fixed-film reactors. However, the stabilization or breakdown of biological solids
generated in removing the soluble organic material is a longer process. The time
required for completion of this process will vary depending on the type of filter
media being used, rate of organic loading to the fixed-film reactor, hydraulic shear,
temperature, and other factors.

1.2.2.4 Advanced treatment

Advanced wastewater treatment may be used to reduce the concentrations of
nutrients, nitrogen or phosphorus, and soluble organic substances to levels below
those normally attained through secondary treatment.
Basically, the processes developed can be considered as modifications of
conventional activated sludge technology. The major differences are related to the
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provision for contrasting environmental conditions in the bioreactor and careful
control of the solids retention time (SRT). This encourages the selective growth of
certain types of microorganisms in the reactor's biomass. An advanced treatment
may also include ozonation, carbon ascription, ion exchange, reverse osmosis,
electrodialysis, etc. [WPCF, 1990; Culp and Culp, 1978].

1.2.3 Wastewater operation and control

The control of the biological process is important to maintain high levels of
treatment performance under a wide range of operating conditions. Successful
process control consists of reviewing present and historical operating data and
laboratory test results to select the proper operational parameters that provide the
best performance at the least cost. Focusing on activated sludge configuration, the
principal factors used in process control are:

• Maintaining dissolved-oxygen (DO) levels in the aeration tanks
• Regulating the amount of return activated sludge (RAS)
• Controlling the waste activated sludge (WAS)
• If necessary, chemical feed rates such as chlorine, settling aids, nutrients, etc.

1.2.3.1 Aeration and Dissolved Oxygen control method

The purpose of aeration is two-fold: oxygen must be dissolved in the liquid in
sufficient quantities to maintain active organisms, and the contents of the tanks
must be sufficiently mixed to keep the sludge solids in suspension and uniformly
mixed with the wastewater.
The amount of oxygen that must be transferred in the aeration tanks theoretically
equals the amount of oxygen required by the microorganisms in the system to
oxidize the organic material. However, excess oxygen must be supplied to maintain
the Dissolved Oxygen (DO) at the centre of the floc particle and to sustain the
desirable microorganisms in clarifier and return sludge line back to the aeration
tank. When oxygen limits the growth of microorganisms, filamentous organisms
may predominate, and the settleability and quality of the activated sludge may
deteriorate. On the other hand, over-aeration wastes energy, may create excess
turbulence, and may break up the biological floc resulting in poor settling and high
effluent solids. In practice, the dissolved-oxygen concentration in the aeration tank
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should be maintained at about 1,5 to 4 mg/L in all areas of the aeration tank; 2
mg/L is a commonly used value.

1.2.3.2 Return of Activated Sludge control methods

Return of Activated Sludge (RAS) is a key control parameter of the process. The
purpose of the return of the MLSS settled in the clarifier is to maintain a sufficient
concentration of activated sludge in the aeration tank so that the required degree of
treatment can be obtained in the time interval desired. The rate at which the
activated sludge is returned from the final clarifier to the inlet of the aeration tank
affects the solids balance between these units. There are three basic ways for
returning sludge to the aeration tank:

• At a constant rate, independent of the secondary influent flow rate; it results in
a continuously varying MLSS concentration. Therefore, the depth of sludge
blanket in the clarifier constantly changes as the MLSS moves from the aeration
tank to the clarifier and vice versa.

• At a constant percentage of the varying secondary influent flow. This approach
keeps the MLSS and sludge blanket depths more constant throughout high and
low flow periods and also tends to maintain a more constant food-to-
microorganism ratio (F/M), and sludge retention time (SRT; average number of
days that microorganisms are kept in the activated sludge process).

• At a varying rate to optimize the concentration and detention time of the
clarifier solids.

Several techniques are used to calculate the desirable return-sludge flow rate:
settleability, direct sludge blanket level control, secondary clarifier mass balance,
aeration tank mass balance or sludge quality. All these techniques are
fundamentally similar; they differ on how accurately they control the solids
inventory during abnormal conditions, when is more necessary an accurate process
control.

1.2.3.3 Waste of Activated Sludge control methods

The most important technique used to control the activated sludge process is to
control the solids inventory in the system with the wasting rate of the excess
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activated sludge produced each day. The Waste of Activated Sludge (WAS)
removed from the process affects the effluent quality, the growth rate and the types
of the present microorganisms, oxygen consumption, mixed liquor settleability,
nutrient quantities needed, the occurrence of foaming and frothing, and the
possibility of nitrifying.
The most common practice is to waste sludge from the return sludge line because it
is more concentrated and requires smaller waste sludge pumps, but, as an
alternative activated sludge wasting method, mixed liquor can be removed from the
aeration tank.
The most common methods to control the amount of sludge wasted are:

• Constant SRT, widely used and reliable, particularly when various process
control measurements are used in choosing the best SRT

• Constant F/M ratio. This method requires a significant amount of laboratory
work because the incoming load must be determined

• Constant MLSS, with a minimum amount of laboratory control

• Sludge quality, that can be used independently or with other control methods,
and includes laboratory tests and observations as microscopic examination of
MLSS, aeration tank and secondary clarifier observations, effluent clarity, etc.

1.3 Issues

The main goal of a wastewater treatment plant is to reduce the pollution level of the
wastewater at the lowest cost, that is, to remove –within the possible measure–
strange compounds (pollutants) of the inflow water to the plant prior to discharge
to the environment. So, the effluent water has the lower levels of pollutants as
possible (in any case, lower than the maximum ones allowed by the law). The
plants taken as models –in this study– are based on the main biological technology
usually applied: the activated sludge process [Robusté, 1990]. The main target
wastewater plant studied is located in Manresa-Sant Joan de Vilatorrada, near
Barcelona (Catalonia). This plant receives about 30000 m3/day inflow from 75000
inhabitants (see figure 1.4).
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Other wastewater treatment plant studied with a similar, but slightly different
technology is located in Cassà de la Selva-Llagostera, near Girona (Catalonia). That
plant receives about 2500 m3/day inflow from 10000 inhabitants.

The activated sludge process directly depends on live beings (microorganisms), and
therefore, on changes experimented by them. It could be possible to get a good
plant operation if the supervisory control system is able to react to the changes and
deviations of the system and can take the necessary actions to restore the system's
performance.

From what has been outlined in previous sections 1.1 and 1.2, it is clear that there
are many operations of different nature meeting in a WWTP: mechanical, electrical,
chemical, biological, microbiological, physical operations, etc. All of these
operations can originate themselves failures which can lead the plant to a bad
operation state, i.e. a bad outflow water quality. In addition to this complexity,
there are some features that make very difficult the setting of a conventional
numerical automatic control method such as feedback, feedforward, optimal,
predictive control, etc. to manage the whole process. Namely, a high variability of
the quantity and quality of the inflow water; the biochemical processes involved are
not well-enough known; there is a lot of qualitative information; some on-line
measures are usually not reliable; there is much subjective, useful, and uncertain
information accumulated by the experience of the plants' experts; there are not two
equal wastewater treatment plants; and, also, it is necessary to consider the seasonal
effects on all these factors.

Control, supervision and the overall management of WWTP cannot be implemented
within a single approach. It is needed a multi-disciplinary integrated way
[Venkatasubramanian, 1994], that includes: monitoring (sensor developing,
continuous analysis equipment), modelling (equations that model the bioreactors'
behaviour), numerical control (maintaining good effluent water quality and reducing
operation costs), qualitative information (microbiological information, water's colour
and odour, water's appearance, etc.), expert knowledge (supplied by the large
experience from plants' managers, biologists and operators) and experiential

knowledge (specific knowledge supplied by the previous solved problems in the
system). The three last features commonly provide the systems with incomplete,
uncertain or approximate information. Therefore, AI can play a good role in WWTP
supervision [Sànchez et al., 1995c; Patry and Chapman, 1989; Hushon, 1987;
Stephanopoulos and Stephanopoulos, 1986; Horan and Eccles, 1986].
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On the other hand, one of the key problems in real-time Knowledge-Based control
systems design is the development of an architecture able to manage efficiently the
different elements of the process (an integrated architecture), to learn from past
experience and to acquire the domain knowledge. These problems increase when
the process is composed by several complex operational units. Therefore, a
distributed problem solving AI architecture seems to be a good choice. On the other
hand, it is generally agreed that more powerful knowledge acquisition tools and
techniques are needed in order to increase both the quality and the quantity of
Knowledge-Based Systems for real world applications. By them, we mean systems
that exhibit a certain level of complexity, that sometimes have to cope with
problems on the border (or slightly outside) of their special domain of competence
(not brittle), and have to be properly self-updated and maintained (learning) in order
not to degrade over time.

Taking into account all these limitations and the needs for a reliable real-time
supervisory system, it is reasonable to think that an integrated and distributed
problem solving architecture could be a new interesting approach to wastewater
treatment plants management and control.

1.4 Scheme of the thesis

Chapter 1 is an introduction to the problems we are studying. In this chapter, there
are explained the reasons that caused this research. First, the insufficiency of
classical process control methods applied to wastewater treatment plants, and on
the other hand, some limitations of knowledge-based systems applied to real-world
systems. Background on wastewater treatments plants process is introduced by
means of a brief survey on this topic. Finally, the issues of the work are presented
and the organization of the work is detailed.

Chapter 2 shows the state of the art in the field of automatic process control applied
to WWTP, and describes the main characteristics of real-time systems. It also gives a
summary on Artificial Intelligence –and specifically in Knowledge-Based systems–
applied to WWTP control. First, the knowledge-level theory interpretation among
several authors to model a specific domain is discussed. Research on integrated
cognitive architectures and multi-level architectures are detailed, too. Finally, an
insight of distributed Artificial Intelligence is presented.
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Chapter 3 presents the designed architecture: DAI-DEPUR. It is an integrated
supervisory multi-level one. First, the knowledge level analysis of WWTP domain is
discussed. Next, all the components and features of the architecture are exposed
over the sections of the chapter: cognitive integration, multi-level architecture and
distributed problem solving. Next chapters analyse the levels of the architecture
through the knowledge level theory proposed by L. Steels: domain models, tasks
and methods.

Chapter 4 explains the first level of the architecture: the data level. The domain
theory is modelled by the on-line data, the calculated and inferred data, and off-line
data, acquired through both interfaces: user interface and external interface. Main
task at the level is the system evaluation which is implemented by the data
gathering method.

Chapter 5 describes the second architecture level: the knowledge/expertise level. In
this level, it is very important the cognitive integration of several paradigms
involved. Domain theory is modelled by numerical control knowledge, by expert
general knowledge and by experiential specific knowledge. Main tasks performed
at this level are the diagnosis and the adaptation of the system to the real-world
evolving  process. Methods implemented to perform the tasks are the expert
knowledge acquisition, learning from observation, the rule-based reasoning, the
case-based reasoning, learning from experience and introspection.

Chapter 6 exposes the third level of the architecture: the situations level. Domain
theory is represented by means of specific and generic working situations. The task
at this level is the supervision of the WWTP that is performed by the combination
method.

Chapter 7 details the upper level of the architecture: the plans level. Domain theory
is modelled by identified situations and plans (solutions). Main tasks are the plan
validation and the final actuation over the WWTP. The methods that perform these
tasks are the experiential/expert actuation (canned plans) and the numerical control
actuation.
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Fig. 1.5. Scheme of the thesis
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Chapter 8 presents the experimental evaluation performed on the system. It has
been made at two stages: single validation of the main models (numerical, expert
and experiential knowledge), and whole evaluation of DAI-DEPUR at three levels,
by means of simulations of real working of plants, by validation on a scale pilot
plant –built -up to this proposit– and by validation on a real plant.

Chapter 9 shows in detail some aspects of the application of the system in real
execution, presenting some examples of the system' running and discussing the
human-computer interaction provided by the system.

Chapter 10 discusses the research work developed, presents some contributions of
our work and, finally, points to future research work that can be done in this field,
to improve the system.

This organization is depicted in figure 1.5.
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Chapter 2

The State of the Art

2.1 Process Control

The main goal of process control is to adequate the behaviour of the system under
supervision, to prefixed good system operation levels, i.e. set-points. The dynamics
of the system is evaluated by means of some measures of the parameters of the
system and controlled through the actuation over some variables of the system. A
general chart of a control process is depicted in figure 2.1.

OPERATOR

PROCESS / PLANT 
input output

Set points

parameterscontrol variables 

Fig 2.1. Process control chart
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Automatic process control appears when a computerized agent is interleaved
between the operator and the process under control. The inclusion of a computer
provides the whole system with some of the following characteristics –that makes
easier the operator's work–: faster supervision speed, computer numerical control
algorithms, graphical interface, numerical manipulations (variable's graphics,
statistical analysis, etc.), simulation capabilities, faster time response speed.  The
chart of an automatic control process is shown in figure 2.2.

OPERATOR

PROCESS / PLANT 
input output

Set points

parameterscontrol variables 

monitoringsupervision / validation

COMPUTER

Fig 2.2. Automatic process control chart

Nowadays, most of the architectures of supervised automatic process control
systems are composed by different levels of control between the process and the
human operator (see figure 2.3), [Aguilar et al., 1992; Aguilar, 1990]. At first level,
the sensors and actuators interface with physical devices to gather some values from
the process and to update some variables of it. The second level (control level) is
formed by several classic control techniques (regulators, optimizers, programmable
logic controllers, parameters identification, feedback control, etc.). The third level
shows the monitoring (evolving database) of the process through visualization.
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Finally, the fourth level (supervision level) provides the dialogue between the
computer system and the operator.

OPERATOR

PROCESS / PLANT 

DATA  LEVEL 

CONTROL  LEVEL

MONITORING  LEVEL 

SUPERVISION  LEVEL

Fig 2.3. Supervised automatic process control architecture

2.1.1 Automatic Process Control applied to WWTP

During its operation, a WWTP must satisfy several requirements imposed by the
generic technical, economic, and social conditions in the presence of ever-changing
external influences. All these requirements dictate the need for continuous
monitoring of the operation of the plant and external intervention (control) to
guarantee the satisfaction of the operational objectives. This is accomplished
through a rational arrangement of equipment (measuring devices, valves,
controllers, computers, etc.) and human intervention (plant designers, plant
operators, etc.), which together constitute the control system.
There are three general classes of needs that a control system is called on to satisfy:

• Suppressing the influence of external disturbances.
• Ensuring the stability of the process.
• Optimizing the performance of the process.



24 CHAPTER 2. THE STATE OF THE ART

The following represent different automatic process control configurations which have been

applied to WWTP:

• Feedback control: uses direct measurements of the controlled variables to adjust
the values of the manipulated variables. The objective is to keep the controlled
variables at desired levels on set-points. It is commonly used to control the DO
level in aeration tanks and it has also been studied to control substrate and
biomass [Marsilli-Libeli, 1982]. A feed-back controller reacts only after it has
detected a deviation in the value of the output from the desired set point.

PERTURBATIONS

PROCESSACTUATORS
FEEDBACK

CONTROLLER

MEASUREMENTS

OUTPUT

SET
POINT

+
-

Fig. 2.4. Chart of feedback control

• Feedforward control: unlike the feedback systems, a feedforward control uses
direct measurements of the disturbances to adjust the values of the manipulated
variables. An example of feedforward control configuration was implemented in
Luggage Point WWTP [Corder and Lee, 1986].

PERTURBATIONS

PROCESSACTUATORSFEEDFORWARD
 CONTROLLER

MEASUREMENTS

OUTPUT
SET

POINT

Fig. 2.5. Chart of feedforward control
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• Adaptive control: a control system is called adaptive, which can adjust its
parameters in the characteristics of the process it controls. There are two main
reasons to use an adaptive controller in a WWTP. First, the process is non-linear
as the desired steady-state operation of the process changes, the best values of the
controller's parameters change. Second, the process is nonstationary, and thus, it
changes with time. Different configurations of adaptive control have been
proposed in [Dochain, 1991; Ko et al., 1982].
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Fig. 2.6. Chart of adaptive control

• Optimal control, [Beck, 1986], and predictive control, [Moreno et al., 1992; Clarke et

al., 1987b; Clarke et al., 1987a], complete the list of Automatic Process Control
configurations applied to WWTP.
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Xi
' = f i (X1, ...,Xn;U1, ...,U m;t)

Xj are the parameters of the system

Uk are the control variables

Objective function to optimize

J = INT [ g(X 1, ...,Xn;U1, ...,U m;t) ]

Optimal values for U came fromi
 the minimization of the Hamiltonian of the system, H:

min H(X 1, ...,Xn;U1, ...,Um;t) =

min ( g(X 1, ...,Xn;U1, ...,U m;t) +   l i fi(X1, ...,Xn;U 1, ...,Um;t) )

where,  li = - ∂H/∂Xi
, if final time is specified and the

state of the system it is not

OPTIMAL
CONTROLLER

Fig. 2.7. Chart of optimal control

The complexity of the process –composed by several operational units– makes difficult the

implementation of an automatic process control over the wastewater treatment plant system.

There are many factors influencing the system and most of them cannot be controlled,
as for example the water temperature, flow variations, peaks, toxic loading, etc.
Furthermore the domain is non-well structured: there is a lack of understanding of the
true mechanisms of the biochemical processes involved in wastewater treatment
plants and the relationships among different phenomena which characterize the
system are not well-enough known, although different mathematical models have
been put forward to describe them.
Most information is neither numeric nor quantified; qualitative information can not be
used in the context of a conventional control model, as for example microbiological
information, water smell and appearance or state of the floc during sedimentation.
This kind of information is essential for the operator of the plant, but is not suitable
to be included in the context of a classical-numerical-control model. Another added
difficulty is the uncertainty or approximate knowledge; the variables which describe the
process are global and most of them cannot be obtained on-line.
Finally, the system is dynamic, it is under continuous changes that can directly
modify the performance of the process. The plant is never working in steady-state
conditions, and, in addition, a conventional process-control system such as feed-
back control, feed-forward control, adaptive control, etc. cannot work when there is
some mechanical fault (i.e. in the turbines, bridge of the clarifier, etc.) or when the
information is available but incomplete or noisy.
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2.1.2 Real-Time Systems

First of all, it is needed to begin defining the term real-time system [Stankovic, 1988;
Allworth and Zobel, 1987; Bennett, 1987]. There are some definitions of real-time
systems previously stated. Thus, [Young, 1982] defines a real-system as:

any information processing activity or system which has to respond to externally-generated

input stimuli within a finite and specified period.

[Burns and Wellings, 1990] define a real-time system as:

computer applications, whose prime function is not that of information processing, but which

nevertheless require information processing in order to carry out their prime function.

The Oxford Dictionary of Computing gives the following definition:

any system in which the time at which output is produced is significant. This is usually because

the input corresponds to some movement in the physical world, and the output has to relate to

that same movement. The lag from input time to output time must be sufficiently small for

acceptable timeliness.

[Motus, 1994] describes a real-time system as:

a collection of co-operating dynamic systems, one of which is a computer system. The co-

operation may, in some cases, be one-sided. In other cases, the dynamic systems (one of which

directly interacts with the environment) truly cooperate, making thus, better use of each facilities

in order to achieve their goals. Nevertheless, the computer system always take the active role by

coordinating and/or monitoring the other partners so as to achieve the goals set for the real-time

system. The two basic goals are to obtain a consistent set of time (and other) constraints and to

ensure time deterministic behaviour of the system with the required quality of functioning.

Often in the literature, hard real-time systems are distinguished from soft real-time

systems. Hard real-time systems are those where it is needed that responses occur
within the specified deadline. Soft real-time systems are those where response times
are important but the system will still function correctly if deadlines are
occasionally missed. Another distinction can be made: Interactive real-time systems

are different from soft real-time systems, in the sense that there are no explicit
deadlines.
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In real-time systems the computer is usually interfaced directly to some physical
equipment  and is dedicated to monitoring the operation of that equipment. The
role of the computer is like an embedded system within a larger engineering
system. Therefore, real-time systems have also become known as embedded computer

systems, [Motus, 1990]. Another names used by the scientific community are reactive

systems, [Manna and Pnueli, 1991], or hybrid systems, [Maler, 1992] pointing to the
fact that are systems very coupled with the environment, and that have to integrate
multiple tasks, domains and  subsystems (domain knowledge, problem solving,
reasoning, control engineering, data acquisition, on-line sensors, operator's
interface, physical systems, etc.).

Some examples of real-time systems are:

• manufacturing process control systems
• physical devices monitoring systems (as higher/lower levels of tank control,
electrovalves/pumps switch on/off control, etc.)
• airline seat reservation systems
• robotic systems
• automatic intensive patient care systems
• air traffic control systems
• remote bank accounting systems
• industrial process control systems

The main characteristics of real-time systems –that, obviously not all real-time systems will

exhibit– can be enumerated as follows ([Sriram, 1992; Burns and Wellings, 1990]):

• Numerical information. It is necessary the manipulation of real numbers involved
in the control of engineering activities (real input data, differential equations
solving, simulation processes, analogue–digital converters, etc.).

• Qualitative information. This kind of information –as for example expert
knowledge or experiential knowledge– is very important for controlling the
physical system, although not suitable to be included within a classical numerical
control model.  Nevertheless, it must be supported by the real-time control
system.



2.1 PROCESS CONTROL 29

• Uncertainty or approximate knowledge. Often, some variables and parameters of
the physical system are not well-known, due either to bad operating sensors or to
the fact that are completely unknown and cannot be directly measured at all, and
have to be estimated from other values. Furthermore, certain subjective
information supplied by the experts is also uncertain.

• Complexity. Most of real-time systems are large real-world systems under
continuous changes that can update the systems' performance. The variety of this
external changes/events is very large.

• Reliability and safety. As real-time systems usually control crucial processes,
more important is that those systems do not fail. The failure of these systems can
become a great disaster, causing expensive damage to equipment, or
furthermore, to environment. Thus, continued safe operation is required.

• Interactive systems. As real-time systems control real-world systems, they are
intended to interact with physical systems as for example monitoring sensors and
controlling actuators.

• Real-time handling. Meeting time response within predefined intervals of time,
is a major requirement of real-time systems. Handling of asynchronous events or
exceptions is also needed in a dynamic and unforeseen domain.

• Efficient implementation. High performance is more important in real-time
systems than in other ones, due to hard constraints (time or others).

• Concurrent system components. There are a set of coexisting elements or processes
in a real-time system. All this subsystems act at the same time, i.e., in parallel or
concurrent execution.  Although with high speed computers, this parallelism can
be implemented in a sequential way, there are systems in which this may not be
the case, due to hard time constraints or to really distributed sites processing.

2.1.2.1 Are WWTP Real-Time Systems ?

In addition to the above features, wastewater treatment plants are ill-structured

domains, where the relationships among the different elements of the process are not
well enough known and the dynamics of biochemical processes involved is not well
understood, as previously described.
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Bearing in mind these features and those ones from WWTP described in chapter 1,
it can be argued that wastewater treatment plants management systems are real-
time systems. They are not strictly hard real-time systems so that in wastewater
treatment plants, there is no hard time constraints. Luckily, the operating dynamics
of wastewater treatment plants is slower than input variability in both inflow
quantity and quality and consequently, can stabilize these continuous changes and
deviations into the system. Therefore, it is not crucial to respond to these events
within brief periods of time. But, which is really important is to get continuously
low values from output COD and output BOD that is lower than the environmental
law's bound, i.e. 20 mg/L. If these low values are not achieved, then great damage
can be caused to the environment and to human beings. So, there are hard output

water quality constraints or good plant operation constraints (see Appendix B). In this
sense, it can be said that wastewater treatment plants are very hard real-time systems.

2.2 Artificial Intelligence applied to Process Control
and Supervision

Artificial Intelligence can cooperate with classical automatic control systems and
classical real-time systems to get a real-time intelligent control system, able to cope
with either hard real-time/other constraints or with ill-structured domains or with
some features not suitable to be integrated in classical control systems as learning,
reasoning, modelling of expertise, qualitative information, uncertainty, etc..

What is Artificial Intelligence? It is not easy to define this complex and widely used
term. [Rich and Knight, 1991] define it as follows:

Artificial Intelligence (AI) is the study of how to make computers do things which, at the

moment, people do better. This definition is, of course, somewhat ephemeral because of its

reference to the current state of computer science. And it fails to include some areas of

potentially very large impact, namely problems that cannot now be solved well by either

computers or people. But it provides a good outline of what constitutes artificial intelligence, and

it avoids the philosophical issues that dominate attempts to define the meaning of either artificial

or intelligence.

[Charniak and McDermott, 1985] define it as:
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Artificial Intelligence is the study of mental faculties through the use of computational models.

The occurrence of the word "intelligence" in the name of this field is misleading. When talking

about what other people do, we tend to reserve the word for mental feats of unusual creativity or

cleverness. As a consequence, it sounds as if artificial intelligence were a technique for producing

an abundance of clever insights. In fact, the most interesting for AI arise in attempts to duplicate

the mental faculties of "ordinary" people.

[VUB AI Lab, 1993; Steels, 1985] describe artificial intelligence as:

Artificial Intelligence is a scientific research field concerned with intelligent behaviour. AI

researchers want to develop precise explicit models of the structures and processes that give rise

to intelligent behaviour, and apply their insights to the constructions of artefacts that are useful

to the people. These artefacts range from knowledge systems, which support problem solving

activities such as scheduling, to autonomous mobile robots, which help in jobs that may be

hazardous or tedious for humans. What makes Artificial Intelligence unique, compared to other

sciences that also study intelligence like psychology or neurophysiology, is the strong emphasis

on the construction of artificial systems as a way to test theories.

Perhaps a wider definition could integrate all points of view: artificial intelligence is
the study of the possible or existing mechanisms –in human or other beings–
providing such behaviour in them, that can be considered as intelligence, and the
emulation of these mechanisms –usually called cognitive tasks– in a computer
through the computer's programming.

Major assumptions in classical symbolic paradigm of Artificial Intelligence rely on
these facts:

• What the brain does, may be thought of –at some level– as a kind of
computation.
• The physical symbol systems hypothesis [Newell and Simon, 1976]. A physical
symbol system has the necessary and sufficient means for general intelligent
action.
• The knowledge level hypothesis [Newell, 1982]. There exists a distinct computer
systems level, lying immediately above the symbol level, which is characterized
by knowledge as the medium and the principle of rationality as the law of
behaviour.
• The principle of rationality [Newell, 1982]. If an agent has knowledge that one of
its actions will lead to one of its goals, the agent will select that action.
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These cognitive tasks –starting from stimuli perception tasks and ending with
response action tasks, passing over some internal cognitive tasks– are: vision,
natural language, knowledge acquisition, knowledge representation, reasoning,
search, planning, explaining, learning, motion (robotics) and speech. Therefore,
each one of these tasks has its own specific problems and has developed its own
methodologies.

A computational system could be considered as an intelligent system if exhibits
some, or better, all of the following human intelligence characteristics listed by
[Newell, 1990]:

• Behave flexibly as a function of the environment
• Exhibit adaptive (rational, goal-oriented) behaviour
• Operate in real-time
• Operate in a rich, complex, detailed environment (perceive an immense

amount of changing detail, use vast amounts of knowledge, control a motor
system of many degrees of freedom)

• Use symbols and abstractions
• Use language, both natural and artificial
• Learn from the environment and from experience
• Acquire capabilities through development
• Operate autonomously, but within a social community
• Be self-aware and have sense of self
• Be realizable as a neural system
• Be constructible by an embryological growth process
• Arise through evolution

There are a great variety of Artificial Intelligence paradigms or approaches that have been

proposed –since the beginning of artificial intelligence research– to model human intelligence,

as: Logic paradigm, Heuristic search and Planning paradigm, Knowledge-Based paradigm,

Model-Based paradigm, Experience-Based paradigm and Connexionist or Subsymbolic

paradigm.

2.2.1 Intelligent Control
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In the supervision level, see figure 2.3, of a supervised automatic process control
systems, is where some artificial intelligence techniques can be integrated to
improve the performance of an automatic control systems [Rao, 1992; Stock, 1989;
Laffey et al., 1988]: controlling abnormal situations, uniforming the solutions given
by different operators, improving the execution speed of the supervision cycle,
providing computer aided assistance to operators, etc. There some features arguing
for this approach usually named asintelligent advanced control systems:

• Uncertain or approximate reasoning
• Non-analytical representation
• Data-driven process
• Qualitative information
• Auto-modification ability
• Non-determinism
• Justification and explanation facilities
• Search algorithms
• Learning
• Using experience, judgements and human expertise

From an historical point of view, one can distinguish some features in the
developing of intelligent advanced control systems:

• The work of K.S. Fu about regulators [Meystel, 1985a; Fu, 1971].
• Theoretical developments by university research groups, regarding to the

integration of artificial intelligence, control theory and hierarchical systems
[Tzafestas and Ligeza, 1989; Åström et al., 1986; Meystel, 1985b; Saridis, 1985].

• Expert systems application to real world systems [Bonissone, 1993; Brajnik,
1989; Bernard, 1988; Shirley, 1987; Intelllicorp, 1986].

• Appearing of specific tools for supporting reliable developing of intelligent
control systems such as RTworks from Talarian Corporation, G2 [Gensym,
1992; Gensym, 1990], PAMELA-C [Barachini and Theuretzbacher, 1988],
HEXSCON [Wright, 1986], PICON [Moore et al., 1984], etc.

• Some research projects that try to improve intelligent control systems by
providing reliable real-time operation and wider applicability [Cavanna et al.,
1989; Voss, 1988].

Main usually applied intelligent control techniques are [Sànchez et al., 1995c; Kuhn, 1971]:
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• Knowledge-Based control. It will be described in next subsection.
• Fuzzy control. There are several works about application of fuzzy sets theory

([Zadeh, 1983; Zadeh, 1979]) to control systems such as [Bonissone, 1994;
Piskunov, 1992; Bouslama, 1992; Czoagala and Rawlik, 1989; Tagaki, 1985;
Sugeno, 1985].

• Model-Based control such as the work of [Ramparany, 1994; Rich and
Venkatasubramanian, 1987].

• Neural network control. Some recent works are [Hunt et al., 1992; Kraft et al.,
1992; Kosko, 1992; Capodaglio et al., 1991; Narendra and Parthasarathy, 1990].

• Genetic control, such as the work of [Karr, 1991; Karr et al., 1989].

But, most of them have been only used for either improving numerical algorithms
or diagnosis stage. Bearing in mind some previously outlined features of
wastewater treatment plants, and the issue of management or supervision of WWTP, one
can realize that the most suitable approaches for whole WWTP supervision are both
Knowledge-Based and Experience-Based ones. Most of the applications developed
in the field are based in the Knowledge-Based paradigm. For this reason, a survey
on some of these applications will be made in next section.

2.2.2 Knowledge-Based Systems applied to WWTP

Specially related to wastewater treatment area [Alleman et al., 1992; Patry and
Chapman, 1989; Kodukula, 1988], most of Knowledge-Based applications have been
developed as off-line consultations –in an increasing chronological order– among
other tasks for:

a) Design: [Krovvidy et al., 1991; Krovvidy and Wee, 1993];
b) Diagnosis and Decision-aid: [Beck et al., 1978; Flanagan, 1979; Flanagan, 1980;

Maeda, 1985; Berthuex et al., 1987; Gall and Patry, 1989; Lapointe et al., 1989;
Maeda, 1989; Beck et al., 1990; Krichten et al., 1991; Sànchez, 1991; Belanche et

al., 1992b; Serra et al., 1994]; and
c) Process optimization: [Huang et al., 1991].

2.2.2.1 Design Systems

[Krovvidy et al., 1991] propose a two phase approach to the design of wastewater
treatment systems. In the first phase, called analysis phase, they developed a learning
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system to generate knowledge rules from a treatability data base. Also, they have
developed a grammar-based knowledge representation scheme to be able to
generate rules for different expert systems shells. In the second phase, called
synthesis phase, developed two different methodologies: a heuristic search
approach and a neural network approach to generate treatment training sequences
with minimum cost. The heuristic search function is developed based on the
removal capabilities of the treatment processes. The neural network model is
developed by formulating the synthesis phase as an optimization problem and an
energy equation is derived for Hopfield network to generate the treatment training
sequences. Both approaches are compared for the optimality of the solution and the
processing time required.

[Krovvidy and Wee, 1993], formulate, the design of wastewater treatment systems
as a heuristic search problem. Heuristic search is one of the most widely used
techniques for obtaining optimal solutions to many real-world problems. In that
paper, they identify some necessary properties of the heuristic search problems to
be solved in the Case-based reasoning paradigm. Case-based reasoning (CBR) is
one of the emerging paradigms for designing intelligent systems. Preliminary
studies indicate that the area is ripe for theoretical advances and innovative
applications. They designed a CBR system based on that properties and performed
several experiments with the wastewater treatment problem. A comparison
between the CBR system and the A* search algorithm performance is provided in
their work.

2.2.2.2 Diagnosis and Decision-Aided Systems

[Beck et al., 1990; Beck et al., 1978] were among the first to make use of expert
system-type rules for wastewater treatment plant operation and control. Although
the authors do not claim to be using expert systems, they employ the crucial aspect
of expert systems, human expertise or expert knowledge. Twenty heuristic control
rules were formulated following discussions and claims of two of the authors, one
being a treatment plant operator. Fuzzy logic was used to provide a qualitative
interpretation of the quantitative data.

[Flanagan, 1979; Flanagan, 1980] developed a system for the activated sludge
process, that use fuzzy reasoning but employed an operating strategy proposed by
[Olsson and Andrews, 1977], that relies on a profile of dissolved oxygen (DO)
concentration along the length of the reactor as an indicator of biological activity
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and reactor loading. The DO profile strategy is based on a mechanistic
understanding of the process. Thus, in contrast to the heuristic knowledge
represented in other systems previously developed, his system made use of
compiled knowledge.

[Berthuex et al., 1987] based on previous work by Beck et al., extended that work by
integrating the expert system to a database to provide plant operators with a more
powerful software package. An outstanding feature of that system was that the
expert system could be customized to a particular treatment process. It was
supplied a wide variety of rules for different treatment processes. The knowledge
base was constructed by specifying the configuration of the plant.

[Maeda, 1985; Maeda, 1989] presents a Knowledge-Based decision support system
for wastewater treatment plants. The system get benefits from the operator's
qualitative and experienced judgement in supervisory tasks such as set point
schedulling, plant diagnosis and maintenance. The architecture of the system is
composed by two parts: one is an adaptive production system about 100 production
rules, and the second is a multimodal user interface including video graphics, voice
announcement, touch panel and mouse. The performance of the system through
typical examples of operational guidance is demonstrated. Maeda concludes that
the proposed system would be flexible and pragmatic: the human operator keeps a
central role in maintaining the high reliability of future biological systems and the
use of the system will increase the operator's cognitive capabilities.

[Gall and Patry, 1989] describe the development of a Knowledge-Based System for
the diagnosis of an activated sludge WWTP. The knowledge base was developed
using two basic sources of information: literature review of wastewater treatment
plant operation, and site visits and interviews with experienced plant operators.
The system was developed using TI Personal Consultant PlusTM and tested under
actual plant operating conditions, the knowledge base consists of 169 rules based on
readily available information, that is deeply explained in the paper. In general,
feedback obtained from the operators confirmed the potential benefits of expert-
assisted operation of wastewater treatment plants. They also stated that the
operational benefits of a Knowledge-Based System for the activated sludge
diagnosis depends largely on the continuing contributions from plant operators.
They postulate that the knowledge base should not be viewed as a static piece of
software but should be updated on a regular basis to reflect the cumulative
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experience of the operators as well as changes and/or adjustments made to the
different unit processes.

[Lapointe et al., 1989] described a Knowledge-Based System for the upflow
anaerobic sludge blanket process, which organizes behavioural, functional and
structural knowledge in an object-based manner. In that scheme, frames are defined
that can have methods as attributes. These methods may be either rules or may
implement a quantitative model. Therefore, there is a deep model-based knowledge
and a shallow heuristic-based knowledge. A generate-and-test reasoning strategy is
used, and explanation facilities are also provided. The authors argue that their
system achieves the goals of process generality, fault diversity, reasoning
transparency, reliability and graceful degradation.

[Sànchez, 1991; Belanche et al., 1992b; I. R.-Roda, 1994; Serra et al., 1994] present the
development of a prototype of fuzzy expert system useful for the diagnosis and
management of wastewater treatment plants that has evolved to the current
architecture, now called DAI-DEPUR. First, it is described the complexity of the
system that is being modelled in order to outline its own difficulties. The
development of the qualitative expert system in the shell MILORD [Sierra, 1989] is
presented: attribute selection and knowledge acquisition. A new methodology used
for automatic knowledge acquisition is introduced. It is used for building-up the
knowledge base. Some details of the architecture, user interface and implementation
are provided. The prototype diagnostics were validated against the human
operators judgements, yielding very good results.

2.2.2.3 Control Systems

More recently, Knowledge-Based techniques begin to be applied for on-line process
control and supervision, in the field of WWTP, as for instance:

[Serra et al., 1995; Serra et al., 1993] present a real-time expert system to control
wastewater treatment plants. The software has been developed in the G2 shell. The
system is composed by an interface that let on-line acquisition of plant data using
G2 standard interface, a predictive control algorithm for dissolved oxygen (DO), a
graphical interface for the operator and the expert knowledge. The dissolved
oxygen control is performed using a non-linear predictive control algorithm, that
has been developed to satisfy quality constraints while reducing energy demands.
The algorithm uses data obtained from the plant by hardware sensors, and software
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which recursively estimates the oxygen uptake rate (OUR). All these elements are
integrated in a knowledge base that includes a set of diagnosis, detection,
prediction and operation rules, making the system capable of handling a wide
number of usual situations where predictive control can be useful, and unusual
situations where quantitative and qualitative information must be considered. Also
this research has evolved to the current architecture, DAI-DEPUR.

2.3 Knowledge-Level Theory

The knowledge-level notion was introduced by [Newell, 1982]. He stated that in a
cognitive system, the knowledge is to be characterized entirely functionally, in terms
of what it does, and not structurally, in terms of physical objects with particular
properties and relations. So, the knowledge level is an abstract level of description
lying above the symbol or programming level, which aims to better knowledge
engineering, knowledge acquisition, understanding and analysis of Knowledge-
Based Systems disregarding the concrete computational aspects.

In the past decade, several ideas have emerged that go in the direction of the
knowledge level analysis of knowledge/expertise: the concept of an inference
structure [Van de Velde, 1987a; Clancey, 1985b], the distinction between deep and
surface knowledge [Steels, 1985; Hart, 1984], the decomposition of expertise into
problem solving methods and domain knowledge filling the roles of these methods
[McDermott, 1988], and the notion of generic task [Chandrasekaran, 1983]. All these
ideas have led to focus on the knowledge itself, rather than on the information
processing (implementation) details of a system. All these approaches have been
synthetized in the componential framework of expertise [Steels, 1990]. In next
subsections we briefly review all these knowledge-level approaches.

2.3.1 Generic Tasks

One line of research focuses on task features and, thus, directly addresses the
problem of developing an engineering methodology to build knowledge-based
expert systems based on a task analysis. The analysis of expertise in terms of tasks
(and, particularly, the ordering of the tasks, that is, the control structure imposed on
the task structure) used to be a completely domain-dependent matter, enforcing the
view that Knowledge-Based System development does not show generalizations
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across domains of expertise and, therefore, is doomed to start new, in an ad hoc

fashion, for every new application being tackled. However, several researchers have
observed that tasks fall into major classes. These tasks are called generic tasks

[Chandrasekaran, 1983]. In specific fields of expertise, tasks are instances of these
generic tasks. Typical generic tasks are classification, interpretation, diagnosis and
construction (including planning and design). The idea of generic tasks is not that
interesting in itself until we realize that the way in which generic tasks are executed
shows many similarities across application domains: in the diagnosis of circuits,
cars, power plants, or diseases, significant elements are in common, specifically, the
same problem-solving methods and the same type of domain models. Another
interesting point is the division of a task into simpler subtasks to accomplish the goal
of the task.

2.3.2 Inference Structures

An inference structure describes the pattern of inferences found in a particular
Knowledge-Based System. Heuristic classification is the most widely studied class of
inference structure [Van de Velde, 1987a; Clancey 1985b]. Heuristic classification
assumes three major inference types: those making abstraction of the data, those
matching the data with an abstract solution class, and those refining this solution to
the actual solution. How theses inferences are made –for example, by one rule or
many or by other kinds of inference mechanisms– is not an issue, although the
analysis includes a characterization of the kind of relation that is used to perform
the inference. Data abstraction makes use of qualitative, definitional and
generalization relations. Heuristic match is based on a causal relation. Refinement is
based on a subtype relation.

Inference structures show that there is a lot of structure underlying the rules in
expert systems, including many hidden assumptions. Also, they describe
relationships between rules that go beyond the syntactically based rule
generalizations, and show the similarities between expert systems constructed for
apparently widely diverse domains and tasks.

2.3.3 Deep versus Surface Knowledge
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Another type of analysis was proposed based on a distinction between deep and
surface knowledge [Steels, 1985; Hart, 1984]. This distinction focused not on the
pattern of inference but on the domain models underlying expertise. Deep knowledge

makes explicit the models of the domain and the inference calculus that operates
over these models as for example causal, associational, functional models, etc.. A
typical example of a domain model for diagnosis is a causal model linking
properties of components through cause-effect relations. An inference calculus
operating over this model could take the form of a set of axioms that prescribe valid
inferences over the causal network, for example, inferences showing that a certain
cause possibly explains a specific set of symptoms. Surface knowledge contains
selected portions of the deep knowledge, in particular, those portions that are
relevant for the class of problems that is likely to be encountered. It also contains
additional heuristics and optimizations, for example, shortcuts in the search space
or decisions based on the most probable situation. Traditional Knowledge-Based
Systems only contain surface knowledge, while the so-called second generation
(deep) Knowledge-Based Systems usually have both of them.

2.3.4 Problem-Solving Methods

[McDermott, 1988] and his colleagues developed a series of knowledge-acquisition
tools that emphasized the problem solving method and not the inference pattern or
the domain model, as the central key in understanding and building an application.
A problem solving method is a knowledge-level characterization of how a problem
might be resolved. For example, diagnosis might be done using the cover-and-
differentiate method: first, find possible explanations covering most symptoms, and
then, differentiate between the remaining explanations. Construction also might be
done using the propose-and-revise method: first, propose a partial solution, then
revise this solution by resolving violated constraints. Each problem solving method
contains certain roles that need to be filled by domain models. For example, the
cover-and-differentiate method requires knowing relationships between
explanations and the symptoms they cover and knowing additional observations or
tests that will further differentiate. The propose-and-revise method implies two
roles: one to be filled by knowledge that is proposing solutions, another to be filled
by knowledge that revises these solutions.

2.3.5 KADS
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The KADS project, funded by the EEC, concerns both a methodology for knowledge
modelling and a framework for knowledge acquisition, design and implementation
of knowledge systems [Wielinga et al., 1992]. Four representational layers are
distinguished: domain layer, inference layer, task layer, and strategy layer. In the
domain layer, the domain objects and their relations are modelled. In the inference
layer, there is an explicit description of the roles that an object can play in the
problem solving process. A taxonomy of generic elementary problem-solving roles
is identified. In the task layer, a series of operators corresponding to the roles
described in the previous layers is given. This set of operators enables the
achievement of the model goals. In the strategy layer, different combinations of
operators may be obtained from the representation of meta-plans.

2.3.6 Componential Framework of Expertise

L. Steels proposed the combination of all above explained ideas [Steels, 1990] for
knowledge-level analysis of expertise, in what he called components of expertise. He
suggested that a problem domain can usually be described from three basic
perspectives: tasks, models and methods (see figure 2.8)

DOMAIN MODELS 

TASKS METHODS 

Fig. 2.8. Components of expertise

The task analysis is concerned with a conglomerate of mutually dependent tasks, and
with internal structure of tasks: they can be decomposed into subtasks with input-
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output relations between them. Each task and subtask is analyzed from a
conceptual and a pragmatic point of view. The perspective of deep Knowledge-
Based Systems has made researchers aware that problem solving centers around the
idea of modelling. The problem solver constructs one or more models of the problem
solving situation (called the case model by Steels) and uses various more abstract
domain models to expand the case model by inference or data gathering. Both kind of
models integrate, what it can be named as the domain theory, in which it can be
found structural, topological, behavioural, fault, repair models, etc. The problem-

solving methods apply domain knowledge to accomplish an intended task. In
general, they perform two functions: divide a task into a number of subtasks or
directly solve a subtask. In either case, they can consult domain models; create or
change intermediary problem-solving structures; perform actions to gather more
data, for example, by querying the user or performing a measurement; and expand
the case model by adding or changing facts.

Recently, this methodology has evolved into the componential framework (COMMET)
and the KREST workbench [Geldof et al., 1993], whose goal is to support the design
of knowledge systems on the basis of the components of expertise methodology.
This ongoing research aims to support the development of an application at three
levels: the knowledge level, the execution level that implements the knowledge-
level components, and the code level that corresponds to a set of files containing
code for the previous computational objects. The development of a small KREST
application in the domain of agriculture control is reported in [Polianova, 1994]. The
COMMET research is intended to experiment with reusability. It aims at making the
construction of knowledge systems accessible to non-programmers. Reusability  is
understood as the insertion of parts of an old application into a new one. The
workbench is able to seek a chunk of an old application that would be capable of
carrying out the current task, adapting the old one to the new use.

2.4 Integrated Architectures

Artificial Intelligence research has produced models of the different components or
cognitive tasks thought to be required for intelligence such as vision, knowledge
acquisition, knowledge representation, natural language, reasoning, search,
planning, learning, neural computation, genetic programming, motion (robotics)
and speech. Isolating these components is vital to identify the important issues in
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each area, understanding those issues, and proposing solutions for them.  But none
of these subfields have been solved to a sufficient degree of satisfaction [Gil, 1991].

There are many systems that can be called intelligent in the sense that they produce
interesting behaviour [Lenat and Brown 1983; Lenat, 1982]. As H. Simon observed
[Simon, 1969] complex behaviour can arise from a simple mechanism within a
complex environment. This seems to be the case when AI programs produce
interesting behaviour. Other systems can be called intelligent because they give
intelligent results, such as the expert systems. However, neither interesting
behaviour nor intelligent results completely fulfils the requirements for truly
intelligent systems. They cope with a lack of flexibility or adaptability, the
knowledge acquisition bottleneck, a lack of graceful degradation (brittleness), a lack
of learning from experience and the environment, a low reusability, etc., that
become harder when faced against real world domains. Truly intelligent systems
are those exhibiting as much as possible the characteristics of human intelligence,
listed by A. Newell [Newell, 1990] (see section 2.2).

In recent years, there has been an increasing interest in the integration of different
aspects of intelligence in systems known as integrated architectures, which are
capable of producing general intelligent behaviour [Van Lehn 1990; Newell 1990].
The integration of different features of intelligence will give AI researchers a better
insight into how to build systems that produce intelligent behaviour.

Integrated architectures are distinguished from other systems by their intelligent
behaviour. Such behaviour can be described [Newell, 1990] in terms of a system
possessing knowledge and behaving in light of it. Integrated architectures should
be able to handle various tasks of different nature and complexity. Domains of
application may range from automatic algorithm design to planetary exploration.
Many tasks require vast amounts of knowledge, and research on very large
knowledge bases is just beginning [Lenat and Guha, 1990]. A useful knowledge

representation system is not just one that can contain different kinds of information.
In addition, the knowledge must be both easily accessible having good indexing
and sensible retrieval time, and useful for efficient inference. Tasks may also vary in
complexity. Different inference capabilities (problem solving techniques) may be
required and, most importantly, inference must be influenced by efficiency
constraints. It is important that such architectures are efficient. Fast mechanisms for
inference and access to existing knowledge is only the beginning. It is also required
that the efficiency of these systems improve through experience. This process of
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skill acquisition would help to avoid recomputing inferences similar to ones already
made. This type of learning ability is desirable in an intelligent system.

 Autonomy is a crucial issue for integrated architectures. It is desired to build
systems that require a minimum of human assistance and maintenance. This
requires the systems to have interfaces for collecting necessary data from the
environment and for performing whatever actions the system decides to execute.
The interaction with the environment for some tasks can be done via natural

language, and this is desirable if the system has to communicate with humans. Other
applications require that the architecture has some physical interface that allows
both perception and execution of actions (actuation) in the environment. Another
feature is the ability to detect failures and to recover from them. Failures can be of
different complexity, requiring more or less complicated recoveries. Meta-level or
introspective reasoning is also important. If there is an impasse in the system
(conflictive goals, unexpected events, etc.), then some mechanisms to address that
problems must be integrated in these architectures, usually by means of a reflexive
or introspective reasoning.

Therefore, the combination of several components, cognitive tasks, and approaches
into the same integrated architecture, make them more powerful than single
paradigms used in the classical AI systems. Moreover, in the Machine Learning
community there is a similar insight of what has to be the future of machine
learning: integrated learning architectures [Plaza et al., 1993], that are defined as
systems able to learn and to perform at least one problem solving task, and either
learning and problem solving must be flexibly integrated in a single control
structure, or learning and problem solving must flexibly use the same knowledge
structures.

The integrated architectures that have been proposed in the AI literature are very
different. Some of them have single learning mechanisms whereas others have
many learning mechanisms; the execution control can be centralized or
decentralized; the decomposition of the architectures in layers or levels can be
horizontal or vertical; the learning process can be automatic or directed. They could
be divided into three major groups as suggested in [Plaza et al., 1993]:

• Cognitive architectures such as SOAR [Newell, 1990; Laird et al., 1987], TCA
[Simmons, 1990], PI [Holland et al., 1986], ACT* [Anderson, 1983], etc.;
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• Architectures integrating learning and problem solving such as THEO [Mitchell et

al., 1990], PRODIGY [Carbonell et al., 1990], ICARUS [Allen and Langley,
1990], Case-based reasoning systems like JULIA [Hinrichs, 1992] or PROTOS
[Bareiss, 1989], etc.;

• Multistrategy learning [Michalsky and Tecuci, 1991].

In next subsections we briefly review most outstanding features of some of these
architectures, based on the analysis performed in [Gil, 1991].

2.4.1 SOAR

The SOAR architecture [Newell, 1990; Laird et al., 1987] is intended as a
psychological theory of human cognition. In SOAR, all goal-oriented behaviour is
formulated as search in problem spaces. Search proceeds in steps from an initial
state through state-transforming operators to reach a desired state that achieves the
goal. Each goal defines a problem solving context together with the definition of
roles for a problem space, a state and an operator. Contexts are kept in SOAR's
working memory, and problem solving is focused on selecting problem spaces,
states and operators for the roles in the context. Knowledge is stored as productions
in the long-term memory.

A step in problem solving is determined by a 2-phase decision cycle. In the
elaboration phase the rules of the production memory are matched against working
memory. The resulting instantiations of the productions are executed in parallel,
adding information to the working memory that includes preferences for problem
spaces, states or operators. The elaboration phase ends when no more productions
can fire. The decision procedure, which is the second phase of the decision cycle, is
then used to interpret the preferences in the working memory. If a role can be
uniquely filled, a decision can be made, and the next decision cycle is entered. If the
preferences are incomplete or inconsistent, then the decision procedure will cause
an impasse. An impasse indicates the long-term memory did not contain
unequivocal knowledge of how to proceed in this problem space. The system now
automatically engages in the task of resolving the impasse, specified by a subgoal
and an associated problem solving context. Given this subgoal, SOAR will bring all
its knowledge to bear to try to solve it and overcome the impasse. Impasses can
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occur within impasses, which produces a subgoal hierarchy whose top goal is the
original task goal.

Chunking [Laird et al., 1986], a phenomenon that emerged from studies of human
behaviour, is SOAR's single learning mechanism. Chunks are acquired each time an
impasse is solved, and they summarize the process to solve the subgoal. SOAR
backtraces through the productions that generate the subgoal, and the productions
that generated its conditions until the elements prior to the subgoal are identified.
These conditions together with the subgoal of the impasse are used to build the
productions that form new chunks. Thus, the next time problem solving reaches the
point at which the impasse occurred, the chunk will fire, placing its results directly
with working memory and avoiding the search in the spaces below.

The SOAR architecture is based on a principle of uniformity: all tasks are
implemented as search in problem spaces, all impasses result in learning, and all
learning is done by chunking. The approach has been applied to a variety of tasks
that include algorithm design, computer configuration, robot-arm control, and
language comprehension.

2.4.2 Task Control Architecture

The Task Control Architecture (TCA) [Simmons, 1990] is being designed as a
domain independent system for mobile robot control, but it can potentially be used
for a wide variety of robots and tasks. The architecture is composed of several
modules that communicate through a centralized control. The modules are
distributed processes that enable the concurrent execution of activities such as
planning, sensing, monitoring, and plan execution. This allows the system to detect
important changes in the environment, to respond to them in an adequate amount
of time, to detect failures and recover from them autonomously, and to consider
which goals to attend to by schedulling appropriate tasks to achieve them. Tasks are
specified as task trees, which are goal hierarchies combined with temporal
constraints that facilitate the combination of planning and execution.

TCA is composed of several layers with different functionality. The communication
layer supports the transmission of messages among processes through the
centralized module. This module decides which modules handle particular
messages. A behaviour layer is used to specify primitive behaviours through
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messages that query the environment, specify goals, and change the internal state.
The task management layer analyzes these messages and constructs the hierarchical
task trees. Other layers include mechanisms for monitoring, resource management,
and error recovery.

TCA is used for the AMBLER planetary rover for space exploration and for a
mobile manipulator robot.

2.4.3 THEO

The THEO architecture [Mitchell et al., 1990] is intended to provide the underlying
inference, representation, and learning mechanisms necessary for increasingly
intelligent behaviour. A domain in THEO is expressed as a set of beliefs organized
in a knowledge base that has a frame-based representation. Any goal is translated
into a belief slot in a frame that has no value, which triggers the inference. The
value is obtained using one of the methods associated with the slot. These problem
solving methods include inheritance, retrieving default values, and defining a slot's
value in terms of other slots. If many methods are available, the system begins
searching through them until one is successful. After a problem is solved, THEO
stores the solution along with an explanation that justifies it in terms of the beliefs
on which it depends. Caching the value of a slot when it is computed avoids
recomputing it in the future. Explanations are used for truth maintenance and also
as a macro-method for future computation of the slot. Control knowledge is
acquired through an inductive learning mechanism that orders the methods
available for a slot.

The THEO-Agent [Mitchell, 1990], the main application of THEO, is a robot control
architecture for mobile manipulation.

2.4.4 PRODIGY

PRODIGY [Carbonell et al., 1990] is a computational architecture that is aimed at
integrating learning and problem solving behaviours. The core of the system is a
general-purpose problem solver and planner. A problem is given by an internal
state, representing the current state of the world, and a goal state. Domain
knowledge is represented in a set of operators and inference rules. The operators
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are models of the available actions and they specify the effects of the actions under
different conditions. Inference rules are used to deduce additional information from
the state. PRODIGY searches for a solution using backward chaining means-end
analysis by default, but it can be configured to perform other search strategies,
including breadth-first search, best-first search, and depth-first iterative deepening.
The problem solver is nonlinear and has a very powerful language to express both
domain and control knowledge.

PRODIGY uses a least-commitment strategy for every decision in the search
process. Control rules are applied at each decision point (to choose goals, operators,
etc.) to guide the search. They may express definitive selections or heuristic
recommendations. If no control rules are available for a certain decision, the choice
is made randomly. Control rules can be hand-coded or automatically acquired. The
static module constructs control rules by analyzing the domain description prior to
problem solving. Then, an explanation-based learning module examines the
problem solving traces and acquires additional rules. All the rules are subject to a
dynamic utility analysis that recommends which rules are useful and should be
retained. Learning in PRODIGY is combined with problem solving through the
automatic acquisition of episodes useful for analogical reasoning, producing
abstraction hierarchies, and learning control rules. The acquisition of domain
knowledge from the environment is possible both from the user through an
apprentice system and from the environment through autonomous learning by
experimentation.

PRODIGY has been tested in a variety of domains that include logistics planning,
machining and process planning, job-shop schedulling, and computer
configuration.

2.5 Multi-Level Architectures

In the research of new methodologies for constructing problem solving systems, an
important role has been played by the so-called multi-level architectures. In those
architectures, the problem solving tasks and the domain models are divided in a set
of levels or layers, with different goals. The splitting of the whole intelligent
behaviour into several levels, makes multi-level architectures easier to understand,
to design and to analyze.
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The modelling of different kinds of knowledge or domain theories into separate levels
provides the architectures with additional modularity and independence that are
always desirable in computational systems for achieving more general architectures
[Sierra, 1989]. Both these features have already been studied in data representation
tasks through the abstract data types (ADT) within computer science field.

These architectures have been specially developed in the Knowledge-Based
paradigm, where another distinction between the domain level (what knowledge is
available) and the control level (how to use that knowledge) [Davis and Lenat, 1982;
Davis, 1980] is a key feature for a reliable knowledge engineering task. Thus, multi-
level architectures can be understood from two dimensions: first, bearing in mind
the different kinds of knowledge or domain theories (representation), and secondly,
from the domain-control (syntactic/semantic) insight (see figure 2.9). Most of
Knowledge-Based multi-level architectures have been analyzed attending to the
second dimension, and they have been called as meta-level architectures (as will be
explained below).
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Fig. 2.9. The two dimensions of MILORD [Sierra, 1989]: a KB multi-level
architecture
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2.5.1 Meta-Level Architectures

TEIRESIAS [Davis and Lenat, 1982; Davis, 1979], that was built-up within the
context of MYCIN [Buchanan and Shortlife, 1984], was one of the first systems
where two differentiated levels were defined: the object-level knowledge  (or the
domain knowledge) and the meta-level knowledge (or the control knowledge).

Meta-level architectures [Van Harmelen, 1991; Russell and Wefald, 1991; Sierra, 1989;
Maes and Nardi, 1988; Genesereth, 1983] in general are composed of two levels:
object level and meta-level (see figure 2.10). Each level can be viewed as an
independent system with its own representation language, knowledge base and
inference mechanism. Knowledge embodied within the object level is domain
knowledge. Knowledge embodied within the meta-level is knowledge about the
object level knowledge, i.e. meta-knowledge.

Both levels cooperate in problem solving tasks. Inferences that lead the system to
problem solving are made at the object level, and the meta-level controls and direct
the object level inferences to get an efficient problem solving method. The ability of
the meta-level to reason about the problem solving process of the object level has
caused that meta-level architectures are also known as reflective systems [Maes, 1988],
so that they reason about their own internal state. In a meta-level architecture, three
features can be distinguished [Van Harmelen, 1991]:
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Fig. 2.10. General chart of a meta-level architecture

• The partial view or model (M) that the meta-level has about the object level. For
example, the meta-level can only know the set of inputs to object level as a
control features, i.e., features that allow the evaluation of the problem solving
status at the object level in a certain moment (inference structures, control
features, heuristic role annotations, etc.).

• A set of reflection rules that lead the connection between the two levels1. The
upwards reflection rules referee the object level information that it is needed by the
meta-level, according to the partial model M. For example, an upwards reflection
rule can be described as a set of information at the object level that becomes a
control feature at the meta-level. The downwards reflection rules normalize the
modifications done by the meta-level over the object level. For example, a
downwards reflection rule can explicit a plan built-up at the meta-level that
structures the tasks of the object level. The reflection rules ensure a causal
connection between the two levels of the architecture.

                                               
1This concept is related with the reification process [Russell and Norvig, 1995], where a predicate or
function in first-order logic turns into an object in the language level.
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• The mechanism that determines which level is the active level in the reasoning
process. Although there are systems that only activate the meta-level in impasse

situations, others execute major activities at the meta-level, and even can simulate
the object level execution. The step in the reasoning process from the object level
to the meta-level is known as meta-level lift up, and the step from the meta-level to
the object level is known as meta-level reflect down. The activating mechanism
between both levels can be explicit (expressed by means of metarules, for
example) or implicit (the inference engine has an execution cycle that
alternatively switches from one level to the other).

2.6 Distributed Artificial Intelligence

It is known as distributed AI the research, analysis and development of "intelligent
communities" that integrate a coordinated set of knowledge-based processes,
usually called agents (or actors or knowledge sources) that interact either by
cooperation, by coexistence or by competition, in order to solve common objectives.
Main reasons for distribute an AI system into a multiagent architecture could be
enumerated as follows, [Chaib-draa et al., 1992; Castillo and Quintanilla, 1991; Bond
and Gasser, 1988; Huhns, 1987]:

• Geographic distribution in the domain of application (air traffic control,
information systems, robots' system, etc.).
• Functional decomposition in a natural way (top down analysis) such in a medical
diagnosis, speech recognition system, etc.
• Control distribution in order to get faster processing speed by means of parallel

(concurrent) execution of agents' work.
• Distribution affords modularity, and therefore reusability and extendibility of the
system.
• Processing distribution is a basic strategy to control the increasing complexity of AI

systems.
• Integration and cooperation of several intelligent agents (systems) increases the

power of the resulting system.

Also, there are some problems with a distributed architecture [Cammarata et al.,
1983]:
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• How to maintain the global coherence of several agents involved in the
architecture ?
• How to plan a concrete solution for a given problem ?
• How to coordinate agents' communication ?

2.6.1 Models

There are many types of distributed AI architectures which can be grouped in four
main classes, [Kirn and Schneider, 1992]: blackboard systems (BBS), supervisory systems

(SVS), contract nets (CN), non explicitly coordinated systems (NECS):
• Supervisory Systems (SVS):  its main feature is the existence of a centralized
control component. This agent plans all global activities (tasks distribution,
cooperative problems resolution, solution's generation, etc.). The supervisory acts
like a master (see figure 2.11).

AGENT-1

AGENT-2

AGENT-3

AGENT-4 SUPERVISORY
PLANNER

Fig. 2.11. A Supervisory system with 4 agents

• Blackboard Systems (BBS):  its main characteristic is the blackboard (a centralized
data structure that could be accessed by all agents). All steps to the solution have
to be documented on the blackboard, which is managed by an intelligent planner
(see figure 2.12).
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PLANNER

AGENT-1

AGENT-4

BLACKBOARD

CONTROL

USER INTERFACE

Fig. 2.12.  A Blackboard system with 4 agents
• Contract Nets (CN): there is not any centralization at all. Agents are completely
autonomous. They neither share any resources nor have any global knowledge.
They use a contract protocol to cooperate in a flexible way for tasks solving.
Usually, the coordination is based in bilateral cooperation. (see figure 2.13).

AGENT-1

AGENT-2 AGENT-4AGENT-3

Fig. 2.13. A Contract net with 4 agents

• Not Explicitly Coordinated Systems (NECS):  They are formed of very complex
autonomous agents. If needed, exchange data through a centralized data base.
They have any explicit mechanisms for cooperative problem solving such as tasks
decomposition, results synthesis, etc.. See figure 2.14.
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AGENT-1

AGENT-2 AGENT-4

AGENT-3

CENTRALIZED
DATABASE

Fig. 2.14. A Not explicitly coordinated system with 4 agents
On the other hand, as suggested in [Bond and Gasser, 1988] Distributed Artificial
Intelligence can be divided in two major subfields –disregarding Parallel AI, PAI–
focusing on historical interests of researchers:

Distributed Problem Solving (DPS) architectures, in which the work of solving a
particular problem can be divided among a number of modules, or nodes (agents),
that cooperate at the level of dividing and sharing knowledge about the developing
solution [Lesser and Corkill, 1987; Smith and Davis, 1981]. Usually, the goals of the
different modules (agents) do not interact among them.

Multi-Agent (MA) architectures, where the research is concerned with coordinating
intelligent behaviour among a collection of (possible pre-existing) autonomous
intelligent "agents" and how they can coordinate their knowledge, goals, skills, and
plans jointly to take action or to solve problems. The agents in a multi-agent system
may be working toward a single global goal, or toward separate individual goals
that interact. The agents, like modules in a DPS system, must share knowledge
about problems and solutions., but they must also reason about the processes of
coordination among the agents. In MA systems the task of coordination can be quite
difficult, for there may be situations (in so-called open systems) where there is no
possibility for global control, globally consistent knowledge, globally shared goals
or global success criteria, or even a global representation of a system [Hewitt, 1986;
Hewitt, 1985].



56 CHAPTER 2. THE STATE OF THE ART

2.6.2 General applications

There are some areas where distributed AI systems have successfully been applied,
such as in:

• Air traffic control [Cammarata et al., 1983].
• Robotic systems [Gasser, 1987].
• Man-machine cooperation and office information systems, [Nirenburg and

Lesser, 1988].
• Design [Bond, 1989].
• Industrial process control [Roda et al., 1990].
• Medical diagnosis [Gómez and Chandrasekaran, 1981].
• Speech and natural language processing [Fum et al., 1988].

But we have no knowledge about distributed problem solving AI systems applied
to wastewater treatment plants.
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Chapter 3

DAI-DEPUR: an Integrated Supervisory
Multi-level Architecture

3.1 Introduction

The proposed architecture, DAI-DEPUR that stands for integrated supervisory multi-

level distributed system  [Sànchez et al., 1995a; Sànchez et al., 1994b], is the result of
previously developed systems, that were oriented to tackle the complexity involved
in the control and supervision of WWTPs, during our research work. First, the work
was focused on diagnosis or evaluation phase and afterwards on the global
supervision and control of the system:

• Knowledge-based diagnostic and management system [Serra et al., 1994;
Belanche et al., 1992b; Sànchez, 1991].

• Real-time supervisory system [Serra et al., 1995; Sànchez et al., 1994a; Serra,
1993].

The architecture is designed to overcome some of usual troubles of KBS and those
of conventional control systems, as explained in previous chapters. The integrated
supervisory multi-level distributed system (as shown in Figure 3.1) is formed of
several interacting subsystems or agents that can be executed in parallel processing
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(as the Supervisory–KBS agent, the Case-Based Reasoning and Learning agent, the
Numerical Control Knowledge module, etc.). The architecture is also integrated and
multi-level (as explained in section 3.3).
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Fig. 3.1. DAI-DEPUR architecture

The main reason to choose a Supervisory Distributed Problem Solving system
among the different Distributed Architecture models (see 2.6.1) is mainly because in
the domain of WWTP the outstanding task is to identify situations, that is
operational working states of the plant described by means of the relevant attributes
of the system, and among those, there is a set of abnormal situations that could be
easily catalogued as Storm, Bulking, Toxic load, etc. We call them usual abnormal

situations, and they may be treated with a predetermined plan or strategy, in a more
efficiently way than with other types of DAI architectures as Blackboard Systems or
Contract Nets. Another reason is that the Supervisory Systems ensure, by means of
the supervisory-planner agent, an easy and reliable planning, coordination and
coherence among all agents, although this centralization diminish the flexibility of
the architecture, the agents autonomy and agents global knowledge.

The Supervisory System recognizes predefined usual abnormal situations and chooses
the right strategy, in addition to specific experiential situations occurred in the
concrete WWTP under control (unusual abnormal situations), in order to keep the
process controlled, or if normal situation has been detected then the automatic
numerical control is maintained or activated. Normal means that the WWTP is
correctly operating, and so, the contaminant's levels of the effluent water are under
the limits of environmental laws. Thus, it is clear that there is room for a good
cooperation among classical control methods (based on numerical algorithms), expert

control (based in predefined plans or strategies) and experiential control (based in
previous solved cases).

In the next sections of this chapter, an insight of the main features of the architecture
will be given. In next chapters, each DAI-DEPUR level will be described in detail.

3.2 Knowledge-Level Analysis of WWTP

Attending to the components of expertise approach to analyse the WWTP domain,
we will describe the three perspectives: domain models or theories, tasks, and
methods.

We briefly describe the models used in the architecture at each level. The data level
is modelled with the on-line data coming from WWTP sensors, the calculated and
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inferred data, and off-line data required from WWTP operators. At the
knowledge/expertise level there are three domain models: a functional expert

(symptom-cause) model, an associative experiential (cases) model, and a numerical

(control algorithm) model. At the next level, there are the set of expert and
experienced situations. Finally, at the plan level, there are the strategies or
actuations: experiential/expert actuation and numerical control actuation.

The main tasks involved in the overall management process in a WWTP are: system
evaluation to get the main values and parameters of the WWTP operation;
diagnosis, to determine which is the current working situation of the WWTP;
adaptation, which is an optional task sometimes performed to update the
knowledge/expertise level; supervision, to identify the current situation between
expert general or experiential specific situations provided by the diagnosis task; the
validation of the supervision task (identified situation, proposed solution); and
finally the actuation, based on the proposed solution to restore the WWTP operation
to the normal situation.

The problem solving methods used to perform the tasks are: the evaluation task is
performed by means of the on-line and off-line data gathering, the diagnosis task is
implemented both with rule-based reasoning and case-based reasoning. Case-based
learning and knowledge acquisition perform the adaptation task. The supervision is
implemented with a combination method. The validation of the proposed solution
is achieved by means of the operator's validation. The actuation over the WWTP is
performed by a numerical control actuation or by an experiential/expert actuation.

3.3 Integrated Multi-level Architecture

DAI-DEPUR is an integrated architecture because it joins in a single system several
cognitive tasks and techniques such as learning, reasoning, knowledge acquisition,
distributed problem solving, etc. Furthermore, focusing on the knowledge/expertise

level, [Steels, 1990], there is the integration of three kinds of knowledge: numerical
control knowledge, expert general knowledge and experiential specific knowledge
[Sànchez et al., 1995b].

The need of different reasoning techniques integrated within a single system for
solving complex real-world problems has been recently recognized by the AI
community [Dutta and Bonissone, 1993]. Only there was an early precedent that has
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not much been taken into account by the AI researchers [Aikins, 1983], where it was
proposed to apply prototypical knowledge (cases or experiences) to control (meta-
reasoning) the rule-based reasoning of expert systems.

In the AI literature there have been some approaches to combine the case-based
reasoning and the rule-based reasoning [Cuda et al., 1994; Golding and Rosenbloom,
1991; Branting, 1991; Dutta and Bonissone, 1991; Rissland and Skalak, 1989] from a
complementary point of view between both kinds of reasoning.

Also, DAI-DEPUR architecture is multi-level, providing independence to all the
levels. Taking into account the domain theory (models), it can be structured as a
four-level architecture: data level, expertise level, situations level and plans level.

Data level: On-line data gathered from sensors, calculated and inferred data, and
off-line values provided by the operator as laboratory analysis, subjective
information, etc.

Knowledge/Expertise level: Modelled by three paradigms or approaches:
numerical control knowledge, expert general knowledge and experiential specific
knowledge.

Situations level: The generic global operating situation of a plant is obtained by
combination of its several local subsystem situations. Also, this generic global
situation and the specific situation provided by the experiential knowledge are
combined.

Plans level: At this level, the identified whole situation, the previous similar
solutions as well as the predefined (canned) plans are taken into account to
propose a first solution, that has to be validated against the operator, who can
modify the proposed plan. Then, an arranged plan can be executed to cope with
the current operating situation of the plant. Plans are a sequence of actions to be
taken in order to restore the good WWTP operation and performance.
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Fig. 3.2. Integrated supervisory multi-level architecture

On the other hand, considering the processes acting over the models (methods) the
architecture can be decomposed in a six-phase processes: evaluation process,
adaptation process, diagnosis process, supervision process, validation process and
actuation process. The system activates a new supervisory cycle at fixed intervals of
time.
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Evaluation process: For this purpose it is necessary to know some values for
certain variables of the process. All this data can be extracted from the
evolutionary Data Base, fitted either with the on-line sensors values coming from
the data collecting systems or with some other features provided by the operator
like a laboratory analysis, qualitative observation, etc., as well as the inferred and
computed data.

Adaptation process: This is a process that is sometimes performed either by
dynamic learning from past proposed solutions and its efficiency –that can
update the Case library– or by acquiring some new knowledge from (new)
experts or (new) sources through classification techniques.

Diagnosis process: In a new cycle the Supervisory agent activates the
Knowledge-based agents to diagnose the state of the different subsystems of the
plant by means of rule-based reasoning. At the same time in the diagnosis phase
the Case-Based Reasoning and Learning agent (CBRL) is activated to retrieve
similar cases recorded in the Case library. This means that can be implemented
the concurrent execution of all agents involved. In the next step, is updated the
most similar case in order to adapt it to the current situation of the plant. For this
task, the system needs to access to the Data Base. The results are communicated
to the Supervisory agent.

Supervision process: The Supervisory agent combines all information coming
from the several KBS agents (general knowledge) and from the CBRL agent (specific

knowledge) to infer the current global situation of the plant and the suggested
actions to be taken. It sends this information to the operator through the User
Interface module.

Validation process: The system can be inquired by the operator in some ways as
asking for explanations, retrieving certain values, etc. The Supervisory agent
waits for the operator's validation of actions to be taken in order to update the
current working state of the plant.

Actuation process: The Supervisory agent recognizes situations and uses the right
strategy or plan, in order to keep the process controlled or if normal situation has
been detected, then, the automatic numerical control is maintained or activated.
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If there are on-line actuators, the plant can be automatically updated through the
Actuator system. If not, manual operation is required.

3.4 Distributed Problem Solving

DAI-DEPUR is a distributed problem solving architecture (DPS) so that is formed of
several cooperation subsystems where the work of solving a particular problem is
divided among a number of modules, or nodes (agents) that can be executed in
parallel. For instance, the supervisory agent, the case-based reasoning agent,
primary settler-KBS agent, biological reactor-KBS agent, etc. Distribution criteria are
based on spatial and semantic distances, [Bond and Gasser, 1988]. In a WWTP there
are some subsystems that are in spatially distributed locations (primary settlers,
secondary-settlers, biological reactor, etc.). Thus, all of these knowledge-based
agents are specialized ones, that focus on different aspects of the system. Each one
has its own knowledge base, that has been obtained by means of the knowledge
acquisition module:

• The Water line subsystem formed of: Screen–KBS, Grit removal–KBS, Primary
settler–KBS, Biological reactors–KBS, Secondary settler–KBS, Chlorination–KBS,
Recirculation–KBS, which will be described in 5.2.2.2.

• The Sludge line subsystem composed by: Waste–KBS, Thickening–KBS,
Anaerobic treatment–KBS, Drying–KBS, which will be described in 5.2.2.2.

• The Supervisory–KBS agent, which will be described in 6.3.

The other nodes of the architecture are:

• The Case-Based Learning and Reasoning agent, which will be detailed in 5.2.3
and 5.4.2.
• The Numerical Control Knowledge module, that will be described in 5.2.1.
• The Knowledge Acquisition module, which will be detailed in 5.4.1.1.
• The Actuator system, which will be described in 7.4.
• The Data Base Management system, which will be explained in chapters 4 and
9.
• The Data Collecting system, which will be explained in chapters 4 and 9.
• The User Interface module, which will be explained in chapters 4 and 9.
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• The Explanation module, which will be explained in chapter 7 and 9.

The proposed architecture is implemented using some existing tools as G21

[Gensym, 1992; Gensym, 1990], LINNEO+2 [Béjar, 1995; Béjar et al., 1994], GAR3

[Riaño, 1994], and Sun Common Lisp4 [Sun Microsystems, 1990]. See appendix G
for a brief description of these tools.

The architecture implementation has been specially focused on Manresa's WWTP,
but also the experiences both from a slightly different WWTP studied in Cassà de la
Selva-Llagostera, and the pilot scale WWTP constructed have been taken into
account in DAI-DEPUR development.

                                               
1G2 is a real time expert systems shell, from Gensym Corporation
2LINNEO+ is a semi automatic knowledge acquisition tool developed at LSI dept.
3GAR is an automatic rule generation tool developed at LSI dept.
4Sun Common Lisp is the Common Lisp dialect from Sun Microsystems
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Chapter 4

The Data Level

The sight always must learn from the mind.
Johannes Keppler

4.1 Domain Models

At the data level, the domain theory is represented by means of three information
models: the on-line data coming from WWTP sensors, the calculated and inferred data

by the system, and the off-line values provided by the operator. In next subsections,
all these data are detailed. In the appendix A, more accurate definitions can be
found.

All the ranges of these data are true for the application developed for the Manresa's
WWTP. Other range values are available for the other applications (Cassà de la
Selva-LLagostera's WWTP, pilot scale WWTP).

4.1.1 On-line Data

There are many signals captured by the data acquisition interface as explained in
4.1.1.1. Many of them are information about the status of pumps engine (on/off), or
the status of aeration-turbines engine (on/off), or the status of automatic grids
engine (on/off), or about the status of electrovalves engine (on/off), etc. Excluding
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these mechanical-electrical signals, the main outstanding on-line data gathered by
DAI-DEPUR are:

• Inflow: numerical measure of the water flowing into the WWTP. Possible
values are:

low (< 28000 m3/day)
slightly low (between 28000 and 35000 m3/day)
normal (between 35000 and 45000 m3/day)
high (> 45000 m3/day)

• Input-pH: numerical measure of the pH of the input water to the WWTP.
Possible values:

low (between 0 and 6)
normal (between 6 and 8.5)
high (between 8.5 and 14)

• Dissolved-Oxygen (DO): numerical measure of the concentration of the
dissolved oxygen in the biological reactor (basins). Possible values are:

low (between 0 and 0.5 ppm)
normal (between 0.5 and 2.5 ppm)
slightly high (between 2.5 and 4 ppm)
high (> 4 ppm)

• Recirculation-flow: numerical measure of the recirculated flow of sludge.
Possible values are:

low (< 30000 m3/day)
normal (between 30000 and 50000 m3/day)
high (> 50000 m3/day)

• Wasting-flow: numerical measure of the purged flow of sludge. Possible values
are:

low (<  450 m3/day)
normal (between 450 and 600 m3/day)
high (> 600 m3/day)
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In other WWTPs it can be found on-line sensors to obtain some of the following
data: Oxidation-Reduction Potential (ORP), Turbidity, Water temperature,
Ammonia, Nitrate, Nitrite, etc.

4.1.1.1 External interface

The Data collection module developed for Manresa's WWTP application gathers the
values of the status of turbines, pumps, automatic grids, etc., from the control panel
of the plant under supervision, with 6 PLC's (SISTEL 8512). These 96 digital signals
are transmitted through RS-422 to the monitoring computer (PC) for evaluation
process. It also receives 9 analogical signals (inflow, wasting flow, recirculation
flow, biogas produced, DO-line-1, DO-line-2, pH, temperature-digester-1 and
temperature-digester-2) converted by an AD/DA card. The data acquisition
interface is connected to the main computer (SUN Sparc station) where all the other
agents and processes are running (see figure 4.1).

PLC  1 PLC  2

PLC  3 PLC  4

PLC  5

PLC  6

RS-422

Ethernet

CONTROL SCHEMATIC TURBINES
SWITCHING
CONTROL

Turb. 1 Turb. 3 Turb. 5

Turb. 2 Turb. 4 Turb. 6

Monitoring
andand Control Computer

Digital
Inputs

A/D   D/A

Analogic Signals

Digital Signals

Supervisory
Computer

Fig. 4.1. On-line external interface



4.1 DOMAIN MODELS 3

In other WWTPs, such as Cassà de la Selva-Llagostera, the data acquisition interface
module has to be updated to include different sensor information from the WWTP
to DAI-DEPUR.

Currently, there are some experiments using a pilot scale plant, that is already
connected to a monitoring computer through a data acquisition interface. See
chapter 8.
4.1.2 Calculated and Inferred Data

The main outstanding inferred and calculated data by DAI-DEPUR are:

• Bridge-rotation-band: qualitative information about the status of the rotation
band of the bridge. There are two possible values:

normal
broken

• Primary-settler-sludge-exit: qualitative information about the status of the
primary settler sludge exit. Possible values are:

normal
insufficient

• Turbines-schedulling: qualitative information about the status of the turbines'
schedulling. Possible values are:

following-schedulling
not-following-schedulling
broken
overloading

• Solids-Retention-Time (SRT): numerical measure of the mean residence time of
the Suspended Solids in the biological process. Possible values are:

young (< 5 days)
normal (between 5 and 8 days)
old (> 8 days)

• Sludge-Volume-Index (SVI): numerical measure of the sludge sedimentation
ability. Possible values are:

low (< 80 g/ml)
normal (between 80 and 150 g/ml)
high (> 150 g/ml)
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• Removal-efficiencies (%): percentage of removal efficiency of the main water
quality variables such as COD, BOD, Suspended Solids (SS), etc.

4.1.3 Off-line Data

The data that cannot be either obtained on-line, or calculated or inferred by DAI-
DEPUR, must be provided off-line, by the WWTP operators, through the user
interface such as observational information, laboratory analysis, microscopical
information, etc. These data are:

• Bubbles-in-primary-settlers: qualitative information about the absence or the
presence of bubbles in the primary settlers, thus indicating a septic water.
Possible values are:

true
false

• Bubbles-in-clarifiers: qualitative information about the absence or the presence
of bubbles in the clarifiers (secondary settlers), thus indicating denitrification.
Possible values are:

true
false

• Bioreactor-foam: qualitative information about the presence/absence of colour
in the bioreactor foams. Possible values are:

brown (indicating abundance filamentous bacteria presence)
white (indicating tensoactive presence or a high F/M ratio)
no-foam (normal water conditions)

• Water-odour: qualitative information about the presence or the absence of
water odour. Possible values are:

true (possible industrial waste)
false
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• Water-colour: qualitative information about the water colour. Possible values
are:

red (indicating  some blood concentration in the water))
dark (reflecting industrial water)
normal

• Environmental-temperature: numerical measure of the environmental
temperature. Possible values are:

low (< 5º C)
normal (between 5º C and 27º C)
high (> 27º C)

• Input-sulphurs: numerical measure about the presence or the absence of
sulphurs in the inflow. Possible values are:

normal (between 0 and 0.5 ppm)
high (> 0.5 ppm)

• Input-heavy-metal-concentration (based on Zn): numerical measure of the
concentration of metals (Zn) in the inflow. Possible values are:

normal (between 0 and 4 ppm)
high (> 4 ppm)

• Input-Suspended-Solids (I-SS): numerical measure of the Suspended Solids
presents at the input of the WWTP. Possible values are:

low (< 150 mg/L)
normal (between 150 and 300 mg/L)
high (> 300 mg/L)

• Input-Chemical-Oxygen-Demand (I-COD): numerical measure that reflects the
quantity of substrate in the inflow water at the input of the WWTP. Possible
values are:

low (< 150 mg/L)
normal (between 150 and 400 mg/L)
high (> 400 mg/L)
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• Input-Biological-Oxygen-Demand (I-BOD5): numerical measure that reflects
the quantity of substrate in the inflow water at the input of the WWTP. Possible
values are:

low (< 100 mg/L)
normal (between 100 and 350 mg/L)
high (> 350 mg/L)

• Bioreactor-heavy-metal-concentration (based on Zn): numerical measure of the
concentration of metals (Zn) at the basins. Possible values are:

normal (between 0 and 30 ppm)
high (> 30 ppm)

• Bioreactor-Suspended-Solids (B-SS): numerical measure of the Suspended
Solids presents at the basins. Possible values are:

low (< 1750 mg/L)
normal (between 1750 and 3000 mg/L)
high (> 3000 mg/L)

• Bioreactor-Volatile-Suspended-Solids (B-VSS): numerical measure of the
Volatile Suspended Solids presents in the bioreactor. Possible values are:

low (< 1500 mg/L)
normal (between 1500 and 2500 mg/L)
high (> 2500 mg/L)

• Bioreactor-pH: numerical measure of the pH in the bioreactor mixed liquor.
Possible values:

low (between 0 and 5.0)
normal (between 5.0 and 8.5)
high (between 8.5 and 14)

• Recirculation-Suspended-Solids (R-SS): numerical measure of the Suspended
Solids presents in the recirculation flow. Possible values are:

low (< 3750 mg/L)
normal (between 3750 and 6500 mg/L)
high (> 6500 mg/L)
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• Recirculation-Volatile-Suspended-Solids (R-VSS): numerical measure of the
Volatile Suspended Solids presents in the recirculation flow. Possible values are:

low (< 3500 mg/L)
normal (between 3500 and 6000 mg/L)
high (> 6000 mg/L)

• Output-Suspended-Solids (O-SS): numerical measure of the Suspended Solids
presents at the output of the WWTP. Possible values are:

normal (< 30 mg/L)
high (_ 30 mg/L)

• Output-Volatile-Suspended-Solids (O-VSS): numerical measure of the Volatile
Suspended Solids presents at the output of the WWTP. Possible values are:

normal (< 25 mg/L)
high (_ 25 mg/L)

• Output-Chemical-Oxygen-Demand (O-COD): numerical measure that reflects
the quantity of substrate in the water at the output of the WWTP. Possible values
are:

normal (< 75 mg/L)
high (_ 75 mg/L)

• Output-Biological-Oxygen-Demand (O-BOD5): numerical measure that reflects
the quantity of substrate in the water at the output of the WWTP. Possible values
are:

normal (< 35 mg/L)
high (_ 35 mg/L)

Other off-line signals taken into account in some WWTPs can be: Total Organic
Carbon (TOC), Alkalinity, Grease, Chloride, etc.

4.1.3.1 Microbiological information

Microbiological information is a crucial off-line qualitative information. In the
secondary treatment there are two main kinds of microorganisms attending to their
importance in the biological process: protozoa and filamentous bacteria.
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Protozoa

Protozoa use the bacteria community as a nutrient, and it is widely demonstrated
[Pujol et al., 1990; Moro, 1984] that they play an important role both in the
elimination of the Biological Oxygen Demand (BOD) and in the removal of the
Suspended Solids (SS). Main contributions of protozoa to the cleansing process are:

• They separate bacteria from the effluent during the sedimentation process
• They capture disperse bacteria in the absorption process and sediment them
• They diminish the quantity of disperse bacteria, due to their predatory role
• They increase the substrate/biomass ratio (F/M), so they diminish the quantity

of bacteria
• They can directly eliminate substrate
• They eliminate pathogen microorganisms

A compilation from different observations [Vedry, 1988] allows us to state the
following relationships between the state of the sludge and the presence of
protozoa:

Normal sludge: Vorticella, Epistylis, Aspidisca, Opercularia, Zoothamnium,
Carchesium, Euplates, Tokophrya, Podophrya, Acineta.

Transition sludge: Litonotous, Loxophilum, Chilodonella, Oxytricha, Amœba.

Abnormal sludge: Bodo, Cercobodo, Oikamonas, Paramecium, Vahlkampfia, Metopus,
Cænomorpha.

In general, it can be stated that as much larger is the quantity of protozoa, the
quality of effluent water better is.

Filamentous Microorganisms

On the other hand, the presence of filamentous microorganisms in the Mixed Liquor
Volatile Suspended Solids (MLVSS) is commonly related in the literature and
experimentally verified, to some usual abnormal situations  (bulking) [Jenkins et al.,
1993; Wanner et al., 1987; Chudoba, 1985; Strom and Jenkins, 1984] as it is described
in table 4.1.
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Unfortunately, within the periods (90/91, 94) mainly studied at the Manresa's
WWTP, there was not many bulking situations, that could have been of great
interest to identify the local and particular microorganisms that grow in the
concrete plant, because they are very sensitive to the water and environmental
conditions. In fact, all this microbiological information becomes a functional

(symptom-cause) model at this level.

POSSIBLE SITUATION KIND OF MICROORGANISM 

Low dissolved oxygen

Low F/M (low organic load)

Septic residuals, Sulphurs

Nutrient deficiency 

1701,  S. Natans, H, Hydrosis 

M. Parvicella, Nocardia,  
H. Hydrossis , 

021N, 0041, 0092, 0581, 0961, 0803

Thiotrix, Beggiatoa , 021N

Thiotrix , 021N, 0041

Table 4.1. Relationship between filamentous microorganisms and working
situations of WWTP

In order to identify what kind of filamentous microorganisms are present in the
Mixed Liquor Volatile Suspended Solids (MLVSS), it is required qualitative
information about some microorganisms features observed with a microscopy:

• Filaments-branching: qualitative information about the ramifications of the
filaments. Possible values are:

absence
false branching
true short branching
true long branching

• Filaments-motility: qualitative information about the presence/absence of
motility in the filaments. Possible values are:
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true
false

• Sulphur-granules: qualitative information about the presence/absence of
sulphur granules in the microorganisms. Possible values are:

true
false

• Gram-staining: qualitative information about the result of the Gram-staining of
the microorganisms. Possible values are:

positive
negative

• Neisser-staining: qualitative information about the result of the Neisser-
staining of the microorganisms. Possible values are:

positive
negative

• Filaments-shape: qualitative information about the shape of the filaments.
Possible values are:

straight filaments
coiled filaments
smoothly-curved filaments
chain of cells

• Cell-septa (cross-walls): qualitative information about the visibility of cell septa
of the microorganisms. Possible values are:

good visibility
bad visibility

• Sheath-presence: qualitative information about the presence/absence of a
sheath in the filaments. Possible values are:

true
false

• Attached-growth: qualitative information about the presence/absence of
attached epiphytic bacteria around the filaments. Possible values are:
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true
false

• Filaments-transparency: qualitative information about the transparency of the
filaments. Possible values are:

true
false

• Cell-shape: qualitative information about the shape of the microorganisms.
Possible values are:

round-ended rauds shape
square shape
oval shape
barrel shape

• Cell-diameter: numeric value of the diameter of the cells. Values are expressed
in μm.

4.1.3.2 Off-line data interface

All previous off-line information is gathered into DAI-DEPUR through the user
interface, by means of some type-in boxes, buttons and menus of the user interface
(see figure 4.2).
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Fig. 4.2. Off-line data interface

4.2 System Evaluation Task

The main task at this level is the evaluation of the WWTP under supervision to get
the basic information that will allow DAI-DEPUR to diagnosis -in an upper level–
the working situation of the WWTP, to supervise, and to actuate in order to restore
the good operational state of the WWTP.

As it has been explained in previous section 4.1, there is much off-line information
to be gathered by the WWTP supervisory systems. This is due to the fact that most
WWTP are not very automated. First, there are much measures for which
technology have not still developed on-line sensors. On the other hand, some on-
line sensors developed are not very reliable. This last feature introduces the
problem of the uncertainty or approximate information [López de Mántaras, 1990;
Smets et al., 1988] into the supervision process. Moreover, the uncertainty can be
originated by subjective information provided by the operators and/or experts, and
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sometimes, the available information about some parameters can be incomplete
[Bonissone and Tong, 1985]. To solve that problem, DAI-DEPUR architecture gives
the possibility that each attribute or parameter or fact, may have associated a fuzzy
label value through a linguistic approximation [Bonissone et al., 1990; Bonissone
and Decker, 1985; Bonissone, 1979] to the fuzzy sets theory [Zadeh, 1983; Zadeh,
1979].

WWTPs are dynamic systems that change their behaviour over the time. A good
operational state of WWTPs is mainly achieved when the balance between substrate
and biomass (F/M) is guaranteed. This balance is very sensitive to the changes in
the process operating conditions. Luckily, the dynamics of the WWTPs is enough
slow to deaden these perturbations, and not to cause great damage to the
environment. This delay in the WWTP information implies than it is not only
important the information about the current state of the WWTP, but the previous

states of WWTP working are also crucial. A good domain modelling has to take into
account both kinds of information: current-input data and previous-historical data.

This feature suggests a role for temporal reasoning approach. DAI-DEPUR uses the
temporal information management provided by the G2 shell, that allows it to
reason taking into account the temporal values recorded in the Data Base of the
same variables. Also, it makes use of the two kinds of information above
mentioned, to capture these temporal features:

• Current-input data, such as the environmental-temperature, wastewater inflow,
Input-Chemical-Oxygen-Demand (I-COD), Input-Suspended-Solids (I-SS), Input-
metal-concentration, Sludge-Volumetric-Index (SVI), Bubbles-in-primary-settlers,
Aeration-turbines-state, etc.

• Previous-historical data, such as the Outflow-Chemical-Oxygen-Demand (O-
COD), Output-Suspended-Solids (O-SS), Dissolved-Oxygen (DO), Water-odour,
Bioreactor-foam, Bioreactor-Suspended-Solids (B-SS), Bioreactor-Volatile-
Suspended-Solids (B-VSS), Recirculation-Suspended-Solids (R-SS), Recirculation-
Volatile-Suspended-Solids (R-VSS), etc.

4.3 Data Gathering Method



The Data Collection system receives data from the on-line sensors of the plant only
when these values are needed for the inference process and the values stored in the
Data Base are no more valid. All the variables have a validity time interval for their
values. Once this interval has been overcome, the stored value of a variable is
useless, and a new value has to be acquired by means of the Data Acquisition
module and the GSI (G2 Standard Interface) and has to be sent to the Data Base
through the Data Base management system. The Data Base Management system

controls the access of the several KBS, CBRL agent, Supervisory–KBS to the
evolutionary (real-time) Data Base to guarantee the consistency of the system. This
control is achieved by means the G2 shell mechanisms.

The required data for the deductive processes that cannot be obtained on-line, and
also cannot be inferred or computed by DAI-DEPUR are required to be provided by
the operator (off-line data).



Chapter 5  

The Knowledge/Expertise Level  

Knowledge itself is power .  

Sir Francis Bacon  

Studying the past, one learns for the future.  

Japanese proverb  

5.1 Introduction  

At the knowledge/expertise level, DAI-DEPUR presents an approach to 

integration of three kinds of knowledge to model the domain: numerical control 

knowledge provided by an automatic control algorithm, general knowledge 

coming from experts' domain knowledge or expert knowledge, and specific 

knowledge supplied from previous solved problems in the system or 

experiential/practical knowledge. The numerical control knowledge is modelled 

by a dissolved oxygen (DO) control algorithm developed. The expert 

knowledge is modelled through explicit inference rules, while the experiential 

knowledge is modelled by means of cases or experiences. This cooperation 

tries to get benefit from the advantages of all kinds of available knowledge, and 

to cope with typical shortcomings either from knowledge-based systems: do 



not learn from experience, the knowledge acquisition problem, the brittleness, 

lack of reusability; or from automatic control systems: complexity of the 

processes, ill-structured domains, non-numerical or qualitative information, 

uncertainty or approximate knowledge. This combination of paradigms, at this 

level, integrates in the same architecture different kinds of knowledge and 

some cognitive processes as knowledge-based reasoning, case-based 

reasoning, learning, knowledge acquisition, problem solving [Plaza et al. , 

1993; Gil, 1991; Newell, 1990; Van Lehn, 1990].  

The paradigms of numerical control and expert systems capture the basic 

general principles of WWTP operation when normal situations and abnormal 

usual situations such as bulking , storm , rising , etc . are occurring in the 

WWTP, through automatic control algorithms and rule-based reasoning. They 

are useful in a wide variety of plants with similar technology and characteristics 

such as design conditions, inflow quantity, inflow quality, etc., but they are not 

able to model the particular features and specific situations ( abnormal unusual 

situations ) that could occur in a certain plant. Furthermore, they do not learn 

from the past situations occurred a given plant.  

Every plant's behaviour is potentially different to other similar plants because 

of the changes in the inflow, meteorology, neighbouring industries, etc. Thus, a 

reliable supervisory system needs to integrate a dynamic component to adapt 

itself to the special characteristics of a concrete plant under control, trying to 



cope with the local abnormal unusual situations. On the other hand, to learn 

from previous successful situations or failed ones, it is a key fact in order to 

improve the performance of the supervisory system [López, 1993; Schank and 

Slade, 1991; Aamodt, 1989; Van de Velde, 1987b] and also, it is the same way 

in which human expert management works.  

5.2 Domain Models  

In the next subsections, the three models will be detailed. The numerical 

control knowledge ( mathematical algorithmic model ), the expert knowledge 

(functional cause-effect model ), and the experiential knowledge ( associative 

experiential model ).  

5.2.1 Numerical Control Knowledge  

Activated sludge is, undoubtedly, the most widely extended wastewater 

treatment practice. In this process, a mixture of several microorganisms 

transform the biodegradable pollutants used as substrate or Chemical Oxygen 

Demand (COD), into new biomass, with the addition of dissolved oxygen 

supplied by any aeration system.  

Like other biotechnological processes, its real-time control constitutes a quite 

complex problem as it has been outlined in previous chapters, due to the lack 

of reliable on-line instrumentation and simplicity of the models used to describe 

the microbiological processes that take place in the bioreactor [Beck, 1986]. In 



addition, it presents some specific problems like the great variability of the 

input both in quantity and quality and the very complex interactions between 

the different microorganism populations present in the system.  

Effective operation can be achieved, however, by regulation of substrate levels 

and the maintenance of dissolved oxygen (DO) in the process above minimum 

acceptable conditions. On the other hand, it is important to realize that 

activated sludge process efficiency is independent of DO concentration, over a 

critical level, which is between 0.5 and 3.0 mg/L, depending on process 

conditions [Stenstrom and Podunska, 1980]. Then if we are able to ensure this 

critical DO level, it is feasible to decompose the control problem into separate 

multi-input single output subsystems. In this case, substrate control and 

dissolved oxygen control in the reactor, can be independently handled and 

thus, more effectively regulated.  

Regulation of DO may improve the plant performance, not only from an energy 

point of view, i.e. by saving energy costs up to 30%, but avoiding incidences 

which can cause filamentous sludge bulking , or poor sludge settling conditions 

[WPCF, 1988].  

However, the main practical problem encountered in DO control is that, the 

great majority of operating WWTPs do not have any provision for varying the 

air flow rate continuously, and the aeration equipment is operated on an on/off 

basis [Marsilli-Libeli, 1989]. It is the sequence of motor on/off switches which 



must be determined in order to control the dissolved oxygen level. Furthermore, 

several constraints must be satisfied in order to avoid technical problems.  

Fig. 5.1. Biological balance  
A non-linear predictive control algorithm has been developed to satisfy quality constraints whilst 
reducing energy demands [Serra et al. , 1993; Moreno et al., 1992]. The algorithm predicts the 
series of motor switches in order to maintain the DO concentration always over the critical level (2 
mg/L in Manresa's WWTP), which allows the normal evolution of the substrate oxidation 
reactions (see figure 5.1).  

Fig. 5.2. Numerical control algorithm  
A scheme of the non-linear predictive algorithm is depicted in figure 5.2, where  

the symbols and abbreviations used are:  

CH : Control horizon  

DO : Array of dissolved oxygen values, [DO(t) DO(t+CH-1)]  

F C : Cost function value  

Q : Input flow  

A * : Array of optimal aeration factor values  

A *' : Array of suboptimal aeration factor values, keeping the technical motor 

constraints.  

The implementation of the dissolved oxygen (DO) control scheme is based on 

four main blocks:  

The mathematical model of the process  



A software sensor to estimate the oxygen uptake rate (OUR)  

A continuous-range optimization procedure  

An algorithm that using the continuous-range optimal control value computed 

by the previous block, generates a discrete-range suboptimal control value, 

suited to be applied by the aeration motors.  

Mathematical model  

The dynamics of dissolved oxygen in the bioreactor is described by a 

differential equation that has the form:  

dC/dt = K la * F(t) * (C S – C) – OUR + f * (C 0 – C) [1]  
where  

K la : the global mass transfer coefficient of oxygen  

C : the concentration of DO in the bioreactor (mg/L)  

F(t) : the number of aerators switched on, at each moment  

C S : is the saturation level for the dissolved oxygen, and  

f * (C 0 – C) : corresponds to the input and output of dissolved oxygen with the 

flow  

OUR estimation  



OUR is estimated using a recursive least square (RLS) method, but applying 

Bierman U-D factorization of covariance matrix and directional forgetting 

factors to improve the tracking capability of the estimation algorithm [De Prada 

et al., 1991]. The identification algorithm uses a discrete model of the form:  

DO(t) = f (t) * q T (t)  
where  

q (t) = [K la , OUR]  
and the measures of the array f (t) are given by a linearization and discretization of equation [1].  

Continuous range optimization algorithm  

Continuous optimization is performed using a modification of the 

Broyden-Fletcher-Shanno algorithm, to take into account the fact that power 

aeration is constrained between zero and an upper value. The modification 

employed uses a projection procedure in order to translate, into the feasible 

space, the search points located out of it [Moreno, 1991].  

A sequence of control actions (on/off motor switches) is defined for a 

prediction horizon (PH). A continuous non-linear mathematical model of the 

DO dynamics is simulated by the ACSL continuous simulation language 

[Mitchell & Gautier, 1987], using equation [1], in order to predict the DO 

evolution through this period, and give enough information to compute the 

value of the cost function F C .  

Generation of aeration motor switches  



Indeed, from the six tanks in which the activated sludge reactor is divided in 

Manresa's WWTP, the first two have motors with two different speeds, 

corresponding respectively to 60 and 90 hp, meanwhile the other four work 

only at fixed speed, corresponding to 75 hp. Thus, the number of different 

values for the aeration factor at each sampling is given by 3 2 * 2 4 = 144. There 

exist some equivalences between all that possibilities due to symmetric 

considerations. Taking into account these considerations, the different values 

of the aeration factor can be reduced from 144 to 27.  

Anyway, with 27 different action possibilities, considering a control horizon of 3 

sampling periods, as in our case, this involves 27 3 = 19683 different 

combinations to evaluate at each sampling instant. Under this situation, trying 

to solve the optimization problem from a discrete point of view, seems to be 

unapproachable. Thus, the adopted solution was to decompose the 

optimization problem into two subproblems: a continuous one, where an array 

of optimal values A * = [a * (t) a * (t+1) a * (t+CH-1)] is obtained; and a second 

one, in which, starting from time t, to time t+CH-1, feasible combinations of 

aeration motors switches are evaluated, giving values of A *' = [a *' (t) a *' (t+1) a *' 

(t+CH-1)] as near as possible to the optimal A * array, and keeping the 

technical constraints of the Manresa's WWTP, which are:  



All motors have to keep the selected speed, as a minimum, for one hour. This 

is a mechanical constraint required to avoid an excessive wear and power 

consumption of the motors.  

No motor can be switched off for more than one hour. This is a biological 

constraint required to avoid the sedimentation of biomass into the reactor.  

Also the Numerical Control Knowledge module allows DAI-DEPUR to simulate 

the WWTP operation, to obtain simulated values from some required variables, 

etc .  

5.2.2 Expert Knowledge  

In this paradigm, the expert knowledge about the domain is modelled with 

inference rules. They form the different knowledge bases of the distributed 

Knowledge-Based Systems integrated in DAI-DEPUR.  

5.2.2.1 Inference Rules  

One of the inherent difficulties to the development of a knowledge-based 

system (see figure 5.3) is building-up the knowledge base (i.e., knowledge 

acquisition ), specially when dealing with a wide and complicated field (i.e., 

ill-structured domain ) [Steels, 1990; Becker, 1987].  

Acquiring relevant knowledge is a difficult task for a number of reasons. 

Experts do not necessarily find it easy to formulate how to solve the day-to-day 



problems arising in the running of the process. Moreover, they may omit part of 

the information in their explanation, introduce inconsistencies, or be unable to 

explain which sequence they should follow in order to solve a problem. In 

addition, they may not be very familiarized with the knowledge representation 

structures (inference rules, etc .) used in the knowledge-based systems to 

embody the knowledge in a computational model. Furthermore, Situations 

occurring in the WWTP are often simultaneously both cause and effect, or are 

closely interrelated, thus obscuring the causes of what is actually occurring.  

Fig. 5.3. Design process of a knowledge-based system  
All these problems make it difficult for the engineer compiling the knowledge base to determine 
the relevant parameters, without introducing errors. He may also, mistakenly, consider some 
information to be irrelevant or redundant, or alternatively, make things unnecessarily complicated.  

The process of extracting these rules ( knowledge acquisition ) from experts 

has been traditionally done with interactive sessions between the experts and 

the knowledge engineer, where the experts try to make explicit their 

knowledge and reasoning processes. From that knowledge, the knowledge 

engineer tries to structure it and he/her gets what has been called as a 

decision tree (see figure 5.4).  

Fig. 5.4. Example of a decision tree  
A decision tree is a set of nodes and arcs. Each node is a question related to a concrete information 
(for example, the value of an attribute, etc.), and each of its nodes is a possible value for that 
information. The leaves of the tree correspond to a classified objects (for example situations , 
causes, etc .). From the structured information of the decision tree, inference rules can easily be 
formulated. But the manual construction of decision trees is quite often described as a bottleneck. 
Therefore, much effort in AI has been addressed to overcome it.  



Some techniques have been developed to expert interactive knowledge 

explicitation [Booser and Bredshaw, 1987; Plaza, 1987; Clancey, 1985a]. They 

are tools and/or models based on specific tasks such as explicitation, 

acquisition, and concept refinement. They are easily applied to several 

domains, but they are not fully automated.  

The main features of the domains in which knowledge acquisition is required, 

suggest the idea to use some machine learning methods to model the 

knowledge domain. Thus, the task of the experts is reduced to the work of 

providing the machine learning techniques with good examples and their 

validation. An alternative to conventional machine learning systems of 

determining parameters, based on supervised learning of discriminating or 

structural descriptions [López de Màntaras, 1991; Kononenko and Bratko, 

1991; Danyluk, 1987; Quinlan, 1986; Michalsky and Reinke, 1986; Mitchell, 

1982; Dietterich and Michalsky, 1981; Vere, 1980; Hayes-Roth and McDermott, 

1977; Winston, 1975], is the use of techniques based on unsupervised 

learning of taxonomic descriptions [Fisher and Pazzani, 1991; Dubes and Jain, 

1990; Gennari et al. , 1989; Cheeseman et al., 1988; Lebowitz, 1987; Hanson 

and Bauer, 1986; Lenat, 1984; Michalsky and Stepp, 1984], more suitable – on 

the other hand– to be applied to ill-structured domains (see [Ke and Ali, 1991] 

for an overview and extensive bibliography on inductive learning methods). 

When an expert rationalizes about his domain, he organizes his observations 

and groups them into categories using some similarity criterion. At a more 



advanced cognitive level, he groups these categories in order to create 

general criteria which will enable him (or others) to discriminate among objects 

(or events) and make decisions. The advantages of organizing information into 

categories are: categories diminish the complexity of the domain by simplifying 

the problem; they relate observations; they act as the first step in the 

identification process and make it possible to predict the characteristics of a 

new observation.  

Moreover, from these categories or concepts ( situations) discovered, a set of 

inference rules (KB) can be generated, that lead to identification and diagnosis 

of the current operating situation of the plant.  

In our case, the knowledge acquisition process have been done using LINNEO 

+ (a semi-automated unsupervised classification tool, that it is described in 

5.4.1.1) [Béjar, 1995; Béjar et al. , 1994; Béjar and Cortés 1992]. The main 

objective of LINNEO + is to build classifications for ill-structured domains; 

where much imprecise information exists, it is assumed that observations vary 

in their degree of membership with regard to each class. Bearing all this in 

mind, LINNEO + uses the conventional concept of distance as a fuzzy similarity 

value.  

The results of the classification process using LINNEO + provides intensive 

and extensive description of the generated classes, situations in this domain, 

and a fuzzy membership matrix that relates observations (data) to generated 



classes. At this point, inference rules can be generated, both manually or using 

GAR [Riaño, 1994]. Bearing in mind the prototype of a class and the 

superclassification structure, inference rules that lead the diagnosis process in 

the target system, can be derived. These rules identify to which class or set of 

situations a given observation (data) belongs.  

Identifying rules characterize the values that descriptors of new data must 

show for being member of a class. For instance a rule as the following could be 

generated:  

(if (COD-EXIT HIGH  

SVI HIGH  

SS-RECIRCULATION LOW  

SSV-RECIRCULATION LOW)  

VERY-POSSIBLE  

(INFER CLASS-3A))  

Other discriminating rules must be provided to discriminate to which situation– 

within a class– belongs a given observation. For this task is taken into account 

the fuzzy membership matrix . For example:  

(if (CLASS-3A  



SLUDGE OLD  

FILAMENTOUS NORMAL)  

ALMOST-SURE  

(INFER BULKING-NON-FILAMENTOUS))  

This process is semi-automatic, because it requires the experts' final validation. 

All these rules are analyzed using subsumption detection, synonymy analysis, 

etc. and, afterwards, they are organized in a hierarchical way to guide the 

diagnosis process. The results are made known to the experts who can accept 

and confirm them, or have the chance to go back to the classification process. 

When all these actions are over, rules can be validated using new 

observations not previously in the classification sample. As soon as rules are 

accepted by the experts, they can be incorporated into one of the KBS of the 

distributed architecture for a later Rule-based Reasoning method (see figure 

5.5). These rules capture the subjective domain knowledge of the experts in 

their daily work at the WWTP. The coordination among the various KBS allows 

the diagnosis process that leads to identify the generic working situation(s) of 

the plant.  

Fig. 5.5. Expert general knowledge  
If there exists some disagreement among the experts opinions or points of view, it is possible to 
use EGAC [Torra and Cortés, 1995], to try to convey a consensus among their judgements.  

5.2.2.2 Distributed agents' knowledge  



All knowledge and information involved in the operation of a WWTP is spatially 

distributed among different operational units located at different sites of the 

WWTP. Thus, taking into account the two major subsystems of an activated 

sludge WWTP, we can describe each one of the Knowledge-Based Systems 

(agents) in which the knowledge has been distributed achieving certain level of 

modularity and independence. The agents forming the Water line subsystem 

are (as shown in figure 5.6):  

Screen– KBS: Agent supervising physical units that remove gross pollutants 

from the inflow of the WWTP. It is the first physical unit of the WWTP, and is 

responsible to remove the big solids present in the inflow water, such as 

plastics, branches, bottles, packs, etc. It takes care of the cleaning automatic 

grids, that usually scan the water at fixed intervals of time. At the same time, it 

must control the transportation ribbons who move the captured solids to a 

container. It is one of the analytical sample point in the WWTP (I-COD, I-BOD 5 

, I-SS, I-VSS, I-pH, etc .)  

Grit removal– KBS: Agent supervising physical units that remove grit to 

prevent abrasion and wear of mechanical equipment. At the same time, with a 

suplementary providing of air, the grease is sent to the water surface, which 

are guided to a static grease separator and discharged to another container. It 

controls the correct operation of the mechanical objects involved. The on-line 

value of the inflow-water is measured in this unit through a Parshall channel, 



and some off-line qualitative information (floating accumulation, etc .) is 

acquired.  

Fig. 5.6. Water line KBS agents  
Primary settler– KBS: Agent supervising physical units with a long residence time that remove 
suspended particulates heavier than water. These solids are purged at the bottom of the primary 
settlers and sent to the sludge line for a later treatment. It must control the rotatory bridges of the 
primary settlers that pushes the sludge to go out, and the waste flow of the primary settlers. Also, 
some off-line qualitative information (presence of bubbles, etc .) is acquired within it.  

Biological reactors– KBS: Agent supervising biological units that, using aerobic 

microorganisms (biomass or activated sludge), convert soluble BOD to new 

microorganisms. This biological units are the key of the activated sludge 

WWTP operation. These units acquire the DO on-line measure and contain 

another off-line analytical sample point (SRT, SVI, B-SS, B-VSS, etc .), and 

some off-line qualitative information (microscopical information, water odour, 

water colour, etc .).  

Secondary settler– KBS: Agent supervising physical units with a long 

residence time that separate biomass from the liquid phase. A correct 

separation process is crucial for the WWTP operation, if there is not a tertiary 

treatment. It must control the operation of the rotatory bridges of the secondary 

settlers (clarifiers). Another analytical sample point in these units acquire 

off-line analytical information (O-SS, O-VSS, O-COD, O-BOD 5 , etc .), and 

some off-line qualitative information (presence of bubbles, etc .).  



Chlorination– KBS: Agent supervising chemical units that allow, if necessary, 

to desinfectate the outflow prior to discharge. Nowadays, it is not advised to 

normally use it, but it can be used to remove the pathogen microorganisms 

from the effluent water. The chlorination channel must be periodically cleaned 

from sludge that escapes from the secondary settlers.  

Recirculation–KBS: Agent supervising pumping systems to keep a certain level 

of biomass in the biological reactors. In this unit it is measured some analytical 

off-line information (R-SS, R-VSS). The pumping system uses to be an 

Archimedes' screw.  

The agents forming the Sludge line subsystem are (as shown in figure 5.7):  

Waste– KBS: Agent supervising pumping systems that determine the sludge 

age (Mean Cell Residence Time, MCRT).  

Thickment– KBS: Agent supervising physical units to increase the sludge 

concentration.  

Anaerobic treatment–KBS: Agent supervising biological units that, using 

anaerobic microorganisms, convert biomass in methane (biogas). Its goal is to 

decrease the percentage of BOD about 80%.  

Drying– KBS: Agent supervising physical units that dry the sludge prior to 

discharge.  



Fig. 5.7. Sludge line KBS agents  
5.2.3 Experiential Knowledge  

We propose to use Case-based Reasoning (CBR) to model the experiential 

specific knowledge about a concrete WWTP. CBR is a flexible paradigm that 

supports the implementation of a dynamic learning environment. Within the 

frame of a Case-based reasoning agent, we can model the actual operating 

situations of a WWTP through cases, and organize all the cases into the case 

library.  

CBR systems have been used in a broad range of domains to capture and 

organize past experience and to learn how to solve new situations from 

previous past solutions. CBR systems have been applied to planning (CHEF 

[Hammond, 1989]), design (JULIA [Hinrichs, 1992]), classification (PROTOS 

[Bareiss, 1989]), diagnosis (CASEY [Koton, 1989]), understanding and 

analysis (AQUA [Ram, 1993; Ram and Hunter, 1992]), interpretation (HYPO 

[Ashley, 1990]), and explanation (SWALE [Kass and Leake, 1988]). For 

Case-based Reasoning in continuous situations, we have only knowledge 

about the system NETTRAC [Brandau et al., 1991] as a Case-based system 

for planning and execution monitoring in traffic management in public 

telephone networks. In the WWTP domain, Case-based Reasoning has been 

used for designing most suitable WWTP operations for a set of determined 

input contaminants [Krovvidy and Wee, 1993].  



Case-Based Reasoning [Aamodt and Plaza, 1994; Kolodner, 1993; Riesbeck 

and Schank, 1989] derives from a view of understanding problem solving as 

an explanation process. The foundations or origins of Case-based Reasoning 

rely on the early work done by Schank and Abelson [Schank and Abelson, 

1977] where they proposed that our general knowledge about situations is 

recorded as scripts . The cognitive model behind the Case-based reasoning is 

based on the theory of Dynamic Memory [Schank, 1982] that introduces 

indexing as the key to use experience in understanding. The main premise 

was that remembering, understanding, experiencing, and learning cannot be 

separated from each other, and that the human memory is dynamic, and 

change as a result of its experiences.  

Fig. 5.8. The Case-based Reasoning paradigm  
In our approach, the knowledge about the practical problem solving – wastewater treatment plants 
operation– in the domain is represented by means of cases or experiences that include the 
description of situations , which are organized in the case library. This case library contains 
information about previously detected situations and the solutions given to them as well as a 
measure of their efficiency (specific experiential knowledge).  

CBR systems improve their performance becoming more efficient by 

remembering old solutions given to similar problems and adapting them to fit a 

new problem rather than having to solve it from scratch . This, in fact, 

augments the ideas about the components of expertise [Steels, 1990] using 

the solved cases as an episodic memory: the memorization of problem-solved 

episodes allows methods to be integrated since they require to access the past 

experience to improve the system performance. Also, Case-based reasoners 



become more competent in their evolution over time, so that they can derive 

better solutions when faced against less experienced situations, preventing 

them to repeat the same mistakes in the future (learning process).  

The reasoning and learning processes in a Case-based system are performed 

by the following steps (see figure 5.8):  

Retrieving the most similar case(s) or previous working situations to the new 

case, by means of a recalling algorithm based on partial-matching and some 

heuristic functions or distances, possibly domain dependent, to select the best 

case(s).  

Adapting or reusing the information and knowledge in that case to solve the 

new case, i.e. the current working situation of the plant. The selected best case 

has to be adapted when it does not match perfectly the new case. Adapting 

methods can be used to insert something, or delete something, or make a 

substitution in the selected case to solve the new one. In systems as CABINS 

[Miyashita and Sycara, 1995] there are included strategies as knowledge 

filtering to validate the effectiveness of selected adaptation actions, and to 

give-up further adaptation if the likelihood of success is low.  

Evaluation of the proposed solution. A Case-based reasoner must require 

some feedback to know what is going right and what is going wrong. Usually, it 

is performed by simulation or by asking to a human oracle . In the future, the 



evaluation will be done through automatic checking of the effectiveness of past 

solved cases.  

Learning the parts of this experience likely to be useful for future problem 

solving. The agent can learn both from successful solutions and from failed 

ones (repair). This goal can be achieved either by updating the Case Library 

accordingly: adding cases (learning), deleting cases (forgetting), modifying 

cases, changing indexes to cases, global reorganization of the case library, 

etc . or changing the distance measure [Wess and Globig, 1994].  

As in other systems, like SOAR [Newell, 1990], there are two kinds of 

impasses: either the situation is unknown, i.e. there is no memory about this 

situation or there is not a successful solution to this situation, or there are 

several ways (solutions) to proceed i.e. there are several methods that may be 

applicable to a situation with the same degree of confidence. For these 

impasse situations, DAI-DEPUR architecture can use the expert general 

knowledge coded into the system or can generate an alarm that has to be 

solved by the operator. Other approaches as NOOS [Arcos and Plaza, 1995] 

generate a reflexive task whose goal is to solve that impasse.  

5.2.3.1 Missing information  

Case-based reasoning is also useful when knowledge is incomplete or 

uncertain, even using an attribute-value representation. A Case-based 



reasoner can make assumptions to fill-in incomplete or missing knowledge, 

based on its experience and can continue reasoning from there.  

Our Case-based reasoner accepts that a possible value for an attribute is an 

unknown or nil value. A nil value could be a missing or unknown or do not care 

(nought) value. Many times, the values coming from some sensors in the plant 

or provided to the system by the operator of a plant are wrong and sometimes, 

some values are just missing, and the system has to be performant enough to 

maintain the operation.  

Missing information is the first main problem within discrimination trees or 

networks organization. When a new case is incomplete, there is no guidance 

about how to continue searching when a test, in the discrimination tree, cannot 

be answered. There are four options to solve this problem: stop the search, 

continue searching on all possible childs (paths) of the node, start the retrieval 

in another discrimination tree organized with a different order of the tests on 

the attribute's values, i.e. redundant discrimination trees, and choosing the 

most plausible branch.  

All the options are problematic [Porter et al. , 1990]: stopping the search is an 

unsatisfying choice that can cause an impasse to the Case-based reasoner; 

searching on all possible paths is an expensive alternative that it would worsen 

the retrieval time; using redundant discrimination trees causes an overhead in 

time and space, although it has been used in MEDIATOR [Kolodner and 



Simpson, 1989], CYRUS [Kolodner, 1985] and CASEY [Koton, 1989]; the most 

promising branch is perhaps the most satisfying solution, although it requires 

additional computation to look ahead in the tree or the addition of some 

knowledge that can be used to make the choice without looking ahead.  

In our Case-based reasoner, we have implemented a technique to choose the 

most promising branch. The method tries to get benefit from the dynamic 

learning environment. There is a frequency value associated to each arc of a 

node of the discrimination tree, which is the data structure that implements the 

Case Library (as explained in 5.2.3.4). This frequency value measures the 

number of times that this arc has been traversed when retrieving cases with 

the same values on the previous attributes of the tree, i.e. the same 

partial-matching cases. In fact, it is a weighted measure of the traversals of the 

arc depending on the type of exploration. So, this is a dynamic measure that is 

being adapted as the case library evolves over time. When there is a missing 

value for an attribute, then the branch (arc) with higher frequency value is 

selected. In fact, as is explained in 5.4.2.2, the two arcs with highest 

frequencies are used.  

5.2.3.2 The table of attributes  

An important component for the system's behaviour is the construction of the 

table of attributes. The operating situations are described by means of the 

attributes of this table. The situations are described with 11 attributes selected 



among the 38 that were defined by the experts to describe the domain. All 

these features are stored in an attribute's table as showed in table 5.1.  

All the quantitative or lineal (ordered) attributes were discretized by the experts 

into several modalities, commonly, between two and four modalities, when 

they were defined to the system. The qualitative attributes (not ordered) are 

already differentiated into several categories at the definition stage. An 

outstanding feature of the system is that the definition of the table of attributes 

is independent from the general Case-based reasoner operation. Each 

attribute has a weight measure (between 0 and 10), also defined by the 

experts, that shows the attribute's relevance in the characterization of a 

situation.  

ATTRIBUTE INTERPRETATION  WEIGHT MODALITIES 

I-pH  pH at the input of the plant  5  Acid, Neutral, 
Basic  

I-SS  Suspended solids at the input  6  Low, Normal, 
High  

I-BOD  Biodegradable organic matter at the input  6  Low, Normal, 
High  

I-COD  Chemical oxidable organic matter at the input  8  Low, Normal, 
High  

I-Zn  Concentration of zinc at the input  5  Normal, High 

Q  Inflow wastewater  7  Low, Normal, 
High  

D-SS  Suspended solids at the end of the primary treatment 4  Low, Normal, 
High  

D-COD  Chemical oxidable organic matter at the end of the 
primary treatment  

4  Low, Normal, 
High  

O-SS  Suspended solids at the output  9  Low, Normal, 



High  
O-COD  Chemical oxidable organic matter at the output  9  Low, Normal, 

High  
O-pH  pH at the output of the plant  5  Acid, Neutral, 

Basic  
Table 5.1. The table of the attributes defined in the Case-based agent  

5.2.3.3 Cases  

The cases stored in the case library are real WWTP operating experiences, 

which have been captured and learned in such a way that they can be reused 

to solve future causalities. A case does incorporate a set of features such as 

an identifier of the case ; the description of the situation ; the possible 

diagnostic of the situation; the possible action plan ; the derivation of the case 

(from where the case has been derived/adapted); the solution result , 

information indicating whether the proposed case solution has been a 

successful one or not; an utility measure of the case in the system; the 

distance value, it is a measure of similarity of the case when it was retrieved 

last time from the case library. An example of a case representation is:  

( :identifier CASE-18  

:situation-description ( (Q 35,198 m 3 /day)  

(I-COD 289 mg/L)  

. . . )  

:diagnostics NORMAL-SITUATION  



:action-plan ( (1 Maintain-the-numerical-control-algorithm)  

(2 Adjust-Dissolved Oxygen (DO)-value)  

. . . )  

:case-derivation INITIAL-CASE / CASE-13  

:solution-result SUCCESS /FAILURE  

:utility-measure 0.7  

:distance-to-case 0.3782 )  

5.2.3.4 The case library  

The case library is organized in a hierarchical way improving the time access 

to the stored cases in the retrieval phase. It is implemented as a prioritized 

discrimination tree [Kolodner, 1993; Charniak et al., 1987]. Each non-terminal 

node of the tree is a test on the value of the attributes. The priority ordering of 

the attributes has been obtained from the experts' opinion and has also been 

validated against an inductive machine learning algorithm (ID3 [Quinlan, 1986]) 

with very slight differences in the ordering [Segarra, 1995]. The prioritized 

discriminant list of attributes is:  

(I-Zn O-SS O-COD I-SS I-COD I-BOD Q D-SS D-COD I-pH O-pH)  
Obviously, the retrieval time of cases depends on the power of the discriminating order of the 
attributes stated by the experts. If the discriminating order is good, then it will be only needed to 
make a few tests on the values of the attributes. But if the ordering is bad, then too much tests will 



be needed to retrieve the cases.  

Each branch of a node (attribute) is a possible qualitative value for the attribute. 

The terminal nodes (leaves of the tree) have the recorded cases that suit all 

values in the branches, from the root to the leaves. An example of a Case 

Library generated with the system is depicted in figure 5.9.  

Fig. 5.9. A Case Library example  
5.3 Tasks  

The two main tasks involved in the knowledge/expertise level are the diagnosis 

task which discovers what is happening in the WWTP operation, and the 

adaptation task which enables DAI-DEPUR to not degrade its performance 

over time.  

5.3.1 Diagnosis  

Diagnosis is the task responsible to identify the current working situation of the 

WWTP and the possible causes that lead the WWTP to that abnormal situation, 

if it is the case. The task is achieved from the evaluated data gathered at the 

previous level.  

Fig. 5.10. Diagnosis process in a knowledge-based system  
The diagnosis process is made through two steps (as it is depicted in figure 5.10). At first step, it is 
intended to determine the working situation of the WWTP ( i.e., the problem identification), and if 
the diagnosed situation is abnormal , there is a second stage which is intended to discover the 
possible causes that originated that anomalous situation ( i.e., the cause identification).  

The diagnosis task is implemented in a complementary twofold way: through a 

Rule-based reasoning method, that makes use of the distributed expert 



knowledge encoded into DAI-DEPUR in form of rules, and by means of a 

Case-based reasoning method, that retrieves the most similar experienced 

situation on that WWTP (case) that has been recorded in the Case Library. 

This multi-paradigm integration tries to get benefit from both methods 

advantages and to cope with a possible impasse generated from one 

approach, when it is not able to diagnose anything at all. Another impasse can 

be originated when the two diagnostics are contradictory, which may be solved 

at the situations level, by the WWTP operator's supervision.  

5.3.2 Adaptation  

The adaptation task has the primary goal of providing DAI-DEPUR with a 

dynamic adaptive behaviour. In order to solve the brittleness of most AI 

systems when faced against real-world domains, DAI-DEPUR incorporates the 

adaptation task which is performed by means of the acquisition of new expert 

knowledge from (new) experts/sources ( expert knowledge acquisition 

method), through the acquisition of new observed experiential knowledge 

( learning from observation method), by means of learning from new 

experiences ( learning from experience method), and finally, through the Case 

Library updating ( introspection method).  

This adaptation capability enables DAI-DEPUR to be reused to supervise 

different WWTPs with the same or slightly different technology, so that the 



adaptation methods will allow it to adapt to the new characteristics of the new 

WWTPs under supervision.  

5.4 Methods  

The methods that perform the diagnosis and adaptation tasks will be detailed 

in the next sections: expert knowledge acquisition and Rule-based Reasoning 

methods work on the expert knowledge, whereas learning from observation , 

Case-based reasoning , learning from experience and introspection methods 

work on the experiential knowledge.  

5.4.1 Expert Knowledge Methods  

5.4.1.1 Expert Knowledge Acquisition  

The Expert Knowledge Acquisition module is based in recent developments in 

knowledge acquisition. This module uses the software µ , which is the merging 

of LINNEO + ([Béjar, 1995; Béjar et al. , 1994; Béjar and Cortés, 1992] and 

GAR [Riaño, 1994] for automatic generation of inference rules as the result of 

a previous classification process of attributes and observations, defined by 

experts ([Sànchez et al. , 1995e; Serra, 1993]).  

Fig. 5.11. LINNEO + methodology  
LINNEO + is a knowledge acquisition tool that incrementally works with an unsupervised learning 
strategy which accepts a stream of observations and discovers a classification scheme on the data 
stream. As a control strategy, it retains only the best hypotheses which are consistent with the 
observation given a similarity criterion. Part of the LINNEO + methodology (see figure 5.11) could 
be considered as conceptual clustering with two critically important tasks:  



Clustering, which determines useful subsets of data using a fuzzy set 

approach, and characterization, which determines a concept for each 

extensionally defined set discovered by clustering.  

The second task requires external help ( validation from experts) to accept or 

reject the resulting clusters. Other modules try to exploit observational 

knowledge from the data set, or take advantage of the experts' knowledge if 

available. This knowledge is called Domain Theory (DT), and its use to 

semantically bias the process is fully explained in [Béjar et al. , 1994].  

The main objective of LINNEO + is to build-up classifications for ill-structured 

domains; where much imprecise information exists, it is assumed that 

observations vary in their membership degree with regard to each possible 

class in the domain. Bearing all this in mind, the use of the conventional 

concept of distance as the complementary function of a fuzzy similarity is used. 

Objects are represented as vectors of length n , n being the number of 

descriptors. Position k of object O i shows the symbolic or numerical value of 

descriptor (O ik ). The distance which will be used for determining the similarity 

between two objects, O i and O j , is the generalized Hamming distance:  

n  

dist(O i , O j ) = diff(O ik , O jk )  

k=1  



where  
diff (O ik , O jk ) = 1 if O ik O jk  

diff (O ik , O jk ) = 0 if O ik = O jk  

when k is a qualitative attribute, and  
diff (O ik , O jk ) = |O ik – O jk |  

when k is a quantitative attribute.  

The centre of a class is obtained by calculating the mean value for each 

quantitative attribute of every object. For qualitative attributes, the centre 

includes each of its modalities with its corresponding occurrence frequency. 

Note that the centre of a class can be considered as the prototype of the 

objects contained in the class. The distance between an object and a class 

prototype can be taken as the complementary function of the degree of fuzzy 

membership of the object O i to the class C j :  

membership(O i , C j ) = 1 – dist(O i , centre(C j ))  
Note that the distance is always computed between a new object to be inserted within the objects' 
space and a prototype of a class (excepting the time when a class is formed of only one object), 
which has a frequency distribution of the values of the qualitative attributes and the mean value of 
the values for the quantitative attributes. The distance is computed as:  

1 – relative frequency of qualit. value, for the qualitative attribute's value  

|mean prototype value – value|, for the quantitative attribute's value  

Therefore, there is not a binary (0/1) measure as seems to be by the formalism above proposed. If 
a value for the distance is established as the limit for an object to belong to a class (a limit which 
is called radius ), then a classification rule (expressing the similarity criterion) is found:  

IF dist(centre(C i ), O j ) < radius(C i )  

THEN O j can belong to C i  



ELSE O j cannot belong to C i  

The radius could be determined empirically in a random way if desired, but 

LINNEO + offers a previous data analysis facility. This is a scanning algorithm 

that starting from an initial radius, given a determined radius step, and ending 

to a top radius (all three values specified by the expert), it analyzes the number 

of objects that would belong in the class that has its centre at each object of 

the domain and within the concrete radius. Then, it computes the mean value 

of this number for all the objects of the domain, with the same radius. All this 

process is repeated with each one of the possible values of the radius. So, 

after this analysis, it is possible to find a value for the radius, so that, when 

there is not a continuous increase in the mean number of objects, it is certainly 

possible that the "optimal radius" will be in that interval.  

In this context, the radius (R), which in this version of LINNEO + is always 

constant and the same for every class, can be interpreted as the degree of 

selectivity of the classification. LINNEO + is a classification methodology which 

uses analytical and empirical techniques for knowledge acquisition.  

This methodology works by defining a space of n dimensions, in which n is the 

number of attributes. Within this space, each class is specified by a centre and 

a radius. All those objects which, occurring within that space, are at a given 

distance from the centre that is less than the radius, form part of that class. At 

the beginning of the process, the classes are still undefined, thus the first 



object is taken and placed within the space to form a class. Its centre is the 

point at which the object is situated, according to the value of the attributes 

defining it. Then, the second object is taken, and it too is placed within the 

space. If it is in the first class, its centre is re-calculated using the mean of the 

two objects. Otherwise, a new class is formed. The centre of the classes will 

continue to change throughout the process, depending on the objects which 

are included. It may happen that an object remains outside the class because 

the centre of that class is displaced. Finally, a set of classes with a number of 

objects is obtained. The class is specified by the final centre and radius of the 

class. A more detailed description of how LINNEO + works, together with a 

description of its potential, is given in [Béjar, 1995; Béjar et al. , 1994].  

GAR (Automatic Rule Generator) is used to generate a set of classification 

rules from LINNEO + 's output (a representation of the concept structure of the 

domain in terms of classes). GAR can generate both conjunctive and 

disjunctive rules, but after having analyzed and compared several kinds of 

classification rules, one arrives to the following conclusions:  

The effectiveness of rule generation (defined as the specificity of a rule 

normalized in time) for conjunctive rules is the highest one.  

When delivered to experts, conjunctive rules are qualified as more 

understandable than other sort of rules.  



When applying conjunctive rules, the reasoning process is faster.  

Conjunctive rules structure knowledge in a more modular way.  

Therefore, these facts drive the system to output conjunctive rules. The 

algorithm for conjunctive rule generation could be summarized in this way:  

1. Select the best term  

2. Add such term to the "up to now" conjunctive premise  

3. Reduce the set of possible terms  

4. Repeat steps 1 to 3 while the rule is not completed  

For instance, a rule generated by GAR is:  

((> 323.0 D-COD)  

(< 7.7 I-pH)  

(< 93.0 GENERAL-CLEANSING-PERCENTAGE-BOD)  

(> 300 I-BOD 5 ))  

– >  

Class-12)  



which describes a high in-plant-overloading situation plus a poor 

sedimentation process in the primary settler. Although some of the automated 

rules generated by GAR, can be easily interpreted by the experts, they feel 

that some of those rules are very specific, in the sense that they can only be 

applied in few cases. An abstraction task and other strategies are now being 

developed in the automatic rule generator.  

5.4.1.2 Rule-based Reasoning  

Rule-based Reasoning is one of the methods that allows DAI-DEPUR to 

diagnose the current working situation of the WWTP, from local diagnosis 

performed by the different Knowledge-Based Systems. Rule-based reasoning 

is carried out by the inference engine provided by the G2 shell. This shell 

allows the basic kind of knowledge inference: backward and forward chaining.  

The backward chaining is used to find a value to a variable, that cannot be give 

by on-line sensors, by simulation or by some formula. Also, it can be used to 

infer a boolean/fuzzy fact. In backward chaining, the reasoning is guided from 

the conclusion(s) –that is(are) wanted to deduce– to the premise data. Two 

strategies can be defined to implement the backward chaining: depth-first 

backward chaining and breadth-first backward chaining . The first one selects 

the new invoked rule as the next rule in depth from the possible applying rules 

tree generated. The second one selects the new invoked rule as the next rule 

in breadth from the possible applying rules tree.  



Forward chaining is guided from the premise data to the conclusions of the 

system, by means of deducing some new facts from previous ones. It is 

usually applied when there are no possible hypotheses to validate, and it is 

desired to deduce new knowledge as much as possible.  

There are other techniques that can be used in the G2 shell to control the 

reasoning process ( meta-reasoning) such as organizing the rules in 

workspaces (modules), focusing on rules, invoking rules, prioritizing rules, etc .; 

and to handle real-time facilities such as scanning rules, data seeking, etc.; to 

make easier the design process of the KBS such as applying generic rules, 

etc .  

Fig. 5.12. A set of diagnosis rules  
From the point of view of WWTP operators, the diagnostic inference rules can be grouped in: 
diagnosis rules , fault detection rules and prevention rules, although from a logical point of view 
of a knowledge engineer, all of them are diagnosis rules that allow to identify certain operating 
states of the WWTP, through the local distributed knowledge rules, and the combination (global 
diagnosis) rules that will be described in chapter 6. Next, we will detail some local diagnosis rules 
(although the combination rules are also detailed for a better understanding of the diagnosis 
reasoning) by means of some examples of DAI-DEPUR performance.  

Diagnosis rules  

In figure 5.12, a set of rules that conclude a particular situation is shown as 

example of how Rule-based Reasoning carries out diagnosis. These rules 

allow to infer an organic overloading from in-plant sidestreams when it occurs. 

In the different Knowledge-Based Systems of DAI-DEPUR, this situation is 

called sidestreams .  



In this case, not only classic diagnosis is done but also failure detection 

because, as COD is measured only at the input of the plant, organic loadings 

inside the plant (after the input sampling point and before the biological 

process) are not known. There are not flow sensors nor analyses done in 

these points to detect the situation. However, if special care were taken, 

estimation of COD loading would be possible.  

Detection of failures  

Sometimes, during the Rule-based Reasoning, the diagnosis rules do not 

establish the cause of a concrete problem. Under these circumstances, the 

failure detection rules are performed. These rules include the heuristic 

knowledge corresponding to the concrete situation produced when a WWTP 

element is malfunctioning. Rules for the detection of failures in the WWTP 

sensors, pipes and weirs have been defined into the different KBS. Figure 5.13 

(a) and (b) shows two rules as examples of possible disturbances, as well as 

their solving actions.  

In the first example, a failure in the pH sensor is observed taking advantage of 

the feature that the fungi only grow in acidic conditions, and of the fact that the 

pH-status is normal (SCREEN-KBS-RULE-005). This will allow to conclude, in 

the supervision task, that if fungi are present 

(BIOLOGICAL-REACTORS-KBS-RULE-053), and the measured pH values is 



not low, there must be a fault with the sensing element 

(SUPERVISORY-KBS-RULE-017).  

In the second case, the rules will allow the WWTP operator, in the supervision 

task, to know whether the wasting flow pipe is plugged. For Manresa's WWTP, 

due to a design mistake, this situation is a rather common failure. If the 

biomass in the reactor is greater than the normal value 

(BIOLOGICAL-REACTORS-KBS-RULE-025), and COD removal efficiency is 

normal or high, then the cause must be a bad wasting schedule. But as the 

wasting flow is read on-line in the database, and the bad wasting situation is 

rejected (WASTE-KBS-RULE-001), then the cause inferred is a plugged pipe 

(SUPERVISORY-KBS-RULE-036).  

Fig. 5.13 (a) and (b). Rules for fault detection  
Prevention rules  

One of the most valuable characteristics of an expert in WWTP relies on 

his/her ability to predict possible future abnormal situations when a specific 

current situation is occurring in the WWTP. Main causes – but not all– for many 

WWTPs upsets are known. However, it can take a long time (days or even 

weeks) from the revealing of the malfunction since the causes are present for 

the first time. So, it can happens that nobody detects that the plant is going to 

be in a problematic abnormal situation .  



Bulking is a typical WWTP abnormal situation (see the chapter 6) where all the 

above mentioned is specially true. There are different causes that can lead to 

bulking situation. Most of these causes do not lead to this state immediately, 

but the effect appears with a middle-long term delay. Possible causes leading 

to the bulking situation are low pH values at the inflow, extreme low or high 

F/M (Food/Microorganisms) ratio, or extreme low or high Dissolved Oxygen 

(DO). Moreover, the appearance of these values does not lead directly to a 

bulking situation, as they are not a sufficient condition, but it is necessary to 

watch their evolution in order to inform that the conditions for bulking are being 

reached.  

The set of prevention rules try to avoid these situations. Their aim is to detect 

and to prevent possible trouble. They scan the process looking for any 

situation that could lead to WWTP malfunction. When a possible upset is 

detected, DAI-DEPUR will try to conclude, in the supervision task, the variable 

that must be changed and what must be corrected to avoid it.  

Two examples are presented in figure 5.14 (a) and (b). The first example 

describes that a high variability of pH values at the inflow can cause bulking 

(SCREEN-KBS-RULE-010). The Input-pH-variability is set according to 

experimental (historical) data (SUPERVISORY-KBS-RULE-042).  

Usually, there are two channels opened at the plant entry, and a third one is 

closed. If there is an inflow increase (GRIT-REMOVAL-KBS-RULE-003), the 



third channel probably needs to be opened to avoid an overflow, or some other 

actions need to be taken to cope with a storm 

(SUPERVISORY-KBS-RULE-049). In the Manresa's WWTP case, the gate 

must be opened manually because it is not automated. Also, it must be taken 

care to avoid the plugging of the input screens, as the inflow may carry several 

objects and material (dead animals, vegetables, branches, plastic wastes, 

etc .).  

Fig. 5.14 (a) and (b). Prevention rules  
5.4.2 Experiential Knowledge Methods  

5.4.2.1 Learning from Observation  

It is important to remark that a Case-based reasoner starts with a 

representative set of cases. They are like the training set of other supervised 

machine learning methods. To this end, the initial Case Library was selected 

with some situations obtained by LINNEO + classification [Béjar, 1995], from a 

real data stream of 527 data (days) corresponding to the period 1990-1991. 

These data are available by anonymous ftp from UCI machine learning 

repository of data bases (ftp.ics.uci.edu). Each data is described by means of 

the daily mean of 38 variables. That study [Sànchez et al. , 1995e; De Gràcia, 

1993] provided DAI-DEPUR with a classification of the real specific working 

situations of the concrete plant. It is interesting to notice that with these data 

LINNEO + discovered that there exists four subtypes of normal situations, not 

considered before by the experts, but important to describe the behaviour of 



the process. The experts accepted them and this experiment also revealed 

that about 20% of the variables provided by the plant's operators were not 

relevant for the characterization of the situations . It is interesting to compare 

these situations with those defined a priori in the literature and by the experts, 

and that are shown in chapter 6 and 8. The new situations we discovered 

were:  

Toxic substances loading Normal (4)  

Primary-treatment problems Solid's shock  

Plant problems Storm  

Secondary-treatment problems  

From these new classes, some objects (cases) belonging to each class were 

selected to be included in the initial Case Library.  

5.4.2.2 Case-based Reasoning  

The Case-based Reasoning method makes use of the experiential specific 

knowledge stored in the Case Library (both from observed and experienced 

cases) to diagnose the current working situation of the WWTP (see figure 

5.15), by means of retrieving the most similar case to the current one. Next, 

the different steps involved in the Case-based reasoning are detailed: case 

retrieval, case adaptation and evaluation of proposed solutions.  



Case retrieval  

The task of retrieving cases in the case library is slightly more difficult than 

typical retrieval in databases. In database systems, the recalling algorithms 

use an exactly matching method, whereas in a Case Library retrieval, a 

partial-matching strategy should be used.  

The retrieving process of a case (or a set of cases) from the system's memory 

(the Case Library), usually consists of two substeps:  

Searching the most similar cases to the new case: the goal of this stage is 

recalling the most promising cases based on using some direct or derived 

features of the new case as indexes into the Case Library.  

Selecting the best case(s): the best case(s) among those ones collected in the 

previous step are selected. Commonly, this selection is made by means of a 

case ranking process through a similarity or distance function. The best 

retrieved case is the closest one (most similar) to the new case.  

Next, the basic searching algorithm and the distance function used in our 

system are detailed.  

Fig. 5.15. Experiential specific knowledge  
a) Basic searching algorithm  

Indexes used in the search process are chosen from the prioritized 

discriminant list of attributes defined by the experts. Although there exists, in 



the literature, some approaches to automatically obtain these lists of attributes 

based on the results of a clustering system [Belanche and Cortés, 1991; Baim, 

1988], in this case we prefer the expert's opinions. The list must be usefully 

predictive and discriminant. Our indexing method is based on a predictive 

discriminating checklist.  

The basic searching algorithm can be summarized as a recursive function as 

follows:  

The initial call to search-cases is: search-cases (*new-case* 

root(*case-library*) 2).  

The searching algorithm has three options at each node of the tree:  

If the node is a null node, it means that the case library is empty, so no case is 

retrieved.  

If the node is a terminal node , then the algorithm returns the list of cases of 

that leaf.  

If the node is a non-terminal node, then the two best childs of the node are 

computed. If the new case has a value for the attribute of the node, then the 

best two childs are the most similar values (one-dimensional matching) for the 

attribute, but if the new case has a missing value for the attribute, then the best 

childs are the two arcs with higher frequency values.  



The two kinds of searching the case library are included in order to overcome a 

second main problem with discrimination trees/networks: a wrong choice at a 

high node as an effect of the discretization process of the attribute's values, 

etc., or if the hierarchy of nodes does not correspond to the importance of the 

features, as for example a bad discrimination order of the attributes, etc. can 

provoke that some potentially good cases will not be reached in the retrieval 

process. To cope with these possible troubles, additional partial-matching 

flexibility is provided in the searching algorithm.  

Fig. 5.16. Paths explored by the searching algorithm  
So, the exploration-type 2 means that the two best childs of the current node will be explored. The 
best child is explored again with exploration-type 2, and the second best child is explored with 
exploration-type 1, if possible. The exploration-type 1 means that only one path (the best one) will 
be explored.  

Thus, the cases retrieved are all the cases stored in the memory that differ at 

most in one attribute's value from the new case (see figure 5.16). If we call n to 

the maximum number of discriminant attributes, then at most n paths from the 

root are explored, and at most n 2 nodes are explored. So, the searching time 

(T( n)) is upper bounded by a function of the number of discriminant attributes 

(usually small) and does not depend on the number of cases stored in the case 

library (usually bigger as the system grows): T( n ) O( n 2 ).  

b) Case selection: a ranking distance function  

Selecting the best similar case(s) or previous working situations, it is usually 

performed in most Case-based reasoners by means of some evaluation 



heuristic functions or distances, possibly domain dependent. The evaluation 

function usually combines all the partial-matchings through a dimension or 

attribute of the cases, into an aggregate or full-dimensional partial-matching 

between the searched cases and the new case. Commonly, each attribute or 

dimension of a case has a determined importance value (weight), that is 

incorporated in the evaluation function. This weight could be static or dynamic 

depending on the Case-based reasoner purposes. Also, the evaluation 

function computes an absolute match score (a numeric value), although a 

relative match score between the set of retrieved cases and the new case can 

also be computed.  

Most Case-based reasoners such as REMIND [Cognitive, 1992], MEDIATOR 

[Kolodner and Simpson, 1989], PERSUADER [Sycara, 1987], etc . use a 

generalized weighted distance function such as,  

n n  

Full-dist (C i ,C j ) = w k * atr-dist (C ik ,C jk ) / w k  
k=1 k=1  

but this kind of distance functions, sometimes, does not capture the significant 

differences among the attributes, because they are a lineal combination of 

one-dimensional distances. We have assumed that a non-lineal 

multi-dimensional distance function would be required for a better matching 

performance. After a wide performance study, we have developed a 



normalized exponential weight-sensitive distance function , that we have called 

the Eixample distance. It takes into account the different nature of the 

quantitative or qualitative values of the lineal (ordered) attributes, and the 

modalities of categorical (not ordered) attributes.  

Eixample distance is sensitive to weights, in the sense that, for the most 

important attributes, that is weight > a, the distance is computed based on their 

qualitative values, i.e. maintaining or amplifying the differences between cases, 

and for those less relevant ones, that is weight a , the distance is computed 

based on their quantitative values, i.e. reducing the differences between 

cases.  

The Eixample distance used to rank the best cases is:  

n n  

d(C i ,C j ) = e Wk * d(A ki ,A kj ) / e Wk  

k=1 k=1  

where,  

d(A ki ,A kj ) = |quantval(A ki ) - quantval(A kj )| / (upperval(A k ) - lowerval(A k ))  

if A k is a lineal (ordered) attribute and W k a  

d(A ki ,A kj ) = |qualval(A ki ) - qualval(A kj )| / (#mod(A k ))  

if A k is a lineal (ordered) attribute and W k > a  



d(A ki ,A kj ) = 1 - d qualval(A ki),qualval(A kj )  

if A k is a categorical (not ordered) attribute  

and,  

C i is the case i; C j is the case j; W k is the weight of attribute k; A ki is the 

attribute k in the case i; A kj is the attribute k in the case j; quantval(A ki ) is the 

quantitative value of A ki; quantval(A kj ) is the quantitative value of A kj ; A k is the 

attribute k; upperval(A k ) is the upper quantitative value of A k ; lowerval(A k ) is 

the lower quantitative value of A k ; a is a cut point on the weight of the 

attributes; qualval(A ki ) is the qualitative value of A ki ; qualval(A kj ) is the 

qualitative value of A kj ; #mod(A k ) is the number of modalities (categories) of A 

k .; d qualval(A ki ),qualval(A kj ) is the d of Kronecker.  

The system computes the distances between each case retrieved by the 

discrimination tree search and the new case. Then, it ranks the list of cases by 

increasing distance. So, the first case in the list is the closest case to the new 

case. The output of this process is a comparative table of all the retrieved 

cases and the new case, describing the distance and the attribute's values. An 

example of this output is shown in table 5.2.  

CASE DIST O-SS O-COD I-SS I-COD I-BOD Q D-SS D-COD I-pH O-pH 

NEW 
 

60  240  480 380 31000 210 320 7.8 7.6  

21  0.000 60  240  480 380 31000 210 320 7.8 7.6  



1  0.018 84  166  407 NIL 44101 94 280 7.8 7.3  

8  0.022 NIL 964  483 156 34094 92 170 7.8 7.6  

9  0.026 79  1000  457 189 39421 140 323 7.9 7.8  

7  0.073 70  172  370 365 32217 135 7.7 7.6   

15  0.199 82  218  517 230 38105 102 349 8.4 8.0  

Table 5.2. The table of retrieved cases in the Case-based system  
Case adaptation  

When the best partial-matching case selected from the case library does not 

match perfectly with the new case, the old solution needs to be adapted to fit 

more accurately the new case solution. This reusing process can happen 

during the solution formulation ( adaptation ), or after some feedback has 

pointed out some problem in the evaluation step, that needs to be 

fixed( repair ).  

There are a lot of strategies that have been used in the Case-based reasoners. 

All these techniques can be grouped [Kolodner, 1993; Riesbeck and Schank, 

1989] as null adaptation , structural adaptation and derivational adaptation , 

although in most Case-based reasoners, several mixture kinds of adaptation 

methods are implemented.  

Null adaptation could be a right strategy in Case-based systems with very 

simple actions in the solution (like accept/reject, a fault diagnosis, etc.) such as 

the first adaptation method used in the PLEXUS system [Alterman, 1988]. In 

that systems, the old solution is applied directly to the new case.  



There are several structural adaptation methods, where the adaptation 

process is applied directly to the solution stored in a case. The structural 

adaptation methods can be divided in three major techniques: substitution 

methods , transformation methods and special-purpose adaptation heuristics 

or critic-based adaptation methods .  

Substitution methods provide the solution of the new case with appropriate 

components or values computed from components or values in the retrieved 

solution. Most outstanding substitution techniques are: parameter adjustment 

or parameterized solutions, where the differences between the values of the 

retrieved case and those ones of the new case are used to guide the 

modification of the solution parameters in the appropriate direction. This 

approach has been used, for example, in HYPO [Ashley, 1990] and 

PERSUADER [Sycara, 1987], JUDGE [Bain, 1986]; another kind of methods, 

such as direct reinstantiation used in CHEF [Hammond, 1989], local search 

used in JULIANA [Shinn, 1988], PLEXUS and SWALE [Kass and Leake, 1988], 

query memory used in CYRUS [Kolodner, 1985] and JULIANA, specialized 

search used in SWALE, etc ., can be named as abstraction and 

respecialization methods. When there is a component (object, value, etc .) of 

the retrieved solution that do not fit the new problem, these methods look for 

abstractions of that component of the solution in a certain knowledge structure 

(concept generalization tree, etc.) that do not have the same difficulty; the last 

kind of substitution methods is the case-based substitution methods. They use 



the differences between the new and the retrieved case to search again cases 

from the case library to eliminate these differences. These techniques have 

been used, for instance, in systems such as CLAVIER [Hennessy and Hinkle, 

1992], JULIA [Hinrichs, 1992], CELIA [Redmond, 1992], etc .  

The transformation methods uses either some common sense transformation 

rules, like deleting a component, adding a component, adjusting values of a 

component, etc.), such as in JULIA system, or some model-guided repair 

transformation techniques based on a causal knowledge, such as in KRITIK 

[Goel and Chandrasekaran, 1992] or CASEY [Koton, 1989] systems.  

The special-purpose adaptation techniques or critic-based adaptation methods 

are based on some specific rules of repairing, called critics [Sacerdoti, 1977; 

Sussman, 1975], like those used in PERSUADER. Other systems such as 

CHEF and JULIA, use some domain specific adaptation heuristics and some 

structure modification heuristics.  

Derivational adaptation methods do not operate on the original solutions, but 

on the method that was used to derive that solution. The goal is rerunning the 

same method applied to derive the old solution, to recompute the solution for 

the new case. This methodology was first implemented in ARIES system, and 

was named as derivational replay [Carbonell, 1986]. In such a techniques, 

reinstantiation occurs when replacing a step in the derivation of the new 



solution, like in systems such as PRODIGY/ANALOGY [Veloso and Carbonell, 

1993], JULIA [Hinrichs, 1992] or MEDIATOR [Kolodner and Simpson, 1989].  

In WWTP domain, the solutions stored in the cases are composed by very 

simple operation actions, such as increase the dissolved oxygen (DO) 

set-point, decrease the DO set-point, increase the recirculation flow, etc. (see 

chapter 7). The main task in the supervision and control problem is searching a 

similar diagnosis (operating situation) for the current situation in a concrete 

plant. If the retrieved case is close enough to the new case, the old solution 

( i.e. , the control actions) only need a few adaptation changes. Thus, we can 

assume that most times the retrieved cases are so similar to the new ones, 

that they only need parameter adjustment to derive the new solution. For each 

important difference between the attributes of the new case and the retrieved 

one, the system adjusts the parameters pointed by these differences. The 

adjustment in this stage of DAI-DEPUR is done by interpolation. In other cases, 

special-purpose adaptation heuristics must be developed. Our approach to the 

adaptation process can be summarized as follows:  

if distance(C NEW , C RETR ) b then  

solution-parameters-interpolation(C NEW , C RETR )  

else  

special-purpose-adaptation-heuristics(C NEW ,C RETR )  



endif  

where b is a cut point on the distance value, b [0.2, 0.3]  

Evaluation of proposed solutions  

This step is one of the most important for a Case-based reasoner. It gives the 

system a way to evaluate its decisions in the real world allowing it to receive 

feedback that enables it to learn from success or failure.  

Evaluation can be defined as the process of assessing the goodness or 

performance of the proposed solution for the new case, derived from the 

solution of the best similar remembered case. The evaluation process can 

point out the need for additional adaptation – usually called repair– of the 

proposed solution, although this only make sense, in non real-time world 

domains. Commonly, this evaluation step can be performed either by asking to 

a human expert (oracle) whether the solution is a good one or not, or by 

simulating the effects of the proposed solution on the real world such as in 

most planning or design domains, or by directly getting a feedback on the 

results of the proposed solution, from the real world.  

In our system, the evaluation is given by a human expert, i.e. the plant's 

manager or operator, as we are in a development phase of the system. 

Notwithstanding, in middle-term future the evaluation will be performed by 

testing the effectiveness of the given solutions to the wastewater treatment 



plant operation. First, we plan to assess our system with a pilot scale plant 

already built-up and operating since two years ago. Afterwards, we plan to 

check the Case-based system on real plants.  

5.4.2.3 Learning from Experience  

Learning is an interesting and essential cognitive task of the Case-based 

systems. Mainly, there are two major kinds of learning in a Case-based system: 

learning by observation and learning by own experience. Learning by 

observation happens when the system is provided with a set of initial cases, 

either by an expert or by direct observation (experientiation) of real data, as it 

is described in 5.4.2.1. Also, it can learn a new case by direct observation 

provided by an expert in any moment.  

Learning by own experience is being done after each cycle of the Case-based 

reasoner. After an evaluation step appears the opportunity to increase the 

problem solving capabilities of the system. So, it can learn from the new 

experience. If the proposed solution has been a successful one, the system 

can learn from this fact, in the sense that if this experience is stored in memory, 

when a new similar case to this one appears, it can be solved as the past one 

( learning from success ). If the system has failed, it must be able to prevent 

itself from making the same mistake in the future ( learning from failure ). Not 

all the Case-based systems have both kinds of learning.  



Learning from success  

When the new case has been successfully solved, the main option to follow is 

to store this new case in the case library. So, this task means to insert the new 

experience in the appropriate place into the case library, so that it can be 

remembered when it can be more useful, and cannot be recalled 

indiscriminately. In other words, the case must be placed in the neighbourhood 

space of the memory where it would be easily recalled in the retrieval step. 

Thus, good indexes must be chosen to implement this strategy. While the new 

case is being placed in the case library, memory's indexing structure and 

organization is updated appropriately.  

The storing task of new cases can be summarized as a recursive procedure as 

described in the next algorithm, with an initial call to the algorithm:  

learn-case (new-case root(*case-library*) discr-list-of-attrib)  
The storing algorithm has three main options at each node of the tree:  

If the node is a null node , i.e., the case library is empty, then the algorithm 

builds up a new leaf-node with the case.  

If the node is a terminal node , then it computes if there exists a next 

discriminant attribute for the leaf-case and the new case. If there is not such a 

new attribute, then it adds selectively the case to the node. Our selective 

criterion is that the number of cases stored on that node does not exceed an 

upper bound. We are developing a new strategy based on a relevance 



measure of the new cases to be added. If there exists a new discriminant 

attribute, there are four options depending on whether the leaf-node and the 

case have a null value (nil) or not. In three options, the algorithm recursively 

continues the storing task on a new-node (with the case) or the leaf-node. The 

other option makes two childs from the node with the case and the leaf-case.  

If the node is a non-terminal node, the algorithm checks the branch with the 

same value as the current case. If this branch exists, it calls recursively to the 

procedure with that child as a node. If this branch does not exist, and the value 

of the current case is not null (nil) then it opens a new branch with that value. If 

the value is nil, then it recursively continues the procedure with the most 

frequently used child-node.  

Another issue that is taken into account in our system, in order to provide it 

with a criterion for a case forgetting policy (as it is described in 5.4.2.4), is the 

utility of cases. We have used (as other Case-based systems) a predictive 

measure of the utility of cases in solving future experiences. Each time a 

relevant case has been successful, the utility measure of all retrieved cases is 

updated. The normalized utility measure we are using is computed as:  

UM (C) = ((# UaS / # S ) – (# UaF / # F ) + 1 ) / 2  
where,  

C is a retrieved case; # UaS is the number of times that the case was Used 

and there was a Success, when the case was retrieved; # S is the total amount 



of Successes when the case was retrieved; # UaF is the number of times that 

the case was Used and there was a Failure, when the case was retrieved; # F 

is the total amount of Failures when the case was retrieved. Thus, when the 

UM(C) is 0 means that the case C is very unuseful, and on the other hand, 

when it is 1 means that the case C is very useful.  

This utility measure combines the usual measure of the frequency value of the 

successes of the case with a reinforcement measure of the frequency value of 

the failures of the case.  

Learning from failure  

Assuming that the adaptation method is correct, two reasons could originate a 

failure. One is that the case retrieved is the best one for solving this new 

situation, given the current case library, although it is not very similar. The 

problem here is that there are not enough cases (experience) in the case 

library to cover the whole space of cases. The solution relies on learning a lot 

of new relevant experiences to store in the case library. The other reason is 

that although it exists a very similar case to the new one, it has not been 

retrieved. Thus, there is something wrong in the retrieval process. Perhaps the 

distance function is not correct because the strategic importance of attributes 

(weight) is not well suited or the function do not capture accurately the 

differences between qualitative and quantitative values of attributes. Perhaps 

what is wrong is the discrimination tree organization. If the discriminating list of 



attributes provided by the experts is not good, then the retrieval algorithm can 

miss the best similar case due to the fact that it will be searching in some other 

region of the tree, where the best similar case is not there. The solution to this 

problem relies in re-organizing the case library's structure.  

When the new case has failed, there are several possible actions to be taken, 

in order to ensure that this failure cannot be repeated in future. First, the 

Case-based system can store the failed case into its memory to prevent taking, 

another time, the same failed solution for similar cases to this one. Some 

Case-based systems maintain a separate case library of failed cases, and 

others maintain only one case library structure.  

In the first systems, a previous step is added to the general Case-based 

reasoning cycle: the anticipation phase. Before retrieving any successful case 

in memory, it is recalled whatever case in the failed case library, that matches 

the input new case to avoid repeating the failure. In the other systems, the 

equivalent of that anticipation step is implemented as a filtering task applied to 

the searched cases in the retrieving process. They eliminate the previous 

failed cases and the cases that were the source experience to derive those 

failed cases, from the list of retrieved cases. Thus, the system can avoid to 

make the same incorrect action that in past situations.  

Another interesting action to do when there is an available human expert, is 

incorporate to the system's memory the right solution that he proposes to solve 



the new situation. So, in the future, this recorded experience could be 

remembered and used appropriately.  

Other tasks that can be performed are the updating of the weight of the 

attributes, then modifying the distance function, or changing their order in the 

discriminating list. Another feature is to update the utility measure of the 

retrieved cases that could derive the new case.  

In our Case-based system, the failed cases are stored together with the good 

ones, in the Case Library. A mark about its failure needs to be signalled, in 

order to be used as a filtering feature in the searching process. In the next 

future, DAI-DEPUR will be running on a real WWTP, where it is not sure that a 

human expert will be available all the time ( i.e. , Cassà de la Selva-Llagostera 

WWTP). Thus, the system as a default strategy cannot incorporate the correct 

case provided by an expert. Also, the system recomputes the utility measure of 

the retrieved cases.  

5.4.2.4 Introspection  

As Case-based system learns and evolves over time such as the human 

beings, it can reason about itself ( reflection or introspection), about its 

cognitive tasks and about its memory organization to refine all these features, 

as stated in [Fox and Leake, 1995].  



So, it is possible that its performance (efficiency in time) get worse due to the 

fact that the time spent in the retrieval step is becoming greater. Usually, the 

organization of the case library is the origin of this problem. Sometimes, in 

hierarchical structures as in the discrimination trees, appear some straight 

paths that ends with a leaf-node. In these paths, there are no branches at all. If 

the tree can be arranged in such a way that the depth of the tree become 

smaller than the current one ( more compact ), then the average retrieval time 

of cases can be reduced.  

Also, the size (efficiency in space) of the case library can increase very much 

with the storing of redundant cases, without an extensive improvement of the 

performance of the system, as pointed in [Miyashita and Sycara, 1995]. A 

natural human cognitive task appears as the solution to this trouble: forgetting. 

Human beings forget the knowledge that they do not use. And hopefully, what 

it is not used is what is not useful for their goals. Bearing in mind this analogy, 

we claim that there are not very useful cases stored in the memory of the 

Case-based systems that can be removed, with a significant increase of the 

performance. The unuseful cases are those with a low utility measure (UM(C) 

< d ) and that are (partially) redundant and that are not exceptional ones. 

Exceptional cases are that cases significatively different (distantiated) from the 

most of the stored cases. Although they can be used few times, it is necessary 

that they stay at the memory for the competence issue of the system.  



We are implementing these techniques in our Case-based system within a 

reflective cycle, to guide the case library towards an optimal configuration of 

cases, maximizing competence and minimizing size and response-time 

( performance ) of the system.  
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Chapter 6

The Situations Level

6.1 Introduction

A crucial point for the WWTP supervision is the concept of working situations. As it
has been defined previously in chapter 3, a situation is an operational working state of

the plant, described by measures of the relevant attributes of the process. In the next
sections of this chapter we will detail the domain models used at this level: the
generic situations defined by the experts (expert generic situations, from now on
named generic situations) and the specific situations occurred in a concrete WWTP
(experiential specific situations, from now on named specific situations). The main task
involved within this level is the supervision task, implemented through the
combination method, to identify the current global situation of the WWTP.

6.2 Domain Models

Two complementary domain models are used in DAI-DEPUR at this level, to
capture the working situation of a WWTP:  the specific situations and the generic

situations.
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6.2.1 Generic Situations

In order to obtain the main generic situations considered by the experts, they were
required to define the usual situations that they thought as relevant for WWTP's
operation. The situations were defined by means of some values of the data taken
into account by DAI-DEPUR.

The generic situations that DAI-DEPUR takes into account both coming from the
experts and from the wastewater treatment plants literature, can be grouped in four
major types:

• Operational problem situations which group any bad operating situation that can
be solved with a correct actuation over the WWTP. The main situations are
Foaming, Rising, Bulking, Non mechanical primary settlers problems,
Bioreactor anaerobic conditions, Sidestreams.

• Mechanical or accidental problem situations which include any abnormal situation
caused by a mechanical or accidental fault such as Mechanical primary settlers
problems, Low primary settlers wasting, Bad primary settlers wasting
temporization, Bad closed by-pass, Anomalous pH or DO sensor signalling,
Turbines crash, Broken clarifier bridge rotatory band, Electrical power off.

• Future problem transition situations which group any situation that in a middle-
term will probably lead the WWTP to an abnormal state, i.e. a transition
situation. Abnormal pH, Abnormal environmental temperature, Anomalous
sludge retention time (SRT), Anomalous F/M ratio, High secondary settlers
sludge level.

• Abnormal inflow situations are any situation in which some of the inflow
characteristics are different from usual ones. For example a Grease inflow,
Inflow sulphurs, Toxic shock, Loading shock, Solids shock, Storm, Overflow.

In next paragraphs, the main generic expert situations considered are briefly
explained:
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Rising

Rising sludge is a flotation process caused by bubbles of free nitrogen adhering to
the sludge flocs. This is typically observed in secondary settlers of activated sludge
plants with nitrification or partial denitrification. Clumps of sludge already settled
will rise to the surface and break up into smaller parts, some of which will partially
settle again while others will escape from the settler with the overflow. Nitrogen
bubbles can be seen in the water at the top of the settler. The result is increased
suspended solids in the effluent and an overall reduction of effluent quality with
respect to BOD, COD and total nitrogen and phosphorus.

The only practical solution to the problem of rising sludge in treatment plants with
summer temperatures above 20 ºC seems to be denitrify the wastewater before it
enters the settler in order to ensure a nitrate influent concentration below the critical
one [Henze et al., 1993].

Foaming

Two main types of scum may appear in activated sludge plants:

A white-grey foam occurs on aeration basins and in secondary effluents when a
plant is being operated at just about the upper limit of F/M (start-up of the plant).

A viscous, stable and often chocolate-coloured foam has been associated with the
presence in the activated sludge of large number of filamentous bacteria which
possess poorly wettable cell surfaces. They render the flocs hydrophobic and
amenable to attachment on air bubbles. The air bubble-floc aggregate is less dense
than water and therefore floats to the surface.

Bulking

Bulking is due to filamentous organisms that provide the macrostructure of the floc
are present in large numbers. These filamentous organisms extend from flocs into
the bulk solution and interfere with compactation, settling, thickening and
concentration of the activated sludge. The type of interference depends on the
causative filamentous organism. There are several kinds of possible Bulking causes:

• Low dissolved oxygen (DO) Bulking
• Low Sludge Retention Time (SRT) Bulking
• Nutrient deficiency Bulking
• Sulphur Bulking
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• F/M Bulking

Non-mechanical problems in primary settlers

The nature of Non-mechanical problems in primary settlers and its severity are
frequently temperature dependent. In cold weather, sludge will be more difficult to
pump, sludge lines will collect grease more quickly, and skimming quantities will
increase; however, septicity and odour will likely diminish.

Bioreactor anaerobic conditions

Whatever kind of problem related to the DO level in the bioreactor such as an
inadequate aeration motor switches schedule, a turbine mechanical problem, or an
incorrect DO sensor behaviour can lead some portion of the mixed liquor to remain
in anaerobic conditions.

Sidestreams

Most of the processes in the plant produce a little quantity of dirty water called
sidestreams. Normally, these sidestreams are not treated separately but are returned
to the plant headworks. The high strength and intermittent flow of these
sidestreams can adversely affect the performance of some small plants because,
although generally low in suspended solids, this sidestream flow can contain large
quantities of soluble BOD and nutrients, particularly from sludge processing.

Abnormal pH

As in whatever biological process, the microorganisms present in the bioreactor
have an activity optimal range of pH. Abnormal pH values directly affect the
substrate removal efficiency in the bioreactor.

Abnormal Environmental Temperature

As in whatever biological process, the microorganisms present in the bioreactor
have an activity optimal range of temperature. Colder temperatures directly affect
the substrate removal efficiency in the bioreactor.

Anomalous sludge retention time (SRT)

The sludge retention time determines the microbial population present in the
bioreactor. Thus, an anomalous sludge retention time implies the growth of
undesirable microorganisms which avoid the correct achieving of the goals of the
biological process.
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Anomalous F/M ratio

For a correct operation of WWTP it is necessary to keep a balanced F/M ratio. High
or low ratio values causes the appearance of filamentous microorganisms which will
origin the well known separation problems in the secondary settlers, i.e. bulking.

High secondary settlers sludge level

High stored quantity of sludge in the secondary settlers can derive in a loss of
biomass with the effluent.

Grease inflow

The presence of grease in the inflow favours the appearance of filamentous
microorganisms such as Nocardia, which can derive in a serious foaming problem.

Inflow sulphurs

The presence of grease in the inflow favours the appearance of filamentous
microorganisms such as Beggiatoa, which can derive in a serious bulking problem.

Toxic shock

The presence of toxicants in the effluent wastewater, especially heavy metals, can
result in dispersed growth due to deflocculation. Filamentous organisms are often
the first microorganisms to be affected by toxic metals. The SVI decreases rather
rapidly. If the toxicity is severe enough or reoccurring, defloculation will occur. If
the toxicity even is severe enough, protozoa are killed and their lysed cell contents
can cause a foam. The activated sludge BOD removal usually declines or ceases
following this event.

Loading shock

This situation is characterized by a high level of organic matter in the inflow that
can quickly vary the F/M ratio and WWTP operation must be changed to decrease
the ratio overcoming this shock.

Solids shock

This situation is characterized by a high level of suspended solids in the inflow that
can plug the pretreatment grids and/or overload the primary settlers.
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Storm

When heavy flows originated by storms reach the activated sludge they can sweep a
large amount of solids along with them, thereby producing low quality effluent and
putting the biological process out of order.

Deficient
primary
sludge

exit

Deficient
primary
sludge
settling

Non
alternated

sludge
purge

Heavy
metal

accumul.

Heavy
metal
peak

Bio-reactor
anaerobic
condition

Rotatory
band

- - - - - -

Bubbles
secondary

settler
- - - - - -

Bubbles
primary
settler

yes - yes - - -

Inflow - - - - normal -
Dissolved

Oxygen
(DO)

- - - high normal low

I-COD - - - - normal -
O-COD - - - high high high

SRT - - - - normal -
Bio-foam - - - - - black
Filament. - - - - - -

SVI - - - - normal -
Odour - - - - - yes

Sulphurs - - - - normal -
Primary
sludge

exit
deficient normal normal - normal -

O-SS high high high - normal -
B-SS high high high - normal -
I-SS - - - - normal -

B-VSS - - - - normal -
R-VSS - - - - normal -
Temp. - - - - - -

Turbines - - - -
following
schedule

following
schedule

B-heavy
metal

- - - high - -

I-heavy
metal

- - - - high -

Table 6.1 (a). Definition of the generic expert situations
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Overflow

It is a situation strongly related to the storm situation. It is caused by a very strong
storm in a short period of time. Its consequences are similar but more serious than
the storm situation.

Turbines
crash Foaming

Bad closed
by-pass

Heavy
metal

Bulking

Low
DO

Bulking

Sulphurs
Bulking

Rotatory
band

- - - - - -

Bubbles
secondary

settler
- - - - - -

Bubbles
primary
settler

- - - - - -

Inflow - - - - - -
Dissolved
Oxygen

(DO)
low slightly

high
- - low -

I-COD - - - - - -
O-COD high high high high high high

SRT - - young - - -
Bio-foam - brown - - - -
Filament. - high - normal high high

SVI - bulking - bulking bulking bulking
Odour yes - - - - -

Sulphurs - - - - - high
Primary
sludge

exit
- - - - - -

O-SS - - - - - -
B-SS - - low - - -
I-SS - - - - - -

B-VSS - - low - - -
R-VSS - low - low low low
Temp. - - - - - -

Turbines broken - - - - -
B-heavy

metal
- - - high - -

I-heavy
metal

- - - - - -

Table 6.1 (b). Definition of the generic expert situations
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F/M
Bulking

High
DO

Bulking

Non
Filament.

Bulking
Rising Loading

shock

Side-
streams
loading
shock

Rotatory
band

- - - - - -

Bubbles
secondary

settler
- - - yes - -

Bubbles
primary
settler

- - - - - -

Inflow - - - - - -
Dissolved

Oxygen
(DO)

- high - - low low

I-COD low - - - high low
O-COD high high high high high high

SRT - - old old - -
Bio-foam - - - - - -
Filament. - normal normal normal - -

SVI bulking bulking bulking normal - -
Odour - - - - - -

Sulphurs - - - - - -
Primary
sludge

exit
- - - - - -

O-SS - - - high - -
B-SS - - - high high high
I-SS - - - high - -

B-VSS normal - - normal high high
R-VSS low low low - - -
Temp. - - - - - -

Turbines - - - - - -
B-heavy

metal
- - - - - -

I-heavy
metal

- - - - - -

Table 6.1 (c). Definition of the generic situations

In table 6.1 (a), (b) and (c) there are described the definition of some of these general
situations based on the local Manresa's WWTP, by means of some data values.
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That situations can be clustered by means of a classification method, such as
LINNEO+ (our knowledge acquisition method), providing DAI-DEPUR with an
associative model of the global situations of a WWTP. See table 6.2 for a possible
classification obtained.

CLASS SITUATIONS
c1 Heavy metal accumulation
c2 Bad aeration motor switches schedule
c3 Deficient primary sludge exit

Deficient primary sludge settling
Non alternated primary settlers purge

c4 Heavy metal Bulking
High dissolved oxygen Bulking
Non Filamentous Bulking

c5 Sulphurs Bulking
Low dissolved oxygen Bulking
F/M Bulking

c6 Turbines Crash
Bioreactor anaerobic conditions

c7 Foaming
c8 Overloading
c9 Normal

Heavy metal peak
c10 Rising

Settler rotatory band broken
c11 Storm
c12 Loading shock

Side-streams loading shock
c13 Low loading
c14 Bad closed by-pass

Table 6.2 Classification results

6.2.2 Specific Situations

The specific situations are those situations actually experienced in the WWTP under
supervision. These specific situations are stored as cases in a Case Library memory,
to serve as the basis for the Case-based Reasoning method for a complementary
diagnosis task.
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As it has been explained in 5.4.2.1, the initial Case Library was fed by some real
cases extracted from a classification (see appendix C) of real operation data of
Manresa's WWTP, provided by LINNEO+. These initial experiential situations are:

CASE DAY Q I-Zn I-pH I-BOD I-COD I-SS D-COD D-SS O-pHO-COD O-SS

C-1 1/3/90 44101 1.5 7.8 NIL 407 166 280 94 7.3 84 21

C-2 29/6/90 35198 0.8 7.7 185 372 164 278 74 7.9 78 15

C-3 13/3/90 42393 0.7 7.9 189 478 230 412 104 7.6 306 131

C-4 14/3/90 42857 1.5 7.7 238 319 292 276 104 7.4 350 238

C-5 18/7/91 NIL 1.0 7.6 186 495 222 NIL 112 7.6 292 74

C-6 1/10/90 47623 3.4 7.7 183 310 170 227 108 7.9 85 20

C-7 31/3/91 32217 2.0 7.7 165 370 172 135 80 7.6 70 16

C-8 31/5/91 34094 0.9 7.8 156 483 964 170 92 7.6 NIL 20

C-9 5/6/90 39421 1.0 7.9 189 457 1004 323 140 7.8 79 21

C-10 29/4/90 27333 2.0 7.6 238 348 174 364 104 7.4 210 73

C-11 14/9/90 41206 3.3 7.8 117 366 500 181 106 7.8 67 12

C-12 1/4/91 34573 0.7 7.7 156 276 146 176 124 7.7 43 44

C-13 5/8/91 29719 0.2 7.6 133 284 186 160 52 7.8 60 21

C-14 12/8/90 47718 0.7 7.8 31 81 208 80 233 7.9 25 12

C-15 1/2/91 38105 1.5 8.4 230 517 218 349 102 8.0 82 13

C-16 23/11/90 28819 2.2 8.4 195 392 188 267 82 7.9 86 19

C-17 22/10/90 48950 2.5 8.1 109 211 880 111 118 7.9 35 13

C-18 24/5/91 36495 0.1 7.7 213 627 2008 226 66 7.6 119 13

C-19 15/3/90 42911 0.7 7.6 114 252 116 216 70 7.5 172 104

Table 6.3. Initial specific situations

6.3 Supervision Task

The supervision task is mainly achieved by the Supervisory-KBS agent, with the
collaboration of the WWTP operator. This supervision implies than all the local
situations diagnosed by the different distributed KBS at the knowledge/expertise
level, have to be combined to get a global insight of the current generic situation of
the WWTP diagnosed by the Rule-based Reasoning method. Also, the most similar
situation stored in the Case Library is retrieved to provide a complementary
diagnosis from an specific situation point of view.
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The Supervisory–KBS agent is the manager of the distributed problem solving
architecture and acts as a master. It receives diagnosis information from the Water
line subsystem, from the Sludge line subsystem, and from the most similar case
retrieved by Case-based Learning and Reasoning agent. The Supervisory agent
notifies both the specific and generic situations to the operator of the plant, who
must identify the current working situation. Also it will supervise at the next level
(actuations level) the actuation of DAI-DEPUR.

The Supervisory-KBS agent behaviour can be logically summarized as a control
loop algorithm using Dijkstra's guarded commands [Dijkstra, 1975] and
Communicating Sequential Processes (CSP) [Hoare, 1978] structures:

SUPERVISORY AGENT ::
[ var end, water-line_analysis, sludge-line_analysis, case_exploring,

w, s, c : boolean;
bound, new_bound, cycle : integer;
water-line_situation, sludge-line_situation, global_situation : situation;
cases : list(case); commands : command

  endvar

bound:= …; {minutes}
end:=false;
cycle:=bound;
water-line_analysis:=false;
sludge-line_analysis:=false;
case_exploring:=false;
w:=false;
s:=false;
c:=false;
*[¬ end –>

{Monitoring}

[   tic ?  –> cycle:=cycle+1

[]  cycle _ bound –> water-line_analysis:=true;
         sludge-line_analysis:=true;

case_exploring:=true;
       cycle:=0
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{Diagnose or evaluation phase}

[]  water-line_analysis; start_water !  –> water-line_analysis:=false

[]  sludge-line_analysis; start_sludge !  –> sludge-line_analysis:=false

…
[]  water_info ? water-line_situation –> save–sit(water-line_situation); 

w:=true

[]  sludge_info ? sludge-line_situation –> save–sit(sludge-line_situation); 
s:=true

{Learning and Reasoning phase}

[]  case_exploring; start_cases ! –> case_exploring:=false

[]  cases_info ? cases –> save(cases); c:=true

{Supervisory and communication phase}

[]  w ^ s ^ c –> global_situation:=combine(sludge-line_situation,
water-line_situation); 

solutions:=infer(global_situation, cases);
           w:=false; s:=false; c:=false;
           inform–operator(global_situation);

inform–operator(solutions)

{Actuation phase and user interface support}

[]  operator_action ? commands –> com ! commands; 
   save–case(global_situation,commands)

[]  System_action ? –> com ! solutions;
         save–case(global_situation,solutions)

[]  stop ? –> end:=true

[]  mod_cycle ? new_bound –> bound:=new_bound; cycle:=0

[]  attrib ? set_of_attrib –> show(set_of_attrib)
[]  expl ? affair –> dem_expl ! affair
[]  diag ? –> show–diagram
[]  simulate? time –> start_sim ! (time,global_situation)
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…
[]  obt_expl ? explanations –> ans_expl ! explanations
[]  end_sim ! results –> ans_sim ! results ]]]
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WATER_INFO

START_WATER

START_CASESOBT_DATA

ACTUATORS

TIC

STOP,ATTRIB
MOD_CYCLE,
EXPL,DIAG,
SIMULATE,
SYS_ACTION,
OPER_ACTION

EXPL_INFO,
SIM_INFO,

SHOW,
INFORM

COM

ASK_DATA CASES_INFO

ASK_EXPL

OBT_EXPL

START_SLUDGE

START_SIM, END_SIM, ACT,
DACT, ASK_DATA, OBT_DATA

...

CLOCK
USER

INTERFACE

SUPERVISORY
AGENT

CASE-BASED
LEARNING

AGENT

EXPLANATION
MODULE

SLUDGE
LINE

SUBSYSTEM

WATER
LINE

SUBSYSTEM

NUMERICAL
CONTROL

KNOWLEDGE
MODULE

DATA
BASE

MANAGEMENT
SYSTEM

SLUDGE_INFO

...

7 AGENTS 4 AGENTS

START_WATER: Start water line WATER_INFO: Receive water line diagnosis

ASK_DATA: Ask for some OBT_DATA: Obtain the data

ACT: Activate the DO control DACT: Deactivate the DO control

.  .  . .  .  .

 START_SIM: Start END_SIM: End

Fig. 6.1. Distributed problem solving interaction
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The distributed problem solving interaction is depicted in figure 6.1.

6.4 Combination Method

The combination method is used twice at this level. First, the different local
diagnostics provided by the distributed KBS about the status of the several
operational units that compose a WWTP (primary settlers, secondary settlers,
bioreactor, recirculation, grit removal, thickening, etc.), must be integrated to get the
global generic situation of the plant. This is achieved by the Rule-based Reasoning
method, from the knowledge embodied in the Supervisory-KBS. See figure 6.2 for
an example of a set of combination rules (global diagnosis rules)

SUPERVISORY-KBS-RULE-002 ::   
IF I-COD-status is normal AND O-COD-status is high  
THEN conclude that  
    COD Removal efficiency is low 
  
SUPERVISORY-KBS-RULE-037 ::   
IF  COD Removal efficiency is low AND B-VSS-status is high  
THEN conclude that  
    SIDESTREAMS situation is VERY-POSSIBLE  

SUPERVISORY-KBS-RULE-017 ::   
IF Bioreactor-pH-status is normal AND  presence-fungi is true 
THEN conclude that  
    Bioreactor-pH-sensor is bad ALMOST-SURE 

SUPERVISORY-KBS-RULE-036 ::   
IF B-VSS-status is high AND Wasting-flow-status is normal AND 
    COD Removal efficiency is normal  
THEN conclude that  
    wasting-pipe is plugged VERY-POSSIBLE 

SUPERVISORY-KBS-RULE-042 ::   
IF Input-pH-variability is true 
THEN conclude that  
    Fear-of bulking is true 

SUPERVISORY-KBS-RULE-049 ::   
IF Inflow-status is high AND Inflow-status is high during the last hour 
THEN conclude that  
    STORM  situation is VERY-POSSIBLE   
AND   
THEN conclude that  
    OVERFLOW  situation is POSSIBLE
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Fig. 6.2 An example of combination rules

On the other hand, the most similar experience occurred in the concrete WWTP,
supplies DAI-DEPUR with a specific situation diagnosis, obtained by the Case-based
Reasoning method. See table 6.3 for an example of the specific situation that would
be selected as the most similar to the current one.

CASE DIST I-Zn O-SS O-COD I-SS I-COD I-BOD Q D-SS D-COD I-pH O-pH

NEW 0.7 131 200 230 478 189 42393 104 412 7.9 7.6

5 0.019 1.0 74 200 222 495 186 NIL 112 NIL 7.6 7.6

20 0.020 2.0 60 110 240 500 410 28000 130 340 7.8 7.5

4 0.072 1.5 200 200 292 319 238 42857 104 276 7.7 7.4

19 0.074 0.7 104 172 116 252 114 42911 70 216 7.6 7.5

12 0.267 0.71 44 43 146 276 156 34573 124 176 7.7 7.7

1 0.384 1.5 21 84 166 407 NIL 44101 94 280 7.8 7.3

Table. 6.4. An example of most similar specific situation

Thus, the two diagnostics must be combined again, to obtain the most plausible
situation. If both diagnostics are coherent, the degree of confidence on DAI-DEPUR
competence increases. But it can happens that the two diagnosis are contradictory.
Then, one heuristic rule could be to give higher priority to the experiential situation
diagnosis, due to the fact that it is more specific (related to a concrete WWTP under
supervision), than the generic situation diagnosed (related to general knowledge
about the domain). But taking into account the environmental problem that DAI-
DEPUR is dealing with, and the possible damage caused by wrong decisions, we
decided that the operator has the ultimate choice to finally identify what he/she
thinks that it is the most reasonable working situation, based on his/her experience.
The operator can inquire DAI-DEPUR to get some data values, ask for some
explanations of the deductive inferences, etc., to confirm his/her opinions.

The Explanation module gives some explanations about the reached conclusions of
the different KBS agents of the system (Screen KBS, Thickening KBS, etc.) and it can
give some required reports about deductive processes.





147

Chapter 7

The Plans Level

The mind is the seed of the action.
Ralph Waldo Emerson

7.1 Introduction

The top level of the architecture, the plans level, manages different domain models:
the situation finally identified in the WWTP, the first proposed solution, and the
final adopted solution. The solutions are plans that can be derived from some
actuation rules encoded in the Supervisory-KBS, from the solution given by the
most similar specific situation in the CBRL agent memory, or from the numerical
control algorithm if the normal situation has been diagnosed. These plans are a
sequence of actions that must be taken to restore or maintain the correct WWTP
operation and performance.

The main tasks involved at this level are the validation task and the actuation task.
The validation task of the identified situation and the first proposed plan is
achieved by the operator's validation method. The final actuation task over the
WWTP operation is carried out by the expert actuation, experiential actuation, and
the numerical control actuation method.

7.2 Domain Models
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The two domain models used at this level are the final identified situation and the
proposed and adopted solutions (plans).

7.2.1 Identified situation

The final identified situation was obtained in the previous level as a combination of
the local situations into the generic situation diagnosed, and also taking into account
the most similar specific situation. This identified situation can be also validated by
the operator through the explanation module: inquiring for some variable values,
analyzing some deductive inferences, etc.

The final identified situations can be one of the following generic situations:

• Foaming
• Rising
• Low dissolved oxygen (DO) Bulking
• Low Sludge Retention Time (SRT) Bulking
• Nutrient deficiency Bulking
• Sulphur Bulking
• F/M Bulking
• Non mechanical primary settlers problems
• Bioreactor anaerobic conditions
• Mechanical primary settlers problems
• Low primary settlers wasting
• Bad primary settlers wasting temporization
• Bad closed by-pass
• Anomalous pH or DO sensor signalling
• Turbines crash
• Broken clarifier bridge rotatory band
• Electrical power off
• Abnormal pH
• Abnormal environmental temperature
• Anomalous sludge retention time (SRT)
• Anomalous F/M ratio
• High secondary settlers sludge level
• Grease inflow
• Inflow sulphurs
• Toxic shock
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• Loading shock
• Solids shock
• Storm
• Overflow

or a specific situation described by means of the values of some variables, as for
example:

• ((Q 29719) (I-Zn 0.2) (I-pH 7.6) (I-BOD 133) (I-COD 284) (I-SS 186)
(D-COD 160) (D-SS 52) (O-pH 7.8) (O-COD 60) (O-SS 21) … )

7.2.2 Proposed and adopted plans

A first plan (solution) is provided by extracting it either from the encoded rules
embodied in the Supervisory-KBS or from the adapted solution of the most similar
specific situation.

The main expert general actuation plans for the generic situations are:

Rising

ACTUATION: try to decrease, if possible, the sludge age to wash out nitrifying
population, and reduce the dissolved oxygen levels in the bioreactors.

ACTUATION PLAN:
(Increase the Waste-flow)  ;;; diminish the sludge age
(Decrease the Dissolved Oxygen in the bioreactor)

Foaming

ACTUATION: Foaming control by reducing the sludge age has long been
employed in practice. In general, very low values of the sludge age (below three
days) are required for this control method to be effective. Furthermore, you must be
really careful with sidestreams to avoid a constant reinoculation of the filamentous
organisms.

ACTUATION PLAN:
(Increase the Waste-flow) ;;; diminish the Sludge Retention Time
(Chlorinate foaming-areas)
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Bulking

ACTUATION: Use the microscopic examination procedure to identify the causative
filamentous organism. Combining this identification and manuals information,
together with a knowledge of the plant operating conditions and wastewater
characteristics, it is possible to determine the probable cause(s) of the filamentous
organism(s) growth.

Some of the causes can be rectified with operational changes. If septic water is
indicated, wastewater prechlorination may be initiated. If the probable cause is

nutrient deficiency, determine which nutrient(s) is deficient by analysis of influent
and effluent, and rectify the deficiency by increasing the feed rate of existing
nutrient supply system(s) or by installing nutrient addition facilities.

Some plants with bulking sludge problems may require major design or
operational changes that can take a long time to implement (e.g., additional
aeration capacity, changes in aeration basin configuration, industrial waste control,
decreasing the SRT, etc.). In addition, once changes have been made to discourage
the growth of filamentous organisms, sludge settleability may improve really
slowly.

Rapid, nonspecific methods to eliminate the symptoms of bulking fall into three
categories:

a) manipulation of recirculation activated sludge (RAS) flow rates and
wastewater feed points to the aeration basin.

b) addition of chemicals to enhance the settling rate of the activated sludge
without attempting to selectively limit the growth of filamentous organisms.

c) addition of toxicants to the activated sludge to selectively kill the extended
filamentous organisms that cause the bulking [Jenkins et al., 1993].

Non-mechanical problems in primary settlers

ACTUATION: The proposed solution to a non mechanical problem in primary
settler is always probable cause dependent. If there is floating sludge, you must
remove sludge more frequently or at a higher rate. When the observation indicates
black and odorous septic wastewater or sludge, the proposed solution is to increase
frequency and duration of pumping cycles until sludge density decreases to an
undesirable low value; you can also add chemicals or aerate in collector systems. If
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there is undesirable low solids contents in sludge, then reduce frequency and
duration of pumping cycles, or provide more even flow distribution in all tanks, if
multiple tanks. Finally, when suspended solids efficiency removal is poor, then try
to use available tankage, shave peak flow or add chemicals [WPCF, 1990].

Bioreactor anaerobic conditions

ACTUATION PLAN:
(Increase the DO level)

Sidestreams

ACTUATION PLAN:
(Keep sidestreams flow in an empty tank)

Abnormal pH

ACTUATION PLAN:
(Add alkali or acid to neutralize the water)

Abnormal Environmental Temperature

ACTUATION PLAN:
(Modify the F/M ratio) ;;; to adjust the biomass level

Anomalous sludge retention time (SRT)

ACTUATION PLAN:
(Modify the waste-flow) ;;; to adequate the sludge age

Anomalous F/M ratio

ACTUATION PLAN:
(Modify the F/M ratio) ;;; to adjust the biomass level

High secondary settlers sludge level

ACTUATION PLAN:
(Increase the recirculation-flow)

Grease inflow

ACTUATION PLAN:
 (Optimize the grit removal operation) ;;; to avoid grease entering to the 

   bioreactor
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Inflow sulphurs

ACTUATION PLAN:
(Add chemicals to remove inflow sulphurs)

Toxic shock

ACTUATION: It is necessary to determine the kind and the quantity of heavy metal
content in the influent. If the level is significant the influent must be rejected, and
the source (an industry) must be identified. This metal could be accumulated in the
activated sludge due to adsorption process, so, it will be necessary to increase de
Waste Activated Sludge (WAS) flow to remove the metal of the process.

ACTUATION PLAN:
(Increase the Waste-flow) ;;; avoiding toxic accumulation

Loading shock

ACTUATION PLAN:
(Increase the Recirculation-flow) ;;; to restore F/M ratio balance

Solids shock

ACTUATION PLAN:
(Increase the frequency of the automatic cleaning grids of the preatreatment)
(Increase the frequency of the grit removal bridge)
(Increase the sludge purge in the primary settlers)
(Take care of the sidestreams)

Storm

ACTUATION: When the storm is really important, a fraction of the influent may
by-pass the plant to prevent a wash-out of the microorganism population and an
hydraulic shock in the clarifiers.

ACTUATION PLAN:
(Decrease the Recirculation-flow)
(Open the by-pass if necessary)
(Use when available an equalization tank)

Overflow

ACTUATION PLAN:
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(Decrease the Recirculation-flow)
(Open the by-pass)
(Use when available an equalization tank)

The experiential specific actuation plans are based on the previous actuation plans
of other similar specific situations occurred in the WWTP. As an example, the
actuation plans for the initial set of cases of the Case library are detailed in table 7.1.

CASE DAY SITUATION ACTUATION PLAN

C-1 1/3/90 HIGH LOADING INCREASE RECIRCULATION-FLOW  10 %

C-2 29/6/90 NORMAL

C-3 13/3/90 POSSIBLE BULKING CONFIRM BULKING
IDENTIFY KIND OF BULKING

C-4 14/3/90 BULKING IDENTIFY KIND OF BULKING
ACTUATE OVER KIND OF BULKING

C-5 18/7/91 POSSIBLE BULKING CONFIRM BULKING
IDENTIFY KIND OF BULKING

C-6 1/10/90 STORM DECREASE RECIRCULATION-FLOW 20 %

C-7 31/3/91 NORMAL

C-8 31/5/91 SOLIDS SHOCK INCREASE PRETREATMENT-EFFICIENCY

C-9 5/6/90 SOLIDS SHOCK INCREASE PRETREATMENT-EFFICIENCY

C-10 29/4/90 POSSIBLE BULKING CONFIRM BULKING
IDENTIFY KIND OF BULKING

C-11 14/9/90 RAIN DECREASE RECIRCULATION-FLOW 15 %

C-12 1/4/91 NORMAL

C-13 5/8/91 LOW LOADING DECREASE RECIRCULATION-FLOW 10 %

C-14 12/8/90 STORM DECREASE RECIRCULATION-FLOW 30 %

C-15 1/2/91 HIGH LOADING INCREASE RECIRCULATION-FLOW  10 %

C-16 23/11/90 LOW LOADING DECREASE RECIRCULATION-FLOW 10 %

C-17 22/10/90 STORM DECREASE RECIRCULATION-FLOW 30 %

C-18 24/5/91 SOLIDS SHOCK INCREASE PRETREATMENT-EFFICIENCY

C-19 15/3/90 POSSIBLE BULKING CONFIRM BULKING
IDENTIFY KIND OF BULKING

Table 7.1 Specific actuation plans for the initial Case Library
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7.3 Tasks

Plan validation and actuation are the tasks involved within this level. The goal of
both tasks is to ensure a reliable and safe actuation over the WWTP.

7.3.1 Plan Validation

The WWTP operator must validate the proposed actuation plan. DAI-DEPUR shows
him/her through the user interface, and the operator can reject the plan completely,
or modify some parts of it. When the operator has arranged the plan accordingly
with its experience and idiosyncratic point of view, then, DAI-DEPUR is provided
with the adopted plan that must be translated in a next step into a set of operational
actions.

7.3.2 Actuation

If the WWTP's operation is correct, the activated sludge process can achieve high
depuration levels (plus than 90 % of COD removal) and cope with loading shocks
and other perturbations. Operation is an important feature because it is through
itself that versatile process conditions and process complexity can be managed.

A WWTP operation providing high depuration levels requires a set of actions to
adequate at each step, the parameters of the process to the changing conditions of
the process, so that WWTP never are in steady-state conditions. Thus, the actuation
task is aimed to actuate over the WWTP. Direct actuation is possible if there are on-
line actuators to modify the main operating parameters of the WWTP: turbines
on/off (aeration), recirculation-flow and waste-flow. If not, manual actuation  off
the WWTP staff is required.

If the diagnosed working situation of the plant is normal, then the automatic
numerical control is activated/maintained, to continue schedulling the aeration
motor switches of the bioreactor. Otherwise (abnormal situation)  experiential/expert
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actuation is done based on general actuation plans (predefined plans) or specific
actuation plans (experienced plans), always under the supervision of the operator.

7.4 Methods

The methods that implement the plan validation task and the actuation task are: the
operator's validation, the expert actuation, the experiential actuation and the
numerical control actuation.

7.4.1 Operator's Validation

The operators must validate the suggested actuation plan to ensure a safe and
reliable WWTP operation. To this end, the operator can inquire DAI-DEPUR about
some variables' values, to ask for some information about the reasoning processes
followed by the system, or to start same simulation proofs. All these validation
features can be achieved through the explanation and inspection abilities supported
by the G2 shell, and visualized by means of the user interface, as shown in the
chapter 9.

7.4.2 Expert/Experiential  Actuation

Expert actuation is implemented with some actuation rules provided by the experts
and the Chemical Engineering literature to cope with usual abnormal situations in the
Supervisory-KBS. See figure 7.1 for an example of actuation rules.

Experiential actuation is performed by some actuation plans stored in the Case
Library and experienced in the WWTP under supervision, to cope with unusual

abnormal situations. These actuations plans are previously adapted to perfectly match
the current WWTP situation.

Sometimes, the actuation plan is a mixture of both suggested plans. The operator
can combine and modify both proposed plans and his/her own plan into the finally
adopted actuation plan.
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SUPERVISORY-KBS-RULE-007 ::
IF SIDESTREAMS situation is VERY-
THEN
    Keep sidestreams flow in an empty tank AND
CONCLUDE THAT
    Kept-Sidestreams situation is TRUE

SUPERVISORY-KBS-RULE-022 ::
IF Bioreactor-pH-sensor is bad ALMOST-SURE
THEN
    Calibrate Bioreactor-pH-sensor AND
    Add alkali to neutralize the mixed-liquor

SUPERVISORY-KBS-RULE-023 ::
IF wasting-pipe is plugged VERY POSSIBLE
THEN
    Send the operator to unplug the wasting-pipe

SUPERVISORY-KBS-RULE-018 ::
IF Fear-of-bulking is TRUE
THEN

Identify the causative filamentous organism

SUPERVISORY-KBS-RULE-019 ::
IF STORM situation is VERY POSSIBLE
THEN

Decrease the Recirculation-flow AND
    Open the by-pass if necessary AND
    Use when available an equalization tank

Fig. 7.1 A set of actuation rules

7.4.3 Numerical Control Actuation

Numerical control actuation is implemented by a predictive DO control algorithm
(explained in 5.2.1) that is suitable to be applied when the WWTP is operating in
normal conditions (normal situations). This algorithm provides DAI-DEPUR with a
schedulling of aeration motor switches in next time horizon.
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Chapter 8

Experimental Evaluation
and Validation

Después de la verdad, nada hay tan bello como la ficción.
Antonio Machado

8.1 Introduction

The evaluation of DAI-DEPUR is not an easy task. First, a direct evaluation of the
system in a real WWTP cannot be carried out, due to the great damage thay can be
caused to the environment. Secondly, DAI-DEPUR is composed of several KBS, the
CBRL agent, the supervisory-KBS, the numerical control knowledge module, etc.,
and so, a detailed validation of each main components will be needed. To achieve a
good evaluation of DAI-DEPUR, it was decided to perform the validation in two
steps:

• Validation of each main component: evaluation of the numerical control
knowledge module, evaluation of the expert knowledge paradigm and
evaluation of the experiential knowledge paradigm.

• Validation of the whole system. The system is being validated at three levels:

a) Simulation of the WWTP in real-time with expert's validation
b) Building-up and testing on a pilot scale WWTP
c) Validation on a real WWTP
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8.2 Single Validation of the Components

8.2.1 Numerical Control Knowledge Validation

The numerical DO control algorithm, described in 5.2.1, has been applied in
simulation using experimental data obtained from Manresa's WWTP [Moreno et al.,
1992; Moreno, 1991]. The objective of this WWTP is to try to keep always the DO
level over 2 mg/L, to allow the substrate oxidation reactions to proceed normally.
In order to attain it, in despite of inflow and load variations, the sequence of motor
switches is defined by the plant manager, using his own experience about the plant
dynamics. The sequence is established for two days, and re-evaluated after this time
according to the results obtained.

Fig. 8.1 Control algorithm results (a) Control actions and (b) DO concentrations
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In figure 8.1 (a), the real power factor profile used along two days in the plant is
presented (dashed graphic), together with the obtained using the proposed non-
linear DO predictive control algorithm (continuous graphic). As it may be observed,
the use of the proposed strategy allows to obtain a significative reduction of energy
consumption (in this case evaluated about a 35 %).

The DO evolution, experimental and controlled by the proposed algorithm is
presented in figure 8.1(b). As it is shown in the figure 8.1, for both cases, the DO
level is always greater than 2 mg/L, as required. But, there is a period of time in
which experimental DO concentration (dashed graphic) is greater than 4 mg/L, a
situation in which part of the energy consumed is not efficiently used. Figure 8.1 (b)
also describes the DO evolution obtained using the motor switches presented in
figure 8.1 (a), computed by the proposed control method (continuous graphic). In
this case, selecting a set point of 2.5 mg/L, the DO values are very close to the set
point, allowing the algorithm to maintain the required DO level in a more efficient
way, and always satisfying the imposed constraints.

The results presented in this evaluation have been obtained with a sampling period
of 30 minutes, and prediction and control horizons of PH = 10 and CH = 3 sampling
periods, respectively.

Thus, the non-linear DO predictive control methodology, seems to be an efficient
way to control the DO levels in the activated sludge process. It allows to maintain
always the DO level over the required value of 2 mg/L with a significative
reduction of the energy used in the aeration process. In addition, the algorithm has
shown to be able to successfully solve the problem of managing the technical
constraints present in these plants, without a significative loss of performance.

8.2.2 Expert Knowledge Validation

In order to validate the knowledge acquisition tool –LINNEO+–used to build-up the
knowledge bases of the different Knowledge-Based Systems that integrate DAI-
DEPUR, was made a compared study of LINNEO+ against a well known
classification tool, the K-means method. The results given in this chapter correspond
to a study carried out in the Manresa's WWTP [Sànchez et al., 1995e; De Gràcia,
1993]. Also, the knowledge bases obtained from the knowledge acquisition module
were tested against the experts' opinion with very good results.
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The use of unsupervised learning techniques for the (semi) automatic creation of
Knowledge-Based Systems (KBS) has been an important research activity in the AI
community. Our knowledge acquisition tool, LINNEO+, tries to overcome some
classical problems in the field such as order sensitivity, lack of stability, etc.
[Weinberg et al., 1992].

LINNEO+ have been tested with success against other systems such as COBWEB
[Fisher, 1987] and K-means [Dubes and Jain, 1990] (see [Béjar, 1995]). The
comparison with K-means is chosen because our experts had long been working
with that system and its comparison with LINNEO+ does not need further data
manipulation. Only the K-means method will be presented, because LINNEO+

methodology was already described in 5.4.1.1. It is important to notice that only
after the experts used LINNEO+ for the first time, they think on give names or
identify situations using K-means or other clustering method.

Variables Situation at the plant
Q ZN PH BOD COD SS SSV SED COND Input plant

PH BOD SS SSV SED COND Primary treatment input
PH BOD COD SS SSV SED COND Secondary treatment input
PH BOD COD SS SSV SED COND Output plant

RD_BOD RD_SS RD_SED Efficiency primary treatment
RD_BOD RD_COD Efficiency secondary treatment

RD_BOD RD_COD RD_SS RD_SED Overall efficiency

Symbol Description Units
Q Flow m3/day
Zn Concentration of zinc mg/L

BOD Measure of the biodegradable organic matter mg/L
COD Measure of the chemical oxidable organic matter mg/L

SS Measure of suspended solids mg/L
SSV Volatile suspended solids. This variable is related

with the biomass in the sample
mg/L

SED Measureof the sedimentable solids mg/L
COND Electric conductivity. This variable is related with

dissolved salts in the sample.
mg/L

Table 8.1. List of experimental variables considered in the classification study
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8.2.2.1 The Data Stream

The data studied correspond to data collected on the operation of the Manresa's
WWTP during the period 1990-1991. A total of 527 sets of data have been
considered, each of which consists of 38 variables. Of these 38 variables, 29
correspond to measurements taken at different points of the plant, while the
remaining 9 variables correspond to the calculated performance of the primary and
secondary treatments for the entire plant.

A complete list of the variables is given in Table 8.1, together with a brief comment
on the meaning of each variable. These data are available by anonymous ftp from
the UCI Machine Learning Repository of data bases.

8.2.2.2 K-means Method

The purpose of K-means [Dubes and Jain, 1990] is to classify a set of data in such a
way that those belonging to a given group are as similar as possible. To this end, the
matrix of similarity must be established. Each element of the matrix has a number
which is the measure of similarity between each pair of objects. Of the various
existing techniques for constructing groups, the one used in this case has been the
K-means method, based on division techniques, and which uses Euclidean distance.
This method requires an a priori definition of a certain number of groups. Analysis
rearranges the objects on the basis of the variables selected, so that at the end of the
process they are as similar as possible. To solve the problem of an a priori definition
of the number of categories, it is advisable to repeat the classification process with a
different number of groups. It is an incremental classification method.

At each step, a new data distribution within classes is built, in order to optimize
some predefined criterion. The criterion used was the maximization of the next
statistic:

F = |A| / |W|

where |A| is the determinant of the inter-groups covariance matrix and |W| is the
determinant of the intra-groups covariance matrix.
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In the present study it has been used the implementation of these algorithms on
Systat software.

8.2.2.3 Results obtained with LINNEO+

First, the data (xij) were standardized (xij'), using a scaling transformation over the
interval [0,1]:

xij' = (xij – xmin) / (xmax – xmin)

xmin and xmax being the minimum and maximum values, respectively, for the
variable under consideration.

In this case, the classification algorithm begins by selecting the best class among the
current ones, for each of the objects in the data set. These classes are identified by
experts as situations. The best for an object is the one in the previous set of classes
with minimum distance from the object.
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Fig 8.2. Variation of the number of classes according with the radius using
LINNEO+
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Unlike the cluster analysis where the number of classes is fixed a priori, in this case
the selection of the number of classes is carried by means of the classification radius.
The number of classes obtained by LINNEO+ is a function of the radius. If the
radius is very small, the number of classes increases, and as the radius increases the
number of classes decreases. Figure 8.2 shows the variation of the number of classes
with the radius for the case studied. To compare the LINNEO+ results with those of
the K-means method, it was decided to work with 13 classes, the chosen radius
therefore being 5.

Table 8.2 gives an example of the information for a situation, in this case no. 11,
provided by LINNEO+. Thus, LINNEO+ indicates the number of days constituting
the class, and the coordinates of the class centre in the space of 38 dimensions. In
this case, a value of zero indicates that the variable has a minimum value, while the
maximum value corresponds to 1.

"name: "#:| Class-0-11|
"components: " D-4/4/91 D-6/5/91 D-31/1/91 D-30/1/91 D-29/1/91 D-28/1/91 D-27/1/91
D-24/1/91 D-23/1/91 D-22/1/91 D-21/1/91 D-7/1/91 D-4/1/91 D-3/1/91 D-28/2/91 D-
27/2/91 D-26/2/91 D-25/2/91 D-19/2/91 D-15/2/91 D-13/2/91 D-12/2/91 D-11/2/91 D-
10/2/91
D-7/2/91 D-6/2/91 D-4/2/91 D-1/2/91 D-22/3/91 D-21/3/91 D-19/3/91 D-15/3/91 D-
14/3/91 D-13/3/91 D-19/10/90 D-30/11/90 D-29/11/90 D-28/11/90 D-26/11/90 D-
25/11/90
D-23/11/90 D-22/11/90 D-15/11/90 D-26/12/90 D-21/12/90 D-14/12/90 D-12/12/90
D-12/12/90 D-11/12/90 D-10/12/90 D-6/12/90 D-4/12/90 D-2/12/90
"center: "
Q-E: 0.45387453457474364 ZN-E: 0.08062930742289007
PH-E: 0.6823899371069181 BOD-E: 0.5327523063372119
COD-E: 0.5173102237823607 SS-E: 0.06152326385458858
SSV-E: 0.8207021600882953 SED-E: 0.14420587735975746
COND-E: 0.46532589053823676 PH-P: 0.6965408805031446
BOD-P: 0.5231439324798386 SS-P: 0.08773347274369087
SSV-P: 0.7247772536687632 SED-P: 0.1076592020205809
COND-P: 0.48849535029752117 PH-D: 0.7561683599419449
BOD-D: 0.5214794709255332 COD-D: 0.6412905485269013
SS-D: 0.30817610062893075 SSV-D: 0.7337683832222064
SED-D: 0.2174310842881841 COND-D: 0.49392615078638164
PH-S: 0.30125706451124357 BOD-S 0.05267472741135026
COD-S: 0.23072451095247104 SS-S: 0.05198728303382467
SSV_S: 0.7657508606256699 SED-S: 0.005073975444149756
COND-S: 0.351599571994931 RD-BOD-P: 0.5241987819392059
RD-SS-P: 0.525479747745348 RD-SED-P: 0.8411583638259165
RD-BOD-S: 0.9165440284791425 RD-COD-S: 0.7708890987456679
RD-BOD-G: 0.9311167888553367 RD-SS-G: 0.9079742460821214
RD-SED-G: 0.9917660974517388
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Table 8.2. An example of output of a class provided by LINNEO+

As in the case of K-means, the classes were interpreted as a function of their centres,
giving the results presented in Table 8.3.

Cluster # Days Operation Characterizatio
n

Classification

1 275 Right Normal
2 1

(13/3/90)
Out of limits Operation Problems with

secondary
treatment

3 1
(14/3/90)

Out of limits Operation
Problems with

secondary
treatment

4 4
(15/3/90-17-
18-19/7/91)

Out of limits Operation
Problems with

secondary
treatment

5 116 Right Normal
6 3

(5/6/90-28-
31/5/91)

Right Input Overloading

7 1
(29/4/90)

Out of limits Operation
Problems with
primary and

secondary
8 1

(14/9/90)
Right Input Storm

9 69 Out of limits Normal
10 1

(12/8/90)
Right Input Storm

11 53 Right Normal
12 1

(22/10/90)
Right Input Storm

13 1
(24/5/91)

Right Input Overloading

Table 8.3. List of classes obtained by LINNEO+ and expert's interpretation

8.2.2.4 Results obtained with K-means Analysis

First, the data were scaled down so that the standardized variables had a mean of
zero and a variance of 1, using the formula:
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zij = (xij – xmj)/sj

xij being the value to be scaled, xmj the mean value of the set j, and sj the standard
deviation of the set j.

Two parallel processes are then carried out, a cluster analysis to classify the data, and
a principal components analysis which will enable us to visualize the results and will
assist in the classification process.

Bearing in mind that it is necessary to make an a priori definition of the number of
classes, it was decided, after carrying out some tests, to perform the study with 13
classes. It was felt that this number allowed the greatest possible number of
situations to be considered, without being excessive. From the application of the
algorithm, the characteristics of the 13 classes defined by the distance of the data
from the centre of the class were obtained, together with the degree of variation and
the standard deviation of the variables forming the centre of the class.

 CLUSTER NUMBER:   4

         MEMBERS                                    STATISTICS

     CASE      DISTANCE  |  VARIABLE       MINIMUM      MEAN   MAXIMUM   ST.DEV.

     15/3/90       1.55  |       Q_E         -0.89-.3838E-02      0.87      0.56
     27/4/90       1.40  |      ZN_E         -0.61     -0.35      0.23      0.32
     17/7/91       1.01  |      PH_E         -3.70     -1.26     -0.04      1.26
     18/7/91       0.96  |     BOD_E         -1.23     -0.08      0.80      0.78
     19/7/91       0.98  |     COD_E         -1.29      0.15      1.19      0.89
                         |      SS_E         -0.82     -0.12      0.11      0.36
                         |     SSV_E         -0.23      0.25      0.80      0.35
                         |     SED_E         -1.27     -0.24      0.34      0.56
                         |    COND_E         -0.75     -0.38      0.10      0.30
                         |      PH_P         -2.34     -0.66      0.31      0.98
                         |     BOD_P         -0.81     -0.04      1.11      0.67
                         |      SS_P         -0.80     -0.16      0.18      0.36
                         |     SSV_P         -0.15      0.25      0.55      0.23
                         |     SED_P         -0.62      0.11      0.91      0.56
                         |    COND_P         -0.82     -0.50-.8484E-04      0.30
                         |      PH_D         -2.56     -0.96     -0.06      0.86
                         |     BOD_D         -1.20-.9680E-02      1.49      0.87
                         |     COD_D         -0.79      0.51      1.93      0.94
                         |      SS_D         -1.01      0.64      1.83      0.92
                         |     SSV_D         -1.03     -0.29      0.96      0.68
                         |     SED_D         -0.31      0.93      2.65      1.09
                         |    COND_D         -0.78     -0.40      0.04      0.33
                         |      PH_S         -1.12     -0.48      0.48      0.62
                         |     BOD_S          1.11      3.84      4.94      1.43
                         |     COD_S          2.21      4.38      5.34      1.22
                         |      SS_S          3.18      4.09      5.03      0.79
                         |     SSV_S         -0.64      0.10      0.70      0.46
                         |     SED_S         -0.18      0.44      1.37      0.60
                         |    COND_S         -0.71     -0.17      0.38      0.35
                         |  RD_BOD_P         -0.33      0.07      0.54      0.36
                         |   RD_SS_P         -0.79     -0.52      0.12      0.32
                         |  RD_SED_P         -2.49     -0.66      0.58      1.14
                         |  RD_BOD_S         -8.89     -5.11-.5381E-05      3.92
                         |  RD_COD_S         -5.71     -3.17 .2907E-04      1.86
                         |  RD_BOD_G         -9.25     -6.00     -0.81      3.06
                         |  RD_COD_G         -6.76     -4.60     -3.21      1.31
                         |   RD_SS_G         -9.64     -4.38     -2.59      2.67
                         |  RD_SED_G         -0.95     -0.46      0.21      0.51
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Table 8.4. An example of output of a class provided by K-means

As an example, the situation corresponding to class 4 is presented (see Table 8.4).
The variables are scaled so that a positive value indicates that the measurement is
above the mean, and the greater this value is, the further away from the mean it will
be. Thus, in this class it can be observed that the value of the output BOD (BOD_S)
has deviated 3.84 standard deviation units from the mean. This indicates that one of
the characteristics of this class will be a high output BOD.

Table 8.5 is obtained from the study carried out by the experts for each of the
characteristics of the classes. For each class, it presents the number of days of which
it consists (in the case that the class comprises few days, the date of each one is
given) and the interpretation of how the plant has operated in that situation. The
conclusion is that the plant functions correctly on most of the days concerned,
notwithstanding different operating situations and inflow characteristics. The
classification process and a study of the classes obtained also make it possible to
identify the alteration which has led to the malfunction of the plant.

Cluster # Days Operation Characterization Classification
1 175 Right Normal
2 1

 (13/3/90)
Out of
limits

Operation Problems with
secondary
treatment

3 181 Right Normal

4
5

(15/3/90-
27/4/90

17-18-19/7/90)

Out of
limits

Operation
Problems with

secondary
treatment

5 123 Right Normal

6 2
(5/6/90-
28/5/91)

Right Input
Overloading with
suspended solids

7 1
 (24/5/91)

Right Input
Overloading

without
suspended solids

8 23 Right Operation
Problems

 with primary
treatment

9 1
 (29/4/90)

Out of
limits

Operation
Problems with
primary and

secondary
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10 1
 (12/8/90)

Right Input Storm

11 2
(8/7/91-9/7/91)

Right Input Toxic loading

12 11 Right Input Overloading

13 1
(14/3/90)

Out of
limits

Operation
Problems with

secondary
treatment

Table 8.5. List of classes obtained by K-means and expert's interpretation

Figure 8.3 shows the experimental data as a function of the first three principal
components. From this figure, it can be seen that the differentiated situations

correspond to a solids shock (classes 6 and 7) and problems in the secondary clarifier

(classes 2, 9 and 13). In the case of the remaining groups obtained by means of
cluster analysis, graphic differentiation has not been possible.

5/6/90

24/5/91

29/4/90

28/5/91

14/3/90

13/3/90

OVERLOADING

PROBLEMS WITH 

SECONDARY TREATMENT 
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Fig. 8.3. Representation of experimental data as a function of first principal
components

8.2.2.5. Comparison of Classification Results

Once the variables were defined, a preliminary study of the data matrix was carried
out. This study has made it possible to discover the overall behaviour of the plant,
as regards the characteristics of the inflow, cleansing percentages during each of the
stages, and overall behaviour of the plant with regard to maintaining the required
water quality limits.

The results of classification using the two methodologies were compared on the
basis of the components of each of the classes and their interpretation as situations.
The results obtained are shown in Table 8.6. As can be seen, there are two different
kind of situations, that which corresponds to operational problems, and that which
corresponds to the normal behaviour of the plant.

K-means LINNEO+

G. CLUSTER N. days Days G. LINNEO+ N. days Days
1 175 1 275
2 1 13/3/90 2 1 13/3/90
3 181 11 53

4 5
15/3/90
27/4/90
17-18-

19/7/91

4 4
15/3/90
17/7/91

18-19/7/91

5 123 5 116

6 2 5/6/90-
28/5/91

6 3
5/6/90
28/5/91
31/5/91

7 1 24/5/91 13 1 24/5/91

8 23
9 1 29/4/90 7 1 29/4/90
10 1 12/8/90 10 1 12/8/90
11 2 8-9/7/91
12 11
13 1 14/3/90 3 1 14/3/90

Table 8.6. Comparison of classes obtained using both classification methods
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In the first case, there is a high degree of coincidence in the classification process.
Thus, classes 2, 4, 6, 7, 9, 10 and 13 of the cluster analysis coincide almost exactly
with classes 2, 4, 6, 13, 7, 10 and 3 of the LINNEO+ analysis. This indicates that both
methods allow a differentiated classification of the days on which there is some
malfunction of the plant and, in particular, a grouping of those days on the basis of
the problem occurring in each situation.

In the second case, the classes which group together the days considered as
reflecting the normal working of the plant are almost equivalent, although they are
distributed in different ways. The cluster analysis establishes three major groups of
175, 181 and 123 days which, despite some slight differences among them, are
grouped by the experts under the heading of correct operating conditions. The
analysis performed by LINNEO+ establishes three classes, with a more
differentiated number of days for each class. Thus, it gives one class with 275 days,
another with 116, and finally another with 53. As in the previous case, although
slight differentials can be found, the situations grouped together in each of  the
classes are very similar. But the interpretation is richer in the case of LINNEO+

because it also provides a chance to interpret the normal situations more precisely. As
explained in chapter 5 these results lead to the identification of 4 types of normal

situations that were previously mixed in only one by the experts.

When this study is carried out over 25 classifications with different data orders, one
can observe that although the similarity above described, the K-means method
results are less stable, that is, more objects move from one class to other. A detailed
study of this comparisons can be found in [Béjar, 1995]. Also, the intensional
description of LINNEO+ results are easier to interpret by the experts, so that they
can identify the situations by its values in a very direct way.

8.2.2.6 Obtained Situations Versus a priori Defined Situations

After obtaining a set of possible operating conditions for the plant, it was
considered useful to compare these situations –obtained on the basis of the
experimental operating data–, with a set of a priori defined situations by the experts
in a preliminary study. In that study [Serra et al., 1994], the situations were obtained
from a classification of the defined attributes of each of the objects, getting a total of
19 possible situations. The comparison carried out is given in Figure 8.4.
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Some differences can be seen. Some of the situations in the plant identified by the
two procedures are similar, as in the case of the normal situation and that which
corresponds to a storm. A second instance corresponds to the problems in the

secondary clarifier. All these problems are grouped into a single class in the
classification process, it having proved impossible to discriminate what the specific
cause had been. From conversations with the plant's responsible, it was concluded
that the situation which arose during that period corresponded to a break in the

conveyor belt, while the bulking situations defined by the experts had not occurred

during the period of time under study.
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Fig. 8.4.  Comparison of obtained classification situations versus a priori situations
defined by experts

The third group appears to correspond to those classes (situations) identified in the
classification process, but which had not been previously considered by the experts.
In our opinion, this feature is of great interest because it indicates that the
classification process (and its subsequent interpretation) provides information
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concerning the plant not previously considered by experts. On evaluating this fact
with the experts, they agreed that it offers new perspectives on parameter
generating processes.

The fourth group corresponds to situations defined by the experts which did not
occur in the period of time considered (two years). This is perfectly possible, since
these situations were obtained from a priori definitions of all the possible situations,
which obviously were not necessarily going to occur during the period of time
under consideration.

Finally, LINNEO+ relevance methodology [Belanche and Cortés, 1991] had shown
that a set of variables –those (9) corresponding to the calculated performance at
several points of the plant– were nought (do not care), that means that they do not
contribute to concept construction and that can be eliminated from the data stream.
This fact represents a great advantage over other traditional systems and led experts
to re-interpret and re-formulate some part of their knowledge. In chapter 5, we had
shown the importance of reducing the number of variables using some selection
method.

8.2.3 Experiential Knowledge Validation

The Case-Based Reasoning (CBR) approach (experiential knowledge) has been
validated taking into account different features: the similarity measure, the
competence of the CBR, and the performance of the CBR. The case library is
implemented as a prioritized discrimination tree, where the priority of node-
attributes is obtained from experts' opinion and validated with an inductive
learning method (ID3) [Segarra, 1995]. All CBR methods are designed and
implemented, although we are refining the adaptation and evaluation steps. The
case-based system is implemented in Common-Lisp.

8.2.3.1 The similarity measure
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Our similarity measure, the Eixample distance, already described in 5.4.2.2 was
defined after a wide performance study of different distances, mainly derived from
the Minkowski metric:

                                                                    n

d(xi,xj) = (Σ |xik - xjk|r)1/r       ∀ r ≥ 1
                                                                   k=1

The study was carried out with the next distances, normalized over the interval
[0,1]:

• Manhattan/City-block/Hamming distance: the Minkowski metric with r=1
• Euclidean distance: the Minkowski metric with r=2
• 3-order Minkowski distance: the Minkowski metric with r=3
• Exponential weighted Manhattan distance: a Manhattan distance with

exponential weights

All the distances were tested in three variational ways depending on which value of
the ordered attributes were used in the computation of the distance value: discrete or
quantitative values, continuous or quantitative values, and weight-sensitive or
discrete/continuous values depending on the weights of the attributes. Thus, the
final comparison study was performed among the following possible distances:

• Discrete Manhattan distance
• Continuous Manhattan distance
• Weight-sensitive Manhattan distance
• Discrete Euclidean distance
• Continuous Euclidean distance
• Weight-sensitive Manhattan distance
• Discrete 3-order Minkowski distance
• Continuous 3-order Minkowski distance
• Weight-sensitive 3-order Minkowski distance
• Discrete Exponential-weighted Manhattan distance
• Continuous Exponential-weighted Manhattan distance
• Weight-sensitive Exponential-weighted Manhattan distance, i.e. Eixample

distance

To evaluate the performance of the different distances, the case library was
initialized with a representative set of cases obtained from a previous classification.
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Then, 20 cases were used as a training set. For each one, the case library was
searched to retrieve the most similar cases to it, using all the distances. The retrieval
tables generated were studied by the experts, who marked each retrieval table for
each possible distance, giving the following results:

• For each kind of distance, Manhattan, Euclidean, 3-order Minkowski, and
Exponential-weighted Manhattan, always the best performing one is the weight-
sensitive, afterwards the discrete one, and finally the worse is the continuous.

• Comparing the continuous distances, was discovered that all share the same
degree of performance.

• The discrete distances all have an equal performance, excepting the
Exponential-weighted Manhattan, that is the best.

• The worse Weight-sensitive  distance is the Weight-sensitive Manhattan. The
Euclidean and 3-order Minkowski are equal, and the best of them is the Weight-
sensitive Exponential-weighted Manhattan, i.e. the Eixample distance.

Continuous  
Manhattan 

Discrete  
Manhattan 

Weight-sensitive  
Manhattan 

Continuous  
Euclidean 

Discrete  
Euclidean 

Weight-sensitive  
Euclidean 

Continuous  
 3-order Minkowski

Discrete  
3-order Minkowski 

Weight-sensitive  
3-order Minkowski 

Continuous  
 Exponential-weighted 

Manhattan 

Discrete  
Exponential-weighted  

Manhattan 

Weight-sensitive  
Exponential-weighted  

 Manhattan

Fig. 8.5. The performance graph of the distances

All theses conclusions are summarized in the figure 8.5, that is a precedence
distance graph. In this graph,

A –> B, means that the distance A is "worse" than the distance B.
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It shows that the "best" distance from the performed study is the Weight-sensitive
Exponential Manhattan distance, i.e. the Eixample distance.

8.2.3.2 The CBR competence

In order to test the competence of the case-based system, two experiments have been
done. In the experiment 1, the case library was seeded with a representative set of
initial cases (19) from a previous classification built-up by Linneo+, from real data
operation in the WWTP, during the period January 90–September 91. Then, the
system was tested against 15 cases formulated by the experts to the system with
very good results. In the figure 8.6 it is shown the average marks given by three
experts to each one of the 15 cases formulated by them.

Fig. 8.6. Competence results with the Case Library in the experiment 1

The experiment 2, was to seed the case library with 19 real cases coming from
another classification from real data operation in the WWTP, during the period
January 94–May 94, and tested against 15 cases formulated by the experts, with also
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very good results. In the figure 8.7 it is shown the average marks given by three
experts to each one of the 15 cases formulated by them.

Fig. 8.7. Competence results with the Case Library in the experiment 2

8.2.3.3 The CBR performance

The performance of the case-based reasoner, measured both in size of the case library
and in response-time was tested with two other experiments. In the third
experiment, the same initial case library of the experiment 1 (19 cases from 90/91
real data operation) was tested against a stream of all the 527 real operation cases
from the whole period 90/91, with a final size of the case library of 406 cases (77 %
of the initial case library). See figure 8.8 for a detailed description.
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Fig. 8.8. Size evolution of the Case Library in the experiment 1

 The percentage of retrieved cases is taken as a measure of the retrieval and
matching time used. From the picture of figure 8.9, it is clear that the retrieval time
in the case library does not degrade over time, but on the other hand, it maintains or
decreases, as a consequence that the retrieval time is almost constant, and the size of
the case library is increasing.

In the fourth experiment, the case library was initialized with the same 19 cases
from 94 real data operation than in experiment 2, and was tested against a stream of
all the 151 real operation cases from the whole period 94, with a final size of the case
library of 87 cases (57.6 % of the initial case library). See figure 8.10 for a detailed
description.
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Fig. 8.9. Percentage of retrieved cases from the Case Library in the experiment 1

Fig. 8.10. Size evolution of the Case Library in the experiment 2
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The percentage of retrieved cases is also taken as a measure of the retrieval and
matching time used. From the picture of figure 8.11, it is clear that also in this
experiment, the retrieval time in the case library does not degrade over time, but on
the other hand, it maintains or decreases, as a consequence that the retrieval time is
almost constant, and the size of the case library is increasing.

Fig. 8.11. Percentage of retrieved cases from the Case Library in the experiment 2
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8.3 Global Evaluation of DAI-DEPUR

In this section, we will describe the global expoerimental evaluation of DAI-
DEPUR, at each step of the validation. This evaluation is not still finished, due to the
great complexity involved in it.

8.3.1 Simulations

DAI-DEPUR global behaviour was tested in real-time simulation mode against the
experts' opinion, yielding very good results. This experimental evaluation was
possible because there are several validated process models of the WWTP behaviour
that are implemented in the architecture [Serra, 1993].

Currently, we are developing new simulations with the GPS-X simulation package
[Hydromantis, 1995]. It is a simulation tool specifically developed for WWTP
simulation purposes, and can easily interact with the ACSL simulation language,
and with the user through a friendly user interface.

8.3.2 Validation on a Scale Pilot WWTP

A wider evaluation of DAI-DEPUR has been possible due to the construction of a
pilot scale WWTP. The chart of the pilot scale WWTP is depicted in figure 8.12.
With this pilot scale WWTP, it is possible to create non-standard and/or
dangerous situations –those that cannot be tested at the real WWTP lest the
environment may be damaged– and to measure our system's performance with
real data properly scaled.

Also, we have developed the on-line data acquisition interface for the pilot scale
WWTP. See figure 8.13.

On the other hand, there are almost one year of real data from the pilot scale WWTP
operation. This feature provides a background to test the competence of DAI-
DEPUR. Currently we are testing DAI-DEPUR behaviour with the pilot scale
WWTP, with initial good results.
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Fig. 8.12. The chart of the pilot scale WWTP
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Fig. 8.13. The on-line data acquisition interface of the pilot scale WWTP

8.3.3 Validation on a Real WWTP

We also are working to install DAI-DEPUR in the Cassà de la Selva-LLagostera
WWTP. We are developing the on-line data acquisition interface, and adjusting the
necessary components of DAI-DEPUR such as gathering a real data stream to derive
the initial case library, building the process models of the WWTP, modifying the
numerical predictive control algorithm, etc.

In a middle-term future (September 1996) it is assumed that this evaluation will be
finished. There is an agreement among the "Junta de Sanejament de la Generalitat
de Catalunya", as the responsible organism for WWTP management in Catalonia,
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and our universities to do that work. It will be the ultimate step in the validation of
DAI-DEPUR
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Chapter 9

Application

9.1 Introduction

The issue of this chapter is to present the main features of the practical use of DAI-
DEPUR application, although this is not an exhaustive manual. The next sections
describe the execution process of DAI-DEPUR, outlining its main characteristics,
and illustrating them by means of some examples. Finally, a brief insight of DAI-
DEPUR implementation is detailed.

9.2 Executing DAI-DEPUR

The main outstanding features of DAI-DEPUR execution are the high friendly
interaction between the system and the operator that is realized through the user
interface, the simulation tool, some inspection facilities, and output displays that
make easier the monitoring, control and supervision of a WWTP.

9.2.1 Main menu
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To start DAI-DEPUR execution, it is needed to load the G2 shell, and then to select
within its main menu the Start option (see figure 9.1). The main menu is visualized
through a window. There are other options that can be chosen such as New

workspace, Get workspace, Inspect, Load Knowledge Base, Merge Knowledge Base, Save

Knowledge Base, System tables, Run options, Change mode and Miscellany.

Also, some of the options hide new menus with other possible choices such as the
Get workspace, System tables, Run options and Miscellany commands.

Fig. 9.1. Main menu of G2 shell

When execution starts, all the KBS and other modules and agents are ready to
cooperate in the supervision and control of the WWTP.

9.2.2 User interaction
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The user interaction is accomplished by means of the user interface where there are
three main components: a graphical chart of the WWTP that allows to visualize the
continuous WWTP operation, a main menu formed of several options, and the
displayed information (see figure 9.2).

In the graphical chart of the plant can be followed the evolution of the WWTP under
control. Also, the mechanical or electrical faults occurred in the WWTP operation
such as turbine aeration motors off, etc., are signalled

In the main menu there are several options: to acquire some off-line data coming
from analytical tests in the laboratory such as suspended solids (SS), biological
oxygen demand (BOD5), etc.; to supply microscopical information from the biomass
of the bioreactor; managing and monitoring of some mechanical-electrical
equipment such as pumps, aeration turbines, gates, etc.; obtaining some graphic
information about the evolution of some variables (see 9.2.5).

The displayed information can be some messages generated by the Supervisory-KBS
to inform the operator of some discovered alarms, or the results of the diagnosis
phase, i.e. the identified global situation, or some output generated by the
inspection facility, etc.
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Fig. 9.2. The graphical interface of DAI-DEPUR

9.2.3 Simulation Tool

The simulation tool is provided by the G2 simulator. It is a special kind of data
server that supplies simulated values for variables and parameters. The simulator
uses formulas and procedures to simulate values. It is a safe development and
execution tool, which is very important in on-line control tasks. Whenever the
simulator is on, it evaluates:

• Every variable that has a specific simulation formula
• Every item for which a generic simulation formula exists
• The main simulation procedure
• All simulation models that are running

To save time the simulator partially evaluates expressions when a Knowledge Base
is loaded an when it is edited; this means that it does not need to fully evaluate the
expressions while the Knowledge Base is running. It also sorts variables and
parameters so that it evaluates the least dependent variables and parameters first,
reducing the number of calculations it has to make.
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Using the G2 simulator, several components of DAI-DEPUR application can be
simulated:

• Test a Knowledge Base
• Run a simulation in parallel with a working process.
• Use simulation models to selectively run and reset parts of a simulation
• Expand DAI-DEPUR safely in the development stage of the application.
• Design control strategies

9.2.4 Inspection Facilities

The inspection facilities allow the operator to search trough a Knowledge Base for
items based on their type, class, attributes, and location. It can be used off-line, in a
development stage of the application to make easy the knowledge engineering task,
as well as in execution mode to supply the operator with some information about
the rule-based reasoning carried out by the G2 shell. In particular the inspection
facility can be used to:

• Search and inspect a particular item of a Knowledge Base.
• Display a table of attribute values.
• Show short representation of items.
• Display a class, module or workspace hierarchies of the different Knowledge

Bases. See figures 9.3 (a) and (b).
• Highlight and display any occurrence of an item in a workspace. For example a

conclusion, or a premise of an inference rule.
• Display warning messages about errors or conditions that G2 encounters.
• Display trace messages to show the current value of a variable or expression

each time it receives one, or when G2 starts and stops evaluating a variable,
rule, formula, or function, or when G2 performs each step of evaluating a
variable, rule, formula or function.

• Set breakpoints so that G2 can step through an evaluation and halt after each
step.

• Highlight the invoked rules, that allows an explanation of the reasoning
process carried out in the Knowledge Bases
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Fig. 9.3 (a) and (b). Output display of inspection results

9.2.5 Output Displays

The output displays allow DAI-DEPUR application to visualize some information to
the WWTP operator, making the application more user friendly and more reliable
for monitoring, control and supervision purposes. With the output displays, the
application can show some screens such as:

• Readout-tables, i.e. variables, parameters or expressions, and their values, as
well as the scheduler's time.

• Dials, a graphically represented arithmetic values that show the increase or
decrease of the numerical magnitudes by means of a circular clock.

• Meters, a graphically represented arithmetic values that show the increase or
decrease of the numerical magnitudes by means of a vertical bar.

• Graphs, that plot the histories of one or more variables or parameters. Graphs
are ideally suited for showing a history of values (see figure 9.4).
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Fig. 9.4. Graphs of some system's variables expressed as a deviation variables

• Charts, that plot any data series against any other data series, or any data series
against integers (1, 2, 3, …).

• Freeform-tables, that provide a tabular display of rows and columns. Each cell
may display the value of any computed expression.

Also, the results of the inference process carried out by the different Knowledge
Bases to diagnose the global current situation of the WWTP, some alarm situations
discovered by the Supervisory-KBS, and other useful messages are communicated
to the operator by means of some output displays (see figure 9.5).
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Fig. 9.5. Output display of diagnosis results and actuation

9.3 Examples of Application

Some examples of how works DAI-DEPUR are presented in the next subsections by
means of three cases application. Clearly, it can be observed the interaction among
the WWTP, the operator, and the different agents and technologies integrated
within it.

9.3.1 Uncontrolled Denitrification: Rising

In a new supervisory cycle, DAI-DEPUR starts the local diagnosis task. The
Secondary settler-KBS detects that the Suspended Solids (SS) mixed with the
effluent are high, i.e. greater than 35 mg/L allowed by the environmental laws,
while the other KBS of the water line does not detect anything anomalous, because
the effluent quality is normal, the water temperature is normal (18 ºC), and the DO
level in the bioreactor is slightly higher than the prefixed one (2.5 ppm). Another
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important captured feature is that the sludge age is slowly increasing up to a value
of 9 days.

At the same time, the Supervisory-KBS activates the Case-Based Reasoning and
Learning (CBRL) agent to retrieve the most similar experienced situation to the
current one, and to adapt its actuation plan if it was successful. In the summer of
1991, in the same WWTP, a big inflow of ammonia coming from an industrial waste
of a neighbouring industry, combined with old sludge age and a temperature of the
mixed liquor (ML) of 20 ºC, provoked the appearance of nitrogen bubbles in the
secondary settlers. This phenomenon, known as Rising, causes the biomass to lift up
to the surface of the settlers. If there is no floating removal equipment, this biomass
flows with the treated water providing the effluent with high values of suspended
solids (SS) and microorganisms, and decreasing the quantity of microorganisms in
the biological process. In the past situation, there was no control action over the
WWTP because the ammonia waste and its effects were punctual.

In the supervision phase, the Supervisory-KBS perform a deep analysis of all
information gathered and inferred by the different local KBS. Combining all local
diagnosis, it suspects that the WWTP is in a nitrification process (passing from
ammonia to nitrates). This hypothesis is fostered by the high temperature of the
water, the old sludge age and the high dissolved oxygen (DO) level in the
bioreactor. The obtained nitrates can easily become nitrites in anaerobic conditions,
and afterwards become nitrogen gas. This last event would cause the appearance of
small bubbles in the secondary settlers, that push the biomass to the surface,
preventing it from sedimentation. The Supervisory-KBS to confirm its hypothesis
can interact with the operator to require some analytical measures, such as the input
and output ammonia values that would detect a high percentage of removal, some
observational information such as the presence of bubbles in the secondary settlers,
or the V30 analysis in the laboratory.

In this case, both the expert and experiential situation diagnosis agree. In the
validation phase, the identified situation that would be communicated to the
WWTP operator is: Rising global situation is very possible. The operator can inspect
some of the conclusions reached by the inference engines, which were the relevant
data for the diagnosis, which rules have been crucial, the degree of certainty of the
reached conclusion, through the explanation module.
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The actuation phase would consist of the following actuation plan, derived from
the expert actuation rules:

1. Increase the recirculation-flow to reduce the quantity of stored sludge in the
secondary settlers.

2. Increase the waste-flow in order to diminish the sludge age by means of the
washing of the nitrifying microorganisms.

3. Decrease the set point of the dissolved oxygen level in the bioreactor up to 1.5
ppm. This level ensures a sufficient conditions to remove the organic carbon
material, but prevent the WWTP from the nitrification of the present ammonia.

Finally, in the learning task this new experienced situation and actuation can be
stored as a new case into the Case library. In next supervision cycles it must be
checked the reliability of the followed actuation plan.

The nitrification-denitrification of ammonia that flows with the water causes the
removal of water nutrients. This fact is not only good for avoiding the
eutrophyzation of receiving water, but in many cases, also it is needed to fulfil the
European environmental legislation.  Many activated sludge WWTPs are studying
the possibility to include biological denitrification to the conventional process.
These WWTPs require a great deal of redesign to cope with the consequences
involved in nitrogen source removal [R.-Roda, 1994]. Currently, this uncontrolled
nitrification causes them too many problems (Rising), and they must prevent from it.

9.3.2 Deficient Sludge Settling: Filamentous Bulking

In a new supervisory cycle, within the local diagnosis task, the Secondary settler-
KBS detects that the sludge level in the secondary settlers progressively increases
while the biomass concentration in the recirculation flow decreases, and the
sobrenatant is surprisingly clear, due to the formation of a network of filamentous
microorganisms that retain small particles (see figure 9.6).

The CBRL agent searches for similar situations in the Case Library. There are
several past situations like the current one. All of them are identified as Bulking

situations, i.e. poor sedimentation of the biomass. But there are several kinds of
bulking occurred in the WWTP and it is needed more information to decide to
which kind of bulking belongs the current situation.
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Fig. 9.6. Secondary settler or clarifier

In the supervision phase, the Supervisory-KBS perform a deep analysis of all
information gathered and inferred by the different local KBS. Combining all local
diagnosis, it concludes a Bulking situation suspect. Starting the validation stage, the
Supervisory-KBS requests from the Biological reactor-KBS, the behaviour of the SVI
value and microscopical observations to confirm the presence of filamentous
microorganisms that causes the Bulking situation. Then, it starts a planning strategy
to determine the causes for this situation using information coming from several
KBS. In particular, the Bulking causes considered in the Supervisory-KBS are:

 • Low DO level.
 • Nutrient deficiency.
 • Low F/M ratio.
 • Sulphurs presence.
 • High pH variability.
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SUPERVISORY-KBS-RULE-012 :: 
IF bulking is true AND  
    S. Natans is in-excess  
THEN conclude that  
    DO-level is low   
  
  
  
SUPERVISORY-KBS-RULE-051 :: 
IF bulking is true AND DO-level is low AND  
    low-DO-level is not-detected  
THEN conclude that  
    check the status of the DO-sensor 
  
SUPERVISORY-KBS-RULE-052 :: 
IF the status of DO-sensor is OK  
THEN conclude that  
    increase the set-point of DO-control  
  
SUPERVISORY-KBS-RULE-053 :: 
IF the status of DO-sensor is wrong 
THEN  
    calibrate the DO-sensor AND 
    keep the DO-control 
  
SUPERVISORY-KBS-RULE-054 :: 
IF the status of DO-sensor is not-possible-to-check 
THEN  
    increase the set-point of DO-control AND  
    keep the alarm-situation AND  
    send message-34 to operator 

ACTUATION-INSPECTION RULES

CAUSE-IDENTIFICATION RULES

Fig. 9.7 Low DO level filamentous bulking rules

As none of the other KBS has signalled a possible Bulking cause from those
mentioned above, the Supervisory-KBS, it is forced to believe that some of the
sensors (pH or DO) is sending incorrect values, or the laboratory analysis could be
anomalous. To discover the possible cause, the Supervisory-KBS ask the operator for
a microscopical observation of the biomass of the bioreactor. Thus, determining
which kind of filamentous microorganism is predominant in the sample, will give a
quick insight of which can be the cause that has favoured its growing (see 4.1.3.1).

If we consider that the cause of the Bulking in the WWTP is low DO level in the
bioreactor, then the filamentous microorganism detected would be S. Natans, type
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1701 or H.Hydrossis. Other possibilities would be Beggiatoa or Thiotrix indicating
sulphurs presence; type 021N, 0041, 0675 o Thiotrix indicating nutrient deficiency,
and M. Parvicella, Nocardia, H. Hydrossis, type 021N, 0041, 0675, 0092, 0581, 0961,
0803 indicating a low F/M ratio.

After the identification of the current situation, the Supervisory-KBS starts the
actuation phase executing the expert Bulking strategy that can be slightly modified
by experiential actuation, to avoid biomass decrease in the system. These plans are
different for each kind of Bulking. In this case would imply an increase of the
dissolved oxygen (DO) in the bioreactor, and at the same time, it must inspect why
the low DO level has not been already detected, i.e. reflection process. So, it must
check DO-sensors, the DO-control (in Numerical Control Knowledge module) or the
DO-set-point. The rules involved are shown in figure 9.7.

The main difference between this system and a classical control one is that the
second just could act on the set-point of the controller, but DAI-DEPUR may
activate or modify the classical control strategy or if necessary looks for operational
problems and errors in sensors. In addition, it can retrieve some similar situations
that were previously detected, in the past operation of the plant, and update them to
help to solve this new situation.

This new experienced situation and actuation brings the possibility to learn from it.
It can be stored as a new case into the Case library. In next supervision cycles it
must be checked the reliability of the followed actuation plan.

9.3.3 Toxic shock

The local diagnosis phase ends with an alarm discovered by the water line
subsystem. It has detected a significative decreasing in the efficiency of the organic
material removal. Many causes can be the responsible for this low performance.

The CBRL agent retrieves the most similar past situation. There was a Solids Shock

situation very similar to the current one, provoked by a heavy metal industrial
waste. In the Manresa's WWTP the most common wasted heavy metal is Zinc (Zn).

The Supervisory-KBS disregards several possible causes for the decreasing
efficiency of the organic material removal, because the inflow water to the WWTP is
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normal as well as the organic material concentration in the inflow. Also, the
dissolved oxygen in the bioreactor is good and none serious mechanical problem
seems to affect the WWTP operation. Thus, in this supervision phase it is concluded
the possibility that a Solids Shock situation is occurring in the WWTP. To confirm this
hypothesis, the operator must require a microscopical observation of the bioreactor
sludge, that would determine the behaviour of different protozoa present in the
water. A significative variation in the existing proportion between aspidisca and
vorticella microorganisms would indicate the presence of some toxic substance,
because their resistance to the toxic substances is very different. Even, all the
protozoa can dead if the shock is very strong and fast.

In this case, also both the expert and experiential situation diagnosis agree. In the
validation phase, the Supervisory-KBS determines what kind of heavy metal is the
responsible of the low depuration efficiency, in order to provide the WWTP with a
correct actuation plan. A polarographyc analysis in the WWTP laboratory would
allow to find the sending source of the metal. DAI-DEPUR will advise to start an
analysis looking for the presence of Zn, because it is the most common heavy metal
in their past experiences.

The actuation phase, based on an integration of expert and experiential actuation,
would increase the waste-flow in 15 % to progressively reduce the concentration of
the heavy metal in the WWTP that has been adsorbed by the microorganisms.
Another action, that perhaps overcomes the responsibility of the WWTP's manager,
would be to locate the origin of the toxic waste, in order to stop it and avoid new
toxic substance wastes. Finally, DAI-DEPUR would send a message to the operator,
to periodically control the total elimination of the toxic substance in the WWTP.

Finally, the learning task can incorporate this new experienced situation and
actuation into the Case library. In next supervision cycles it must be checked the
reliability of the followed actuation plan.

9.4 Implementation

DAI-DEPUR currently runs on a Sun Sparc workstation. In order to achieve the
proposed goals DAI-DEPUR integrates three main tools (see appendix E for a brief
description of these tools) to implement the three knowledge/expertise modelling
paradigms: ACSL simulation language [Mitchell and Gautier, 1987] used in the
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predictive dissolved oxygen (DO) control algorithm, the G2 shell [Gensym, 1992;
Gensym, 1990] to implement the rule-base reasoning, data base management,
temporal reasoning and simulation facilities, and Sun Common Lisp [Sun
Microsystems, 1990] to implement the case-based reasoning.

Also, if DAI-DEPUR is controlling on-line a WWTP, it is necessary a supplementary
data acquisition computer (PC) connected to the main supervisory computer, to
capture the on-line data from the WWTP. However, DAI-DEPUR can be executed in
simulation mode, due to the fact that there are some developed models for the
WWTP behaviour [Serra, 1993].

The numerical control algorithm uses the ACSL advanced continuous simulation
language to predict the dissolved oxygen evolution. This simulation is implemented
as a source program in ACSL language that is later compiled to a Fortran program.

The Case-based reasoning approach has been performed by means of some
algorithms detailed in chapter 5, by the Case Library structure implemented by a
discriminant tree and an ordered discriminant list of the attributes, and by the table
of attributes implemented as a hash table. See appendix D for some examples of the
Case Library.

Rule-based reasoning and all the other methods and facilities are implemented
through the G2 shell. The following elements are integrated in G2:

1) Facts, parameters or variables of the system. It is about 250 elements.
2) Object classes, to define the system. It is about 470 objects.
3) Process modelling described both with formulas, tables, equations, simulation

formulas (24 items) and descriptive rules (63 rules)
4) Local diagnosis rules: diagnosis (70 rules), detection of failures (70 rules), and

prevention (35 rules).
5) Supervision rules: combination, cause identification and validation rules (70

rules)
6) Control rules: actuation (20 rules) and inspection rules (20 rules).

As the facts, variables or parameters and inference rules have already been
explained through this thesis (chapters 4 and 5, 6, 7 respectively), now we only
summarize the object-oriented modelling.
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Fig. 9.8  Hierarchy of the object classes

The most common units and objects present in WWTPs have been stored into the
object base. Defining a hierarchy of objects and classes of objects saves time and
space, as subclasses can inherit attributes from the superior class. For example, in
the Manresa's WWTP, there are two types of aeration turbines, Archimedes screws
to convey recycled activated sludge and various pumps. All of these types of
equipment are used to impel flow, and a superior class of liquid impeller could be
defined. Many attributes such as whether the equipment is running or stopped, a
maintenance schedule, power consumption, etc., are common to these objects, so
they only need to be defined once in the superior class definition.
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Objects 
  
   Process Equipment                    
  
         Basins 
         Settlers 
                 Primary settlers 
                 Clarifiers 
         Pools  
         Sources  
         Screens          
                Narrow  
                 Wide 
                 Manuals  
         Sand removers  
         Manual valves        
         Exterior 
         Thickeners   
         Flotation units  
         Digesters  
         Tanks  
         Belt filter presses  
  
   Motors 
  
         Turbines 
                  1 speed 
                  2 speed 
         Arquimedes screw 
         Pumps  
         Electrovalves

  Biomass 
  
        Fungi 
        Microorganisms  
        Protozoa  
                Flagellates 
                Free-swimming ciliates            
                Ciliates  
                        Vorticella  
                        Aspidisca 
                Rotifers  
  
  Floc  
  
  Microorganism-characteristics 
  
  Situation 
  
  Color-button

Table 9.1. Object base for the Manresa's WWTP

As it is shown in figure 9.8, the liquid impeller class would have a superior class, for
example, the engine class, which would have a superior object class, that could be
the highest level defined. These means that a few powerful generic rules can be
written which apply to a wide range of objects avoiding duplication. Besides, new
attributes can be added to any class if more aspects about the class are considered or
deleted otherwise. An example of a definition is:

(AERATION-BASINS
(Attributes

INFLOW
OUTFLOW
BIOMASS
SUBSTRATE (COD)
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DISSOLVED OXYGEN
BIOMASS-AT-THE-INPUT
SUBSTRATE-AT-THE-INPUT
DO-AT-THE-INPUT
OXYGEN-UPTAKE-RATE (OUR)
pH
GATE-OPEN-OR-CLOSE
FULL-EMPTY))

In table 9.1, the classes of objects considered in DAI-DEPUR are shown. Once the
classes are defined different instances of them are created and connected between
them to build the scheme of the WWTP.
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Chapter 10

Conclusions and Future Work

If one cannot explain what he has been doing, then his work is not useful.
Erwin Schrödinger

10.1 Research discussion

An integrated and distributed multi-level supervisory architecture, DAI-DEPUR, for
wastewater treatment plants supervision in real-time has been designed and
implemented. It was designed to overcome the insufficiency of classical Chemical
Engineering control methods, and some shortcomings of Knowledge-Based
Systems, specially when coping with complex real-world problems. After the
evaluation stage of DAI-DEPUR, we can claim that the architecture fulfils the
specified requirements.

This integrated architecture approach has several advantages that make it more
powerful than other classical technologies applied to wastewater treatment plants,
as well as to other complex domains:

• If hard real-time deadlines are needed, they could be satisfied through
concurrent computation of all agents. In the supervision of a WWTP, as explained
in 2.1.2.1, there are not hard real-time deadlines, but hard output quality
constraints. So, concurrent computation is not a requirement for WWTP
supervision.
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• Modularity and extendibility. The several KBS and other distributed problem
solving processes that cooperate in the WWTP supervision, provide DAI-DEPUR
with a good modularity and extendibility, that make easier the maintenance,
spread and debugging of the system.

• Learning from experience. DAI-DEPUR can learn from past experienced situations
in a certain WWTP, by means of storing these past experiences in its memory.
This experiential knowledge allows DAI-DEPUR to increase its competence and
to prevent itself from making the same mistakes than in the past, by means of a
case-based reasoner.

• Reusability. DAI-DEPUR can be exported to any wastewater treatment plant
with similar technology, with minor changes. This reusability aim was already
outlined by the experts in the first stage of the research, as a relevant feature to be
accomplished.

• Knowledge acquisition module to solve the bottleneck of the knowledge
acquisition. With the semi-automated knowledge acquisition tool, LINNEO+,
DAI-DEPUR captures the expert knowledge provided by the experts and the
literature.

• Integration of problem solving capabilities, reasoning, learning, on-line data
acquisition, numerical control, simulation tasks, etc., in a single system.

• DAI-DEPUR provides a multi-disciplinary integrated way to supervise a WWTP.
The experience from different people and different backgrounds such as
Microbiologists, Chemical Engineers, Expert operators, Control Engineers and
Computer scientists has been used.

• Microbiological, qualitative and quantitative information available from the
WWTP operation is taken into account to supervise the process.

• The WWTP can be controlled in normal situations (mathematical control) , in
usual abnormal situations (expert control), and in unusual abnormal situations

(experiential control).
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On the other hand, the design and implementation of the architecture is more
difficult and complex than other single-technology approaches applied to WWTP
supervision and control.

10.2 Contributions

Mainly, the power of DAI-DEPUR relies on the integration of several techniques at
the knowledge/expertise level, on the multi-level structure for the different kinds of
knowledge and reasoning, and on the distributed problem solving scheme.

From what has been previously described, one can state that the combination of the
three paradigms at the knowledge/expertise level, allows the system to model the
numerical control knowledge (supplied by a predictive control algorithm), to model
the subjective knowledge (supplied by the experts) as well as the objective
knowledge (supplied by the real operation of the concrete plant under control)1.
This integration presents some advantages that are the addition of the own ones
from rule-based reasoning, from case-based reasoning, from dynamic learning, and
from semi-automatic knowledge acquisition, that are the methods acting at the
knowledge/expertise level:

• DAI-DEPUR supports reasoning in a poor understood and ill-structured domain,
where other kinds of reasoning like model-based reasoning or algorithmic
reasoning could not be possible or easily formulated.

• DAI-DEPUR is able to learn from previously solved problems and to adapt the
available experiential knowledge over the domain (dynamic learning environment).

• DAI-DEPUR overcomes the brittleness of KBS' in coping with unforeseen
situations (not previously considered by the expert general knowledge), trying to
solve them by means of the most closely situation in the Case library.

• DAI-DEPUR captures the knowledge provided by the experts (knowledge

acquisition) which is very important –although subjective– to get a central corpus
of knowledge about the domain.

                                               
1So that it is commonly known –and has been showed out in the performed study [Sànchez et al., 1995e]–
that not all the considered situations by the experts occur in the practice, and vice versa, certain situations
not taken into account by the experts can occur in the WWTP.
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• DAI-DEPUR deals either with prototypical situations (general knowledge) or with
idiosyncratic or exceptional ones (specific knowledge).

• Due to the dynamic learning environment, the system is able to adapt itself to a
specific wastewater treatment plant. Thus, DAI-DEPUR is portable to another
plant if we supply the system with a case library formed of a set of specific cases
(operating situations of the concrete WWTP), which can be obtained semi-
automatically from real operational data.

The multiple components of DAI-DEPUR are more powerful than systems using a
single technology applied to wastewater treatment plants as knowledge-based
approaches [Lapointe et al., 1989; Maeda, 1989], statistical process control techniques
[Novotny et al., 1990], fuzzy controller methods [Alex et al., 1994; Czoagala and
Rawlik, 1989], etc.

On the other hand, our research has contributed to the emerging research activity
that joins Artificial Intelligence with Environmental Science to preserve our planet.
In recent past years, we have knowledge of the two first Workshops until now,
merging these two fields:

• The AAAI'94 Workshop on Environmental Applications of AI. Seattle, USA.
• The IJCAI'95 Workshop on Artificial Intelligence and the Environment. August,
Montréal. Canada, where we participated [Sànchez et al., 1995b]

10.3 Future work

There are some future work lines to be considered. Some of these features have
appeared as the consequence of DAI-DEPUR evaluation. All of these future lines are
intended to improve the competence, usefulness and the performance of DAI-
DEPUR:

• Integration of a new agent to support a new feature to be considered in the
cleansing process of a WWTP: the nitrification problem.

• Other new research direction points to consider that Knowledge Bases would
not be static but dynamic ones. Inference rules could be adapted as well as CBRL
agent update the Case Base accordingly with new experience.
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• The research in WWTP field has to be in mind the developing of an automatic

pattern recognition of microbiological images to capture this useful information to
the system [Dellepiane et al., 1992]. To this end, we are studying the integration of
DAI-DEPUR with VEX-93 [Valdés et al., 1994]  to include on-line identification of
microorganisms to automatically capture this qualitative information into the
supervisory system.

• As it was explained in 5.4.1.2, it can be interesting to study the feasibility of
establishing a situation transition network, that could capture the temporal
transitions from one situation to another, in order to prevent the WWTP
operation from an upset situation. It could establish a model-based reasoning to
model the causal relationships among WWTP situations.

• As shown in 8.2.3, the size of the case library may become too large. As we
mentioned in 5.4.2.3, we are developing a new strategy to add the new cases to
memory, based on a relevance measure of that new cases to be added. This measure
states that a case is relevant if the minimum distance to all the cases stored at the
corresponding leaf-node is greater or equal to γ.

• We are defining, within the introspective reasoning of the system, the notion of
exceptional and redundant cases, in order to establish a reliable deletion policy to
forgetting cases.

• Another feature we are studying to improve in the CBRL agent is having
different discriminating attributes for different cases. The idea is that in the
retrieval phase, first, the case-based system would search within a previously
established classification to identify which kind of case it is coping with. For each
established class (meta-case) there would be a set of specific discriminating
attributes and a different case library. Thus, there will be a partition of the cases
by means of its similarity to previous established meta-cases.

• The application of the data set and knowledge bases as retrofitting information
to optimization in the design of wastewater treatment plants [Bañares-Alcántara
and Ponton, 1992] could be another useful line of future work.

• In a middle-term future, we think that we have to by-pass the G2 shell, and
implement ourselves all the facilities and techniques that it supports for two
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reasons. First for a practical and economical fact: if DAI-DEPUR has to be used in
real WWTPs, the economic cost of the G2 shell, is too much expensive for the
responsible institutions of WWTP management. Secondly, because the integration
of the different processes would be less difficult than now.

• Other challenge would be to test DAI-DEPUR architecture in a different real-
time process control within a complex real-world domain.
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Appendix A

Glossary

This glossary provides the reader with accurately defined concepts and main used
abbreviations related to Wastewater Treatment Plants and Chemical Engineering
terminology:

Acidity. The capacity of a solution to react with hydroxyl ions. Acidity is measured
by titration with a standard alkaline solution (base) to a specified end point.
Typically, it is measured in milligrams of calcium carbonate per litre.

Activated sludge. Sludge withdrawn from a secondary clarifier following the
activated sludge process. Activated sludge consists mostly of biomass, with
some inorganic settleable solids. Return sludge is recycled to the head of the
process; waste (excess) sludge is removed for conditioning.

Activated sludge loading. The kilograms (pounds) of biochemical oxygen demand
(BOD) in the applied liquid per unit volume of aeration capacity or per
kilogram (pound) of activated sludge per day.

Activated sludge process. A biological wastewater treatment process by which a
mixture of wastewater and activated sludge is agitated and aerated. The
activated sludge is subsequently separated from the treated wastewater
(mixed liquor) by sedimentation and wasted or returned to the process as
needed.
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Advanced waste treatment. Any physical, chemical, or biological treatment process
used to accomplish a degree of treatment greater than that achieved by
secondary treatment (see also tertiary treatment).

Aeration. The initiation of contact between air and liquid by one or more of the
following methods: (a) spraying the liquid in the air; (b) bubbling air through
the liquid; (c) agitating the liquid to promote surface absorption of air.

Aeration period. The time, usually expressed in hours, during which mixed liquor
is subjected to aeration in an aeration tank while undergoing activated sludge
treatment.

Aeration tank. A tank in which wastewater or other liquids are aerated (also called
aeration basin).

Aerator. A device that brings air and liquid into intimate contact (see also aeration).
Aerobes. Organisms that live only in aerobic conditions.
Aerobic. Living or occurring in an environment containing oxygen (such as an

aeration tank).
Aerobic respiration. The breakdown or organic substances by aerobes in the

presence of oxygen.
Air lift. A device for raising liquid by injecting air in and near the bottom of a riser

pipe submerged in the liquid to be raised.
Air-lift pump. A pump used for lifting activated sludge from the aeration basin or

clarifier to waste or return activated sludge. Fine pressured air bubbles are
discharged to the water at the bottom of the basin or clarifier. The bubbles
reduce the density of the water at the bottom, and the denser surrounding
water pushes up in the discharge pipe to the outlet (also called air-lift or air-
lift returns).

Algae. Photosynthetic, microscopic plants that can seriously deplete oxygen in the
presence of sunlight.

Alkalinity. The capacity of a solution imparted by carbonates; bicarbonates;
hydroxides; and occasionally borates, silicates, and phosphates to neutralize
acids. Alkalinity is measured in milligrams of equivalent calcium carbonate
per litre.

Ammonia. A chemical combination of hydrogen (H) and nitrogen (N) occurring
extensively in nature and expressed as NH3.

Ammonia-nitrogen. The quantity of elemental nitrogen present in the form of
ammonia (NH3).

Amoeba. Small, one-celled organism using pseudopodia (false feet) for movement
(see Sarcodina).
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Amperometric titration. The electronic detection of the equivalence point in a
titration, through observation of the change in diffusion current at a suitable
applied voltage as a function of the volume of titrating solution.

Anaerobes. Organisms that live in the absence of oxygen.
Anaerobic. A condition in which no oxygen is-available in the environment (for

example, a septic clarifier).
Anaerobic respiration. The breakdown of organic substances in the absence of

oxygen.
Bacteria. A group of universally distributed, rigid, essentially unicellular

microscopic organisms lacking chlorophyll. Bacteria perform a variety of
biological treatment processes, including biological oxidation, nitrification,
and denitrification.

Bacterial examination. The examination of wastewater to determine the presence,
number, and identity of bacteria. Also called bacterial analysis.

Biodegradable. The destruction of organic materials by organisms and wastewater
treatment systems.

Biomass. The amount (usually measured in kilograms or pounds) of biological
material contained in the treatment system.

Biochemical oxygen demand (BOD). (1) The quantity of oxygen used in the
biochemical oxidation of organic matter in a specified time, at a specified
temperature, and under specified conditions. (2) A standard test used in
assessing wastewater strength.

Biochemical oxygen demand (BOD) load. The BOD content, usually expressed in
kilograms (pounds) per unit of time, of wastewater passing into a waste
treatment system or to a body of water.

Centrifuge. Mechanical device used to separate solids from water using a
centrifugal force (commonly called spin test when used as a process control
test).

Chemical oxygen demand (COD). A quantitative measure of the amount of oxygen
required for the chemical oxidation of carbonaceous (organic) material in
wastewater, using inorganic dichromate or permanganate salts as oxidants in a
2-hour test.

Ciliated protozoa. Small, one-celled organisms possessing cilia (hairlike projections
used for movement).

Clarification. Any process or combination of processes, the primary purpose of
which is to reduce the concentration of suspended matter in a liquid. The term
was formerly used as a synonym for settling or sedimentation. In recent years,
the latter terms are preferable when describing the settling process.
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Clarified wastewater. Wastewater from which most of the settleable solids have
been removed by sedimentation (also called settled wastewater).

Complete-mix. Activated sludge process whereby wastewater is rapidly and evenly
distributed throughout the aeration tank, unlike the conventional aeration
process (plug flow).

Concentration. (1) The amount of a given substance dissolved in a unit volume of
solution or applied to a unit weight of solids. (2) The process of increasing the
suspended solids per unit volume of sludge as by sedimentation.

Contact stabilization. A modification of the activated sludge process using a short
contact time for adsorption of BOD followed by a long contact time for
synthesis or stabilization by bacteria.

Contact time. The period of time a substance remains in a basin or tank (see
detention time).

Conventional aeration. Process design configuration whereby the organic loading
in the aeration tank is higher at the influent end than at the effluent end. The
flow passes through a serpentine system of tanks, typically side-by-side,
before passing on to the clarifier (also called plug flow).

Core sampler. A long, slender pole with a foot valve at the bottom end that allows
the depth of the sludge blanket to be measured (also called sludge judge).

Declining growth phase. Period of time between the log-growth phase and
endogenous phase, where the amount of food is in short supply, leading to
ever-slowing bacterial growth rates.

Denitrification. The anaerobic biological reduction of nitrate nitrogen to nitrogen
gas. Also, removal of total nitrogen from a system (see also nitrification).

Depth of blanket (DOB). The level of sludge, typically measured in metres (feet),
in the bottom of the clarifier (see also sludge blanket).

Design flow. Engineering guidelines that typically specify the amount of influent
flow that can be expected on a daily basis over the course of a year. Other
design flows can be set for monthly and peak flows.

Detention time. The period of time a wastewater flow is retained in a basin or tank
for storage or completion of physical, chemical, or biological reaction (see also
contact time).

Dissolved oxygen (DO). The oxygen dissolved in wastewater, usually expressed in
milligrams per litre, or percent of saturation.

Dissolved solids. Solids in solution that cannot be removed by filtration; for
example, NaCl and other salts that must be determined by evaporation (see
also total dissolved solids).

Dynamic equilibrium. See population dynamics.



APPENDIX A. GLOSSARY 211

Effluent. Wastewater partially or completely treated, flowing out of a basin,
treatment plant, or industrial treatment plant.

Effluent quality. The physical, biological, and chemical characteristics of
wastewater or other liquid flowing out of a basin, pipe, or treatment plant.

Effluent standard. Specification of the allowable concentration or mass of a
constituent that may be discharged.

Effluent stream. A stream of treated wastewater.
Endogenous phase. See endogenous respiration.
Endogenous respiration. The internal digestion of stored food within the organism

occurring when the external food sources are limited.
Excess sludge. The sludge produced in an activated sludge treatment process, or

any other process that requires sludge recirculation, that is not needed to
maintain the process and is withdrawn from circulation (also called waste
sludge or waste activated sludge [WAS]).

Extended aeration. A modification of the activated sludge process that provides for
aerobic sludge digestion within the aeration system. The process includes the
stabilization of organic matter under aerobic conditions. Effluent contains
finely divided suspended matter and soluble matter.

Extended aeration process. A modification of the activated sludge process using
long aeration periods to promote aerobic digestion of the biological mass by
endogenous respiration.

Facultative. The ability of an organism to live in aerobic or anaerobic conditions.
Filamentous growth. Intertwined, threadlike biological growths, characteristic of

some species of bacteria, fungi, and algae. Such growths reduce sludge
settleability and dewaterability.

Filamentous organisms. Bacterial, fungal, and algal species that grow in thread-like
colonies, resulting in a biological mass that will not settle and may interfere
with drainage through a filter.

Filamentous sludge. Activated sludge characterized by excessive growth of
filamentous bacteria, resulting in poor sludge settling.

Floc. Collections of smaller particles agglomerated into larger, more easily settleable
particles through chemical, physical, or biological treatment (see also
flocculation).

Flocculation. In water and wastewater treatment, the agglomeration of colloidal
and finely divided suspended matter after coagulation by gentle mechanical or
hydraulic stirring. In biological wastewater treatment where coagulation is not
used, agglomeration may be accomplished biologically.

Flow. The movement of water or other fluids from place to place.
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Flow rate (Q). Volume of liquid that passes through a cross-section of conduit in a
given time; measured in such units as kilograms per hour, cubic metres per
second, litres per day, or gallons per day.

Flow recording. Documentation of the quantity of rate of the flow.
Food-to-microorganism ratio (F:M). In the activated sludge process, the loading

rate expressed as kilograms (pounds) of BOD5 per kilogram (pound) of mixed
liquor or mixed liquor volatile suspended solids per day.

Free swimming ciliates. Mobile, one-celled organisms using cilia (hairlike
projections) for movement.

Fungi. Small non-chlorophyll-bearing plants lacking roots, stems, or leaves. Fungi
occur in, among other places, water, wastewater, or wastewater effluents and
grow best in the absence of light.

High-purity oxygen. A modification of the activated sludge process using relatively
pure oxygen and covered aeration tanks in a conventional flow arrangement.

High-rate aeration. A modification of the activated sludge process whereby the
mixed liquor suspended solids loadings are kept high, allowing high food-to-
microorganism (F:M) ratios and shorter detention times.

Hydraulic loading. The amount of wastewater applied to a given treatment
process, usually expressed as volume per unit time, or volume per unit time
per unit surface area.

Influent. Wastewater flowing into a basin, treatment plant, or treatment process
(see antonym effluent).

Inorganic compounds. All of those combinations of elements that do not include
organic carbon.

Inorganic matter. Mineral-type compounds that are generally nonvolatile,
noncombustible, and nonbiodegradable. Most inorganic type compounds, or
reactions, are ionic in nature; therefore, rapid reactions are characteristic.

Kjeldahl nitrogen test. A standard analytical method used to determine the
concentration of organically bound ammonia nitrogen state.

Log growth phase. The initial stage of bacterial growth, during which there is a
plentiful supply of food, causing bacteria to grow at the maximum rate.

Maximum flow. The greatest volume of influent to a treatment plant within a given
time period (see peak flow).

Mean cell residence time (MCRT). Average time a given unit of cell mass stays in
the activated sludge aeration tank. Mean cell residence time is typically
calculated as the ratio of the total mixed liquor suspended solids in the
aeration tank to that of wastage.
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Mean flow. The arithmetic average of the discharge at a given point or station on
the line of flow for some specified period of time (see design flow).

Mechanical aeration. (1) The mixing, by mechanical means, of wastewater and
activated sludge in the aeration tank of the activated sludge process to bring
fresh surfaces of liquid into contact with the atmosphere. (2) The introduction
of atmospheric oxygen into a liquid by the mechanical action of a paddle,
paddle wheel, spray, or turbine mechanism.

Mechanical aerator. A mechanical device used for introducing atmospheric oxygen
into a liquid (see also mechanical aeration).

Metazoa. Group of animals having bodies composed of cells differentiated into
tissues and organs and usually a digestive cavity lined with specialized cells.

Microbial activity. The activities of microorganisms resulting in chemical or
physical changes.

Microbiology. The study of microscopic organisms of living matter and their
processes.

Microorganisms. Microscopic organisms, either plant or animal, that are invisible
or barely visible to the naked eye. Examples are algae, bacteria,
fungi/protozoa, and viruses.

Microscopic examination. (1) The examination of wastewater to determine the
presence and amount of plant and animal life such as bacteria, algae, and
protozoa. (2) The examination of wastewater to determine the presence of
microscopic solids. (3) The examination of microbiota in process water, such as
the mixed liquor in an activated sludge plant.

Minimum flow. (1) The flow occurring in a stream during the driest period of the
year (also called low flow). (2) The lowest quantity of influent to a treatment
plant or within a sewer within a give time period (see antonym peak flow).

Mixed liquor. A mixture of raw or settled wastewater and the activated sludge
process.

Mixed liquor suspended solids (MLSS). The concentration of suspended solids in
activated sludge mixed liquor, expressed in milligrams per litre.

Mixed liquor volatile suspended solids (MLVSS). That fraction of the suspended
solids in activated sludge mixed liquor that can be driven off by combustion at
550°C (1022°F); indicates the concentration of active microorganisms available
for biological oxidation.

Moving average. A tool used in trend analysis for determining patterns or changes
in treatment processes. For example, a 7-day moving average would be the
sum of the datum points for 7 days divided by 7.
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Nematodes. Any of a phylum (Nematoda) of elongated cylindrical worms parasitic
in animals or plants or free-living in soil or water.

Nitrate. An oxygenated form of nitrogen, typically written (NO3
–) (see nitrogen).

Nitrification. The oxidation of ammonia nitrogen to nitrate nitrogen in wastewater
by biological or chemical reactions (see also denitrification) .

Nitrite. An intermediate oxygenated form of nitrogen typically written (NO2
–) (see

nitrogen).
Nitrogen. An essential nutrient often present in wastewater as ammonia, nitrate,

nitrite, and organic nitrogen. The concentrations of each form and the sum,
total nitrogen, are expressed as milligrams per litre elemental nitrogen.
Nitrogen is also present in some groundwater as nitrate and in some polluted
groundwater in other forms.

National Pollutant Discharge Elimination System (NPDES) permit. Permit that is
the basis for the monthly monitoring reports required by most states in the
U.S.A.

Organic. Volatile, combustible, and sometimes biodegradable chemical compounds
containing carbon atoms (carbonaceous) bonded together and with other
elements. The principal groups of organic substances found in wastewater are
proteins, carbohydrates, and fats and oils (see antonyms inorganic compounds
and inorganic matter).

Organic loading. The amount of organic material, typically measured as BOD5,
applied to a given treatment process; expressed as weight per unit time per
unit surface area or unit weight.

Organic matter. Chemical substances of animal or vegetable origin or, more
correctly, containing carbon and hydrogen.

Overflow rate. The settling velocity of particles removed in an ideal basin if they
enter at the surface; one of the criteria for the design of settling tanks in
treatment plants. Overflow rate is expressed as volume of flow per unit water
surface area of the tank (see also surface overflow rate).

Oxidation ditch. A secondary wastewater treatment facility that uses an oval
channel with a rotor placed across it to provide aeration and circulation. The
screened wastewater in the ditch is aerated by the rotor and circulated at about
0.3 to 0.6 m/s (1 to 2 ft/sec) (see also secondary treatment).

Oxygen demand. The quantity of oxygen used in the oxidation of substances in a
specified time, at a specified temperature, and under specified conditions.

Oxygen uptake rate (OUR). The oxygen used during biochemical oxidation,
typically expressed as milligrams O2 per litre per hour in the activated sludge
process.
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Peak flow. The maximum rate of influent flow a treatment plant expects to receive
during a specified time period (for example, peak hourly, peak daily, peak
monthly).

pH. A measure of the hydrogen-ion concentration in a solution. On the pH scale (0
to 14), a value of 7 at 25°C (77°F) represents a neutral condition. Decreasing
values, below 7, indicate an increasing hydrogen-ion concentration (acidity);
increasing values, above 7, indicate a decreasing hydrogen-ion concentration
(alkalinity).

Pin floc. Small floc particles that settle poorly.
Plug flow. See conventional aeration.
Population dynamics. The everchanging numbers of microscopic organisms within

the activated sludge process (also called dynamic equilibrium).
Positive displacement pump. A type of pump in which the water is induced to

flow from the source of supply through an inlet pipe and inlet valve. Water is
brought into the pump chamber by a vacuum created by the withdrawal of a
piston or piston-like device which, on its return, displaces a certain volume of
the water contained in the chamber and forces it to flow through the discharge
valves and discharge pipes.

Primary effluent. The liquid portion of wastewater leaving primary treatment.
Primary sludge. Sludge obtained from a primary settling tank.
Primary treatment. (1) The first major treatment in a wastewater treatment facility,

usually sedimentation but not biological oxidation. (2) The removal of a
substantial amount of suspended matter but little or no colloidal and dissolved
matter. (3) Wastewater treatment processes usually consisting of clarification
with or without chemical treatment to accomplish solids-liquid separation.

Protozoa. Small animals, including amoebae, ciliates, and flagellants.
Publicly owned treatment works (POTW). In general, another name for

wastewater treatment plants.
Raw influent. Wastewater before it receives any treatment.
Receiving water. A river, lake, ocean, or other watercourse to which wastewater or

treated effluent is discharged.
Respiration. The intake of oxygen and discharge of carbon dioxide during the

process of bacterial decomposition of organic materials.
Respiration rate. See specific oxygen uptake rate (SOUR).
Return sludge. Biomass produced in the activated sludge process that is recycled to

the head of the process to promote more complete biological oxidation (also
called return activated sludge [RAS]).
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Rotifers. Minute, multicelled aquatic animals possessing a circular set or sets of
ciliate resembling wheels.

Sarcodina. Species of amoebae found in wastewater.
Secchi disk. A visual inspection tool to measure the clarity or turbidity of the

effluent.
Secondary effluent. (1) The liquid portion of wastewater leaving secondary

treatment. (2) An effluent that contains not more than 30 mg/L each of BOD5

and suspended solids.
Secondary treatment. (1) Typically, a level of treatment that produces removal

efficiencies of 85% for biochemical oxygen demand (BOD) and suspended
solids. (2) Sometimes used interchangeably with the concept of biological
wastewater treatment, particularly the activated sludge process. This term is
commonly applied to treatment that consists chiefly of clarification followed
by a biological process, with separate sludge collection and handling.

Secondary wastewater treatment. Wastewater treatment processes usually
consisting of primary treatment and biological oxidation using activated
sludge or trickling filtration, followed by clarification. Secondary wastewater
treatment is typically interpreted as the attainment of a least 85% removal. or
secondary effluent concentrations less than 30 mg/L, of both BOD5 and
suspended solids on a monthly average basis.

Septic. See anaerobic.
Settleability test. Determination of the settleability of solids in a suspension by

measuring the volume of solids settled out of a measured sample over a
specified interval of time; typically reported in millilitres per litre (see
settleometer).

Settleometer. A 2-litre or larger beaker used to conduct the settleability test.
Sludge. (1) The accumulated solids separated from liquids such as during

wastewater processing. (2) The removed material resulting from flocculation,
sedimentation, and/or biological oxidation of wastewater (see also activated
sludge).

Sludge age. The average residence time of suspended solids in a biological waste
treatment system, equal to the total weight of suspended solids in the system
divided by the total weight of suspended solids leaving the system per unit of
time (typically per day).

Sludge blanket. Accumulation of sludge hydrodynamically suspended within an
enclosed body of wastewater (see depth of blanket).

Sludge judge. See core sampler.
Sludge solids. Dissolved and suspended solids in sludge
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Sludge volume index (SVI). The ratio of the volume in millilitres (cubic inches) of
sludge settled from a 1000-mL (60-cu in.) sample in 30 minutes to the
concentration of mixed liquor in milligrams per litre multiplied by 1000.

Solids. In wastewater treatment, any dissolved, suspended, or volatile substance
contained in or removed from wastewater.

Solids inventory. The amount of sludge in the treatment system typically expressed
in kilograms (tons). The inventory of plant solids can be tracked through use
of a mass balance set of calculations.

Solids loading. The amount of solids applied to a treatment process per unit time
per unit volume.

Solids retention time (SRT). The average time of retention of suspended solids in a
biological waste treatment system, equal to the total weight of suspended
solids leaving the system per unit of time (typically per day).

Specific oxygen uptake rate (SOUR). Measures the microbial activity in the
biological system. It is typically expressed as milligrams O2 per hour per gram
of volatile suspended solids (VSS) (also called respiration rate).

Spin test. See centrifuge.
Stabilization. In waste treatment, a process used to equalize wastewater flow

composition before regulated discharge.
Stalked ciliates. Small, one-celled organisms possessing cilia (hairlike projections

used for feeding) but that are not mobile.
Step feed aeration. See step feed.
Step feed. A procedure for adding increments of settled wastewater along the line

of flow in the aeration tanks of an activated sludge plant (also called step feed
aeration).

Straggler floc. Large (6-mm [0.25-in.] or larger) floc particles that have poor settling
characteristics.

Suctoreans. Ciliates that are stalked in the adult stage and have rigid tentacles to
catch prey.

Supernatant. The liquid remaining above a sediment or precipitate after
sedimentation.

Surface overflow rate. A design criterion used in sizing clarifiers. It is typically
expressed as the volume of flow per unit amount of clarifier surface area
(m3/m2 d [gpd/sq ft]).

Suspended solids (SS). lnsoluble solids that either float on the surface of, or are in
suspension in, water, wastewater, or other liquids. (2) Solid organic or
inorganic particles (colloidal, dispersed, coagulated, flocculated) physically
held in suspension by agitation or flow.
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Temperature. (1) The thermal state of a substance with respect to its ability to
transmit heat to its environment. (2) The measure of the thermal state on some
arbitrarily chosen numerical scale such as Celsius or Fahrenheit.

Tertiary treatment. The treatment of wastewater beyond the secondary or biological
stage. Tertiary treatment normally implies the removal of nutrients, such as
phosphorus and nitrogen, and of a high percentage of suspended solids (see
also advanced waste treatment).

Total carbon (TC). A quantitative measure of both total inorganic (TIC) carbon and
total organic (TOC) carbon, in milligrams per litre, in water or wastewater, as
determined instrumentally by chemical oxidation to CO2 and subsequent
infrared detection in a carbon analyzer.

Total dissolved solids (TDS). The sum of all dissolved solids (volatile and
nonvolatile) in wastewater.

Total organic carbon (TOC). The amount of carbon bound in organic compounds in
a sample. Because all organic compounds have carbon as the common element,
total organic carbon measurements provide a fundamental means of assessing
the degree of organic pollution.

Total oxygen demand (TOD). A quantitative measure of all oxidizable material in a
sample of wastewater as determined instrumentally by measuring the
depletion of oxygen after high-temperature combustion.

Total solids (TS). The sum of dissolved and suspended solids in wastewater.
Total suspended solids (TSS). The amount of insoluble solids floating and in

suspension in the wastewater. It is referred to as total nonfilterable residue.
Toxicity. The adverse effect on living organisms by some agent (for example, heavy

metals or pesticides).
Trace nutrients. Substances vital to bacterial growth. Trace nutrients are defined in

this text as nitrogen, phosphorus, and iron.
Trend analysis. The use of data and statistical tools to study patterns and changes

in wastewater treatment processes. Computer software programs aid in the
speed and scope of this type of analysis.

Turbidity. (1) A condition in water or wastewater caused by the presence of
suspended matter, resulting in the scattering and absorption of light. (2) Any
suspended solids imparting a visible haze or cloudiness to water, which can be
removed by filtration. (3) An analytical quantity determined by measurements
of light scattering and typically reported in turbidity units (Formazin turbidity
units (FTU) or Jackson turbidity units (JTU).

Ultimate biochemical oxygen demand (BODu). (1) Commonly, the total quantity of
oxygen required to satisfy completely the first-stage biochemical oxygen
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demand (BOD). (2) More strictly, the quantity of oxygen required to satisfy
completely both the first- and second-stage BOD5.

Virus. The smallest lifeform capable of producing infection and disease in humans
or other large species.

Volatile solids (VS). Materials, generally organic, that can be driven off from a
sample by heating, typically to 550°C (1022°F); nonvolatile inorganic solids
(ash) remain.

Volatile suspended solids (VSS). That fraction of suspended solids, including
organic matter and volatile inorganic salts, that will ignite and burn when
placed in an electric muffle furnace at 550°C (1022°F) for 60 minutes.

Volumetric loading. The amount of flow applied to a treatment process per unit
time per unit volume of the basin or clarifier.

Waste sludge. Biological sludge that is drawn off to be conditioned for ultimate
disposal (also called waste activated sludge [WAS]; see also excess sludge and
return sludge).

Weir. (1) A diversion dam. (2) A device that has a crest and some side containment
of known geometric shape, such as a V, trapezoid, or rectangle, and is used to
measure flow of liquid. The liquid surface is exposed to the atmosphere. Flow
is related to upstream height of water above the crest, position of crest with
respect to downstream water surface, and geometry of the weir opening.

Weir overtlow rate. The amount of flow applied to a treatment process (typically a
clarifier) per linear measure of weir (m3/m d [gpd/ft]).

Washout. The condition whereby excessive influent flows (typically at peak flow
conditions) cause the solids in the aeration basins and/or clarifiers to be
carried over into downstream processes or discharged to the receiving stream.
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Appendix E

Tools

A brief description of some used tools in the development of DAI-DEPUR is
described in this appendix: the ACSL simulation language, the G2 shell, the Sun
Common Lisp language, the LINNEO+ unsupervised classification tool and GAR,
the automatic rule generator.

ACSL, Advanced Continuous Simulation Language [Mitchell and Gautier, 1987], is
a simulation language designed to modelling and evaluating continuous systems
that are described by non-linear differential equations with a unique independent
variable. The language also supports solving the equations in the form of
transference functions. The language provides the user with a big number of easy
usable operators oriented to simulation purposes such as delays, pulses, sinusoidal
functions, etc., as well as some graphical outputs. ACSL is a software from Mitchell
& Gautier Corp., and probably, nowadays is one of the most common used
simulation languages in modelling continuous processes [De Prada, 1989]. There are
several commercial versions for PCs, great mainframes and workstations. ACSL
compiles the source programs of the user to Fortran code. Thus, it allows to directly
write Fortran code supporting a rich interoperability between Fortran and ACSL.

G2 [Gensym, 1992; Gensym, 1990] is a tool for developing and running real-time
expert systems for complex applications that require continuous and intelligent
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monitoring, diagnosis, and control. It is designed for a wide range of real-time
applications in such diverse fields as process control, aerospace, and finance. G2
combines many technologies including: rule-based reasoning, simulation,
procedural computation, network connectivity, data input and output, object-
oriented modelling, modularized design system, and graphical user interfaces. G2
provides an integrated environment consisting of developer's tools, a robust
language, and hierachies for structuring the applications: items and class hierarchy,
modules and module hierarchy (different knowledge bases), workspaces and
workspace hierarchy (different rule modules). G2 also has a number of external
data interfaces that allow it to interact with other processes and to receive data from
external sources. They are easy to configure and work automatically while a
knowledge base runs. The four external data inetrfaces are: G2 Standard Interface
(GSI), G2 File Interface (GFI), G2-to-G2 Interface and the Foreign Function Interface.

Sun Common Lisp [Sun Microsystems, 1990] is the Common Lisp dialect from Sun
Microsystems. It is a functional programming language that provides a
programming environment to writing large, complex programs that can manipulate
symbols as well as numbers. It supplies additional features to basic Common Lisp
as the Foreign Function Interface, the Multitasking Facility, I/O extensions, the
delivery tool kit, the window tool kit, etc., and supports the main especifications of
Common Lisp such as the package system, the Common Lisp Object Systems
(CLOS), etc.

The classification tool for ill-structured domains, LINNEO+ [Béjar, 1995; Béjar et al.,
1994], and the automatic rule generator tool, GAR [Riaño, 1994], are already
detailed in 5.4.1.1.
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