
Methods for Parallel Integration of Stiff Systems of

ODEs ∗

Stig Skelboe †

Abstract

This paper presents a class of parallel numerical integration methods for stiff
systems of ordinary differential equations which can be partitioned into loosely
coupled sub-systems. The formulas are called decoupled backward differentiation
formulas, and they are derived from the classical formulas by restricting the implicit
part to the diagonal sub-system. With one or several sub-systems allocated to each
processor, information only has to be exchanged after completion of a step but not
during the solution of the nonlinear algebraic equations.

The main emphasis is on the formula of order 1, the decoupled implicit Euler
formula. It is proved that this formula even for a wide range of multirate formula-
tions has an asymptotic global error expansion permitting extrapolation. Besides,
sufficient conditions for absolute stability are presented.

1 Introduction

Define a system of ordinary differential equations,

y′ = f(t, y), y(t0) = y0 and t ≥ t0 (1.1)

where y : R → RS, f is Lipschitz continuous in y and f : R × RS → RS. Stable
systems of differential equations are considered stiff when the step size of the discretization
by an explicit integration method is limited by stability of the discretization and not
by accuracy. Efficient numerical integration of stiff systems therefore require implicit

integration methods, e.g. implicit linear multistep formulas or implicit Runge-Kutta
methods.

To fix ideas, consider the discretization of (1.1) by the backward Euler formula,

yn = yn−1 + hf(tn, yn) (1.2)

where yn ≈ y(tn) and h = tn − tn−1 for n = 1, 2, . . . In order to compute a new discrete
approximation yn from the previous one, yn−1, the implicit algebraic problem (1.2) has to
be solved using e.g. a Newton iteration,

y(m+1)
n = y(m)

n + J−1
n (y(m)

n )fn(y(m)
n ) (1.3)

∗Published in BIT 32 (1992), 689-701.
†Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK–2100 Copen-

hagen, Denmark

1



where fn(y) = y − yn−1 − hf(tn, y) and Jn(y) = ∂fn/∂y|y.
A parallelization of the backward Euler formula therefore amounts to a parallelization

of (1.3) which involves the parallel computation of fn, Jn and the parallel solution of
systems of linear equations. While an efficient parallelization of fn and Jn is often a
trivial matter, efficient parallel solution of systems of linear equations has proved difficult,
especially when Jn is sparse with random pattern of non-zero elements.

The difficulties associated with parallelizing (1.3) efficiently have spurred the devel-
opment of alternative approaches, notably the waveform relaxation method [1] where
(1.1) is partitioned into a number of coupled sub-systems. Each sub-system is integrated
independently (trivial parallelization) over a time window. After the completion of an
integration sweep, the solutions (waveforms) are exchanged and the integration over the
time window is repeated with the updated solutions from the ”other” sub-systems. The
relaxation process is repeated until convergence.

The waveform relaxation method parallelizes well and gains considerable efficiency
from the partitioning of the original problem into smaller sub-systems and from the inte-
gration of each sub-system with an optimal selection of step sizes (multirate integration).
The main weakness of waveform relaxation is the iteration process itself which may suffer
slow convergence or even divergence. Another disadvantage is the need for storing the
waveforms which adds substantially to the memory requirement.

This paper introduces two different methods for the parallel numerical integration of
stiff systems of ordinary differential equations. They are based on ideas from multirate
integration methods [2] and exploit a partitioning of the original problem. This parti-
tioning permits a decoupling into independent problems of the algebraic system resulting
from the discretization by a backward differentiation formula.

The monotonic max-norm stability is the theoretical condition for applying the decou-
pling successfully. This concept is therefore defined in Section 2. The decoupled implicit
Euler method with its superior stability properties are described in Section 3 while Section
4 proves the existence of a global error expansion and outlines the use of extrapolation to
obtain any order of integration accuracy while maintaining stability. Section 5 describes
the decoupled backward differentiation formulas which are derived from the classical for-
mulas, and Section 6 gives an example of the methods applied to a realistic problem.

2 Monotonic Max-Norm Stability

Let the original problem (1.1) be partitioned as follows,













y′
1

y′
2

...
y′

q













=













f1 (t, y)
f2 (t, y)
...
fq (t, y)













, y =













y1

y2
...
yq













, y(t0) =













y1,0

y2,0
...
yq,0













(2.1)

where yr : R → Rsr , fr : R × RS → Rsr and
∑q

i=1 si = S. When necessary, the
partitioning of y will be stated explicitly like in fr(t, y1, y2, . . . , yq). For sub-system r, yr

is called the local integration variable and yi, i 6= r are called external variables.

2



The following stability condition introduced in [2] plays a crucial role for the stability
of decoupled implicit integration methods.

Definition: Monotonic max-norm stability

The partitioned system (2.1) is said to be monotonically max-norm stable, if there
exist norms ‖ · ‖r, such that

‖ur − vr + λ [fr(t, u) − fr(t, v)] ‖r ≥ ‖ur − vr‖r + λ
q

∑

j=1

arj(t, u, v)‖uj − vj‖j (2.2)

for all t ≥ t0, u, v ∈ Ωt, λ ≤ 0, where Ωt ⊆ RS and the following condition holds for the
logarithmic max-norm of the q × q matrix (arj)

µ∞ [(arj(t, u, v))] ≤ 0 (2.3)

The norms used in (2.2) can be related as follows using a common norm ‖ · ‖

dj‖yj‖j ≤ ‖yj‖ ≤ d̃j‖yj‖j, j = 1, 2, . . . , q

The condition for monotonic max-norm stability (2.2) is very general and neither
particularly intuitive, nor very easy to apply in practice. Theorem 3 in [2] gives sufficient
conditions for monotonic max-norm stability of a partitioned system. This Theorem
and the associated remarks complement the general definition of monotonic max-norm
stability.

3 Decoupled Implicit Euler Method

The decoupled implicit Euler method is defined as follows, where the r’th sub-system is
discretized by the backward Euler formula:

yr,n = yr,n−1 + hr,nfr(tr,n, ỹ1,n, . . . , ỹr−1,n, yr,n, ỹr+1,n, . . . , ỹq,n), (3.1)

where n = 1, 2, . . . , tr,n = t0 +
∑n

j=1 hr,j and the external variables ỹi,n are convex
combinations of values in {yi,k | k ≥ 0} for i 6= r. The method is called ”decoupled”
because the algebraic system resulting from the discretization is decoupled into a number
of independent algebraic problems.

The decoupled implicit Euler method is particularly well suited for parallel imple-
mentation. Each processor can solve one or several systems like (3.1) and information
exchange with other processors is only required between solution steps where sub-system
solutions are exchanged.

3



The convexity of ỹi,n is necessary for the stability of the decoupled implicit Euler
method. All convex combination coefficients might in general be different, but the convex
combinations would typically be either a zero-order extra- or interpolation:

ỹi,n = yi,k or yi,k+1, where tr,n ∈ (ti,k, ti,k+1]

or a first-order interpolation:

ỹi,n =
ti,k+1 − tr,n
ti,k+1 − ti,k

yi,k +
tr,n − ti,k

ti,k+1 − ti,k
yi,k+1

where tr,n ∈ [ti,k, ti,k+1].
Let {ũi,n} be a sequence of convex combinations of {ui,n} and let {ṽi,n} be a sequence

of convex combinations of {vi,n} where {ui,n} and {vi,n} are arbitrary sequences. The
convex combinations {ũi,n} and {ṽi,n} are defined to be equivalent if

(ui,n = vi,n for all i, n) ⇒ (ũi,n = ṽi,n for all i, n)

The stability properties of the decoupled implicit Euler method are described in the
following Theorem,

Theorem 1

Assume that the partitioned system (2.1) is monotonically max-norm stable and con-
sider any two solutions {ur,n} , {vr,n} computed from the decoupled implicit Euler method
(3.1) using the same grid points {tr,n} and equivalent convex combinations {ũr,n} and
{ṽr,n}. Then

sup
r,n

‖ur,n − vr,n‖r ≤ max
r

‖ur,0 − vr,0‖r,

provided that (ũ1,n, . . . , ur,n . . . , ũq,n) and (ṽ1,n, . . . , vr,n, . . . , ṽq,n) belong to Ωtr,n
for all r, n

Proof: The Theorem is a corollary of Theorem 4 in [2].

There are two crucial conditions of the stability result of Theorem 1, namely the
monotonic max-norm stability and the choice of the external variables which must be
convex combinations of previously computed solution components.

The following Theorem is needed for the global error estimation of the decoupled
implicit Euler methods.

Theorem 2

Let (3.1) define the function φr for all r = 1, 2, ..., q and n = 1, 2, ... such that

yr,n = yr,n−1 + hr,nφr(hr,n, tr,n, ỹ1,n, . . . , ỹr−1,n, yr,n−1, ỹr+1,n, . . . , ỹq,n) (3.2)

Assume that the partitioned system (2.1) is monotonically max-norm stable, and that
(ỹ1,n, . . . , ỹr−1,n, yr,n, ỹr+1,n, . . . , ỹq,n) ∈ Ωtr,n

and that fr is continuous in yr. Then φr exists
and I+hr,nφr is Lipschitz continuous for y-variables where (ỹ1,n, . . . , ỹr−1,n, yr,n, ỹr+1,n, . . . ,
ỹq,n) ∈ Ωtr,n

with Lipschitz constant 1 for yr,n and d̃r/dj for ỹj,n.

4



Proof:

The monotonic max-norm stability implies

‖ur,n − vr,n − hr,n[fr(tr,n, ỹ1,n, . . . , ur,n, . . . , ỹq,n) − fr(tr,n, ỹ1,n, . . . , vr,n, . . . , ỹq,n)]‖r

= ‖ur,n−1 − vr,n−1‖r ≥ (1 − hr,narr(tr,n))‖ur,n − vr,n‖r

where arr(tr,n) = maxu,v∈Ωtr,n
arr(tr,n, u, v).

According to [3] Lemma 2, (3.1) can therefore be solved uniquely for yr,n and yr,n is a
Lipshitz continuous function of yr,n−1 with Lipschitz constant (1 − hr,narr(tr,n))−1 ≤ 1.

For ur,n−1 = vr,n−1 and uj and vj, respectively, substituted for ỹj,n, the monotonic
max-norm stability leads to the relation

0 ≥ (1 − hr,narr)‖ur,n − vr,n‖r − hr,narj‖uj − vj‖j

⇔ ‖ur,n − vr,n‖r ≤
hr,narj

1 − hr,narr
‖uj − vj‖j

⇒ ‖ur,n − vr,n‖ ≤ d̃r/dj‖uj − vj‖

The decoupled implicit Euler method as defined in (3.1) can be used with a completely
arbitrary step size selection and still retain stability when the conditions of Theorem 1
are fulfilled. However, to obtain adequate accuracy, restrictions on step size are required.
Such restrictions can be introduced through multirate compound steps where two different
examples are given below.

Definition: Basic Compound Step

For r = 1, 2, ..., q define a compound step over the interval [t0, t0 + Nh]:

yr,npr
= yr,(n−1)pr

+ prhfr(tnpr
, y1,0, . . . , yr−1,0, yr,npr

, yr+1,0, . . . , yq,0)

for n = 1, 2, . . . , N/pr where pr divides N .

The basic compound step as well as the slowest-first compound step stated below
are defined for the interval [t0, t0 + Nh]. This is done to simplify notation, and the
definition of the compound steps are readily extended to cover any interval of width Nh.
Any numerical integration algorithm based on these methods would in general employ
a sequence of compound steps. A compound step bears some similarities to a step of a
Runge-Kutta method.

The basic compound step uses the simplest convex combination corresponding to a
zero order extrapolation. Although the order of accuracy is not improved, the absolute
accuracy will in general be better when linear interpolation is used whenever possible.
This is the objective of the slowest-first compound step:

Definition: Slowest-first Compound Step

The slowest-first compound step is defined recursively over the interval [t0, t0 + Nh].
The sub-systems have been ordered such that they are integrated using increasingly

5



-

-

-

0

0

0

p3h

p2h

p1h

t3

t2

t1

p1=12, p2=4, p3=1

Figure 1: Example of step size distribution for a slowest-first compound step

smaller step sizes. Sub-system r is integrated with step size prh where pr ≤ pr−1, p1 = N ,
p0 = p1 and pr divides pr−1.

The general recursive definition for r = 1, 2, . . . , q − 1 is as follows:

pr−1/pr steps of sub-system r are computed as one step of sub-system r
followed by pr/pr+1 steps of sub-system r+1, then another step of sub-system
r, etc.

Sub-system 1 is integrated first as follows:

y1,N = y1,0 + Nhf1(tN , y1,N , y2,0, . . . , yq,0) (3.3)

Then follows sub-systems 2, 3, . . . , q as specified by the recursion. The following general
formulas are used:

yr,npr
= yr,(n−1)pr

+ prhfr(tnpr
, ỹ1,npr

, . . . , ỹr−1,npr
, yr,npr

, yr+1,(n−1)pr
, . . . , yq,(n−1)pr

) (3.4)

for n = 1, 2, . . . , N/pr. The convex combinations are defined by

ỹi,npr
= (1 − npr/pi + bnpr/pic)yi,bnpr/picpi

+ (npr/pi − bnpr/pic)yi,(bnpr/pic+1)pi
(3.5)

for i = 1, 2, . . . , r−1. (b·c denotes rounding towards zero)

The slowest-first compound step and the involved interpolation is illustrated using Fig.
1. First y1,p1

is computed using y2,0 and y3,0. Then one step of sub-system 2 is computed
interpolating linearly between (y1,0, y1,p1

) and using y3,0. Now follows p2/p3(= 4) steps
of sub-system 3 interpolating linearly between the pairs (y1,0, y1,p1) and (y2,0, y2,p2

). The
maximum depth of the recursion has now been reached and another step of sub-system 2
is computed, p2/p3 more steps of sub-system 3, etc.

The basic compound step preserves the parallelity of the decoupled implicit Euler
method while the slowest-first compound step imposes a sequence of computation which
reduces parallelity.

A slightly modified version of the slowest-first compound step may be introduced fully
in parallel on P processors in the following case: The first P sub-systems are integrated
using the same step size p1h = p2h = . . . = pP h, the next P sub-systems are integrated
using step size pP+1h = pP+2h = . . . = p2P h, etc.

6



4 Extrapolated Decoupled Implicit Euler Method

Many applications require better accuracy than offered by the decoupled implicit Euler
method. The central property of decoupling and the good stability properties can be
retained while the accuracy is improved by using extrapolation. The main result of
this section is Theorem 5 which states the existence of global error expansions for both
the basic and the slowest-first compound steps. Several other compound steps could be
defined, but the proof of existence of global error expansions would basically be the same.

Definition: Increment function Φ.

Define the increment function Φ based on either the basic or the slowest-first compound
steps such that,

yN = y0 + HΦ(H, t0, y0)

where H = Nh. Φ is defined implicitly as the solution of a system of equations.

Lemma 3

Let f be Lipschitz continuous in y and let the assumptions of Theorem 2 be fulfilled.
Then the increment function Φ based on either the basic or the slowest-first compound
steps is Lipschitz continuous in y.

Proof:

The Lemma is only proved for the slowest-first compound step. The proof is similar
and simpler for the basic compound step. The proof is by induction in the sequence of
computations leading to Φ as specified in the definition of the slowest-first compound
step.

1) According to Theorem 2, y1,N defined by (3.3) is a Lipschits continuous function of
y1,0, y2,0, . . . , yq,0.

2) Assume that the sequence of solution values recursively specified for the slowest-
first compound step, y1,p1

, y2,p2
, . . . , yq,pq

, yq,2pq
, . . . , yq,pq−1/pq

, yq−1,2pq−1
, . . . , yr,(n−1)pr

, are
all Lipschitz continuous functions of y1,0, y2,0, . . . , yq,0.

The next solution value yr,npr
is defined by (3.4). From the definition of yr,npr

, the
induction assumptions and Theorem 2, it follows that yr,npr

is also a Lipschitz continuous
function of y1,0, y2,0, . . . , yq,0.

By the induction axiom it is thus proved that all the interior solution points, including
the final ones of the compound step,

yr,npr
for r = 1, 2, . . . , q and n = 1, 2, . . . , N/pr

are all Lipschitz continuous functions of y1,0, y2,0, . . . , yq,0.
The increment function Φ can be expressed as

Φr(H, t0, y1,0, y2,0, . . . , yq,0)

=
pr

N

N/pr
∑

n=1

fr(tnpr
, ỹ1,npr

, . . . , ỹr−1,npr
, yr,npr

, yr+1,(n−1)pr
, . . . , yq,(n−1)pr

) (4.1)

7



From the definition of ỹi,npr
in (3.5), the Lipschitz continuity of fr and the Lipschitz conti-

nuity of yr,npr
for r = 1, 2, . . . , q and n = 1, 2, . . . , N/pr, it follows that Φr is Lipschitz con-

tinuous in y1,0, y2,0, . . . , yq,0 for r = 1, 2, . . . , q.

Lemma 4

For a function y(t) ∈ Ωt and the increment function Φ based on a monotonic max-norm
stable system (2.1), the local error has the form

y(t+H)− y(t)−HΦ(H, t, y(t)) = e2(t)H
2 + e3(t)H

3 + . . .+ eM(t)HM +O(HM+1) (4.2)

when f is (M − 1) times differentiable.

Proof:

The local error can also be expressed as y(t + H)− yN where y0 = y(t). First, yN will
be expressed as an expansion in H and then this expansion will be compared with the
expansion of y(t + H) to give the desired form. The existence and form of yN is proved
using an induction argument similar to the argument used in the previous proof. It will
only be proved for the slowest-first compound step since it is similar, but simpler, for the
basic compound step.

1) Assume that y1,N can be expanded as follows,

y1,N = y1,0 + e
(1)
1,0H + e

(2)
1,0H

2 + . . . + e
(M)
1,0 HM + O(HM+1)

Substitute this expansion into (3.3) and collect terms of equal power in H:

e
(1)
1,0 = f1(t0, y1,0, y2,0, . . . , yq,0)

e
(2)
1,0 = f1,t(t0, y1,0, y2,0, . . . , yq,0) + f1,y1

(t0, y1,0, y2,0, . . . , yq,0)f1(t0, y1,0, y2,0, . . . , yq,0)

where fr,t denotes ∂fr/∂t and fr,yi
denotes ∂fr/∂yi

It is straightforward to continue the substitution process to prove that the terms up
to and including e

(M)
1,0 exist if f is (M − 1) times differentiable.

2) Assume that expansions

yr,i = yr,0 + e
(1)
r,i H + e

(2)
r,i H

2 + . . . + e
(M)
r,i HM + O(HM+1) (4.3)

exist for the sequence of solution values recursively specified for the slowest-first compound
step, up to and including yr,(n−1)pr

. The next solution value, yr,npr
is computed using (3.4).

Assuming the expansion

yr,npr
= yr,0 + e(1)

r,npr
H + e(2)

r,npr
H2 + . . . + e(M)

r,npr
HM + O(HM+1)

Substitution into (3.4) gives

e(1)
r,npr

= e
(1)
r,(n−1)pr

+
pr

N
fr(t0, y1,0, y2,0, . . . , yq,0)

It is straightforward to continue the substitution process, although the terms become
complicated, and to prove that e(2)

r,npr
, . . . , e(M)

r,npr
exist if f is (M − 1) times differentiable.

8



It has thus been proved that yN has a Taylor series expansion in H. By subtracting
this expansion from

y(t0 + H) = y0 + fH +
1

2
(ft + fyf)H2 + O(H3)

the desired local error expansion (4.2) is obtained (e0(t) = e1(t) = 0).

Theorem 5

Let the initial value problem (2.1) be solved using the method

y(n+1)N = ynN + HΦ(H, tnN , ynN) (4.4)

where Φ is the previously defined increment function, and let yH(t0 + nH) = ynN .
Assume that

1. f is Lipschitz continuous in y.

2. The system (2.1) is monotonically max-norm stable for y(t) ∈ Ωt. (The conditions
of Theorem 2 are fulfilled.)

3. f is (M − 1) times differentiable.

Then the global error y(t) − yH(t) has an expansion of the form

y(t) − yH(t) = E1(t)H + E2(t)H
2 + . . . + EM−1(t)H

M−1 + O(HM)

Proof:

The proof follows from Theorem 2, Lemmas 3 and 4 and from Theorem 8.1 in [4].

When the conditions of Theorem 5 are fulfilled, the basic or the slowest-first compound
steps can be used as the basis of an extrapolation method [4].

Starting with yH(t0) = y0, use (4.4) to compute

yH(t0 + nH), yH/2(t0 + nH/2), yH/4(t0 + nH/4), . . . for n = 1, 2, . . .

Extrapolated values can be computed as

ŷH(t0 + nH) = 2yH/2(t0 + nH) − yH(t0 + nH)

ŷH/2(t0 + nH) = 2yH/4(t0 + nH) − yH/2(t0 + nH)

ˆ̂yH(t0 + nH) = (4ŷH/2(t0 + nH) − ŷH(t0 + nH))/3

. . .

ŷH has global order 2 and ˆ̂yH has global order 3. Assuming that f is sufficiently smooth,
the extrapolation technique can be used to obtain an arbitrarily high order of accuracy.

This approach to extrapolation is called passive: the extrapolated values are not used
for further computation. The global error expansion is valid also for varying step sizes if

9



the variation is sufficiently smooth, but it may be convenient to use an extrapolated value
after a change of step size. This may affect the stability properties adversely, but as long
as only a finite number of changes of step size are performed, the effect will remain finite.

The computation of each of the sequences yH , yH/2, . . . can be done in parallel since
they are independent. This adds to the parallelity offered by the decoupled implicit Euler
formula, be it in the basic form or a multirate version.

5 Decoupled Backward Differentiation Formulas

The basic step of an order k decoupled backward differentiation formula is

y(1)
r,n =

k
∑

j=1

αjyr,n−j + hnβ0fr(tn, y1,n−1, . . . , yr−1,n−1, y
(1)
r,n, yr+1,n−1, . . . , yq,n−1)

for r = 1, 2, . . . , q. The coefficients α1, α2, . . . , αk, β0 characterize a standard k-step back-
ward differentiation formula. It is crucial for the stability properties that the external
variables are yi,n−1, i 6= r. Any attempt to extrapolate the external variables to a value at
tn will degrade the stability properties seriously.

The corrector steps are as follows,

y(m+1)
r,n =

k
∑

j=1

αjyr,n−j + hnβ0fr(tn, y
(m)
1,n , . . . , y

(m)
r−1,n, y

(m+1)
r,n , y

(m)
r+1,n, . . . , y

(m)
q,n )

for r = 1, 2, . . . , q and m = 1, 2, . . . , k − 1.
For each corrector step, the order of accuracy is increased by one until order k is

reached. The same result could be obtained by using an order 2 method for the first
corrector step, an order 3 method for the second corrector step etc. However, there is an
obvious advantage in using the final order k method for the basic step and all the corrector
steps, namely that the Jacobian for the Newton iteration has the same hnβ0 coefficient
(c.f. (1.3)), and in many cases the final Jacobian of the basic step and its factorization
can be used throughout the corrector steps.

The main drawback of the extrapolated decoupled implicit Euler method is the com-
putational expense involved in solving the problem for a sequence of different step sizes.
The decoupled backward differentiation formulas are better in this respect and they are
similar to the decoupled implicit Euler method in terms of potential for parallelity.

However, the stability properties of the decoupled backward differentiation formulas
are in general slightly worse than those of the classical backward differentiation formulas
because of the decoupling. So far, there is only experimental evidence that the decoupled
backward differentiation formulas will have good stability properties when used for the
integration of monotonically max-norm stable systems of differential equations.

The decoupled backward differentiation formulas can also be formulated as a multirate
compound step.

Definition: Decoupled BDF compound step

10



For r = 1, 2, . . . , q define the BDF basic compound step over the interval [t0, t0 + Nh]:

y(1)
r,npr

=
k

∑

j=1

αjy
(1)
r,(n−j)pr

+ prhβ0fr(tnpr
, y1,0, . . . , yr−1,0, y

(1)
r,npr

, yr+1,0, . . . , yq,0)

for n = 1, 2, . . . , N/pr where pr divides N .
The corrector steps are computed as follows for m = 1, 2, . . . , k − 1,

y(m+1)
r,npr

=
k

∑

j=1

αjy
(m+1)
r,(n−j)pr

+ prhβ0fr(tnpr
, ỹ

(m)
1,npr

, . . . , ỹ
(m)
r−1,npr

, y(m+1)
r,npr

, ỹ
(m)
r+1,npr

, . . . , ỹ(m)
q,npr

)

for n = 1, 2, . . . , N/pr and r = 1, 2, . . . , q.

ỹ
(m)
i,npr

is computed from y
(m)
i,npi

, n = 0, 1, . . . , N/pi using interpolation of order m.

The weak link of the decoupled compound step is clearly the interpolation where
interpolation of order higher than 1 required for decoupled BDF compound steps of order
higher than 2 may degrade the stability properties seriously.

6 Example

The following example was presented in [2].

V ′ = f(t, V ) where f(t, V ) = C−1(g(V )+i(t)), y : R → R4 and f : R×R4 → R4 (6.1)

C =











CD + CS −CD 0 0
−CD 2CD + CS −CD 0

0 −CD 2CD + CS −CD

0 0 −CD CD + CS











, V =











V1

V2

V3

V4











g(V ) =











−V1G
(VDD − V2)G − i1(V1, V2)
(VDD − V3)G − i2(V2, V3)
(VDD − V4)G − i3(V3, V4)











, i(t) =











i0(t)
0
0
0











ir(Vr, Vr+1) = 2β(Vr − Vth − Vr+1/2)Vr+1 for Vr ≥ Vth, Vr+1 < Vr − Vth (6.2)

ir(Vr, Vr+1) = β(Vr − Vth)
2 for Vr ≥ Vth, Vr+1 ≥ Vr − Vth (6.3)

ir(Vr, Vr+1) = 0 for Vr < Vth (6.4)

CS = 10CD and β = G/[2(VDD − Vth)]

The variables ir are continuously differentiable in Vr and Vr+1, but ∂2ir/∂V 2
r and

∂2ir/∂V 2
r+1 are discontinuous for Vr+1 = Vr−Vth where the definition of ir changes between

11



t 510 − 7 510 − 8 510 − 9
H 10−7 10−8 10−9

3.2658 3.9459 3.9269
2p ≈ 3.3987 3.9610 3.9300

3.1083 3.9142 3.8631
2.7443 3.8595 3.7042

Table 1: Results for the left-hand side of (6.5).

(6.2) and (6.3). This means that f defined in (6.1) is once differentiable (M = 2). Because
of the limited smoothness of the solution, extrapolation can only be applied once to remove
the E1(t)H error term. This amounts to a second order integration formula. Similarly, a
second order decoupled backward differentiation formula can be used.

Problem (6.1) was separated into 4 scalar sub-systems and integrated numerically with
CD = 10−14, G = 10−3, Vth = 0.9 and VDD = 5. The function i0(t) was defined as

i0(t) = [Vth + (1 − cos(106t))(VDD − Vth)/2]G for t ∈ [0, 10−6π]

i0(t) = VDDG for t > 10−6π

V0 was chosen to make V (t) constant for a constant i0 = VthG. The eigenvalues of
∂f/∂V are of the order of magnitude 1010 which means that the problem is stiff for step
sizes greater than 10−9.

First the extrapolated decoupled implicit Euler method was tested using the same step
size for all sub-systems. Assuming that there exists a global error expansion of sufficiently
high order, the order of accuracy can be estimated using

VH(t) − VH/2(t)

VH/2(t) − VH/4(t)
≈ 2p (6.5)

where the differences and division is applied componentwise.
The entries of Table 1 clearly approximate 22 for small h corresponding to a second

order method as expected from the extrapolation. However, the model on which (6.5) is
based is not valid because of the discontinuity in the second derivative of f so therefore
the entries of Table 1 do not exhibit a convincing convergence towards 4.

The second order decoupled backward differentiation formula was also tested using
the same step size for all sub-systems. A computation similar to Table 1 gave erratic
results since the method does not have a global error expansion for this problem. There
are two reasons for this. First, as mentioned before, the lack of smoothness of f and
second, the procedure used for generating the first solution point after the initial value
(the extrapolated decoupled implicit Euler method was used).

Then a reference solution was generated over the interval [0, 3.1510 − 6] using the
extrapolated decoupled implicit Euler method with step size H = 10−8. This solution
is compared with the solution of the second order decoupled backward differentiation

12



t 310 − 6 3.110 − 6 3.110 − 6
H 210 − 7 10−7 510 − 8

Decoupled 0.0056 0.0015 0.0004
2nd order -0.0066 -0.0012 -0.0003

BDF 0.0386 0.0100 0.0024
-0.0343 -0.0062 -0.0014

Extrapolated 0.0077 0.0018 0.0004
decoupled -0.0337 -0.0072 -0.0017
implicit 0.0710 0.0144 0.0033
Euler -0.1156 -0.0242 -0.0054

Table 2: VH(t) − V10−8(t)

formula in Table 2 where the difference vectors are shown. The corresponding results for
the extrapolated decoupled implicit Euler method are given for comparison.

The errors of the two different methods are comparable, and each halving of the
step size leads to a reduction of the distance to the reference solution by a factor of
approximately 4. In conclusion, the methods perform as expected.

The monotonic max-norm stability of (6.1) partitioned into 4 scalar components was
proved in [2] for V ∈ [0, VDD]× . . .× [0, VDD]. The solutions computed for Table 2 actually
stray slightly outside that domain but without any consequences for the stability of the
integration methods.

Acknowledgement
This work was done while the Author visited Coordinated Science Laboratory, Uni-

versity of Illinois at Urbana-Champaign. The support provided by CSL is greatly appre-
ciated.

References

[1] Lelarasmee E., Ruehli A.E., and Sangiovanni-Vincentelli A.L., ”The Waveform Relax-
ation Method for Time-Domain Analysis of Large Scale Integrated Circuits”, IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, 1(1982), pp. 131-
145.

[2] Sand, J. and Skelboe, S., ”Stability of backward Euler multirate methods and conver-
gence of waveform relaxation”, To appear in BIT.

[3] Söderlind, G., ”On nonlinear difference and differential equations”, BIT, Vol. 24(1984),
pp. 667-680.

[4] Hairer, E., Nørsett, S. P. and Wanner, G., ”Solving ordinary differential equations I”,
Springer, 1987.

13


