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Abstract: Real world fault management applications encompass 

a number of diagnostic activities such as symptom monitoring, 

root cause analysis, impact prediction, testing, and recovery.  

They motivate powerful knowledge representation schemes to 

capture domain expertise and the development of intelligent 

algorithms that can exploit this knowledge. There are vast 

opportunities for the application of state-of-the-art fault 

management in commercial settings and, with billions of dollars 

at stake, industries are eager to embrace intelligent knowledge 

based solutions.   Over the past decade, we have developed an 

object-oriented model-based domain-independent methodology 

for real world fault management, called SymCure.  In this paper, 

we use this experience to generalize a set of requirements for 

real world fault management.  We present an overview of the 

architecture and the modeling language of SymCure.  We review 

a sample of projects where we have applied this approach, and 

share the motivations, challenges, successes and failures that 

have been our companions along this memorable journey.   

1 Introduction  

Fault management plays a vital role across a broad 

spectrum of commercial and industrial applications, 

ranging from service level management and 

telecommunications network management in the 

Information Technology (IT) world, to abnormal 

condition management in manufacturing, chemical, oil 

and gas industries.  The size and complexity of these 

applications often necessitates automated expert system 

support for fault management. A small number of root 

cause problems in IT communication networks often 

result in a large number of messages and alarms that 

cannot be handled by human operators in real time.  

Failure to identify and repair the root cause problems 

results in increased system downtime and poor service 

levels. Abnormal conditions in manufacturing and 

processing plants may result in unplanned shutdowns, 

equipment damage, safety hazards, reduced productivity, 

and poor quality products.  A study funded by the US 

National Institute of Standards and Technology (NIST) 

estimates that in the absence of adequate fault 

management, billions of dollars are spent in addressing 

the problems caused by equipment failure, degradation, 

process drift, and operator overload [7]. 

 

There is increasing demand for the application of state-of-

the-art fault management across a broad spectrum of 

industries.  Over the past decade, we have applied model-

based reasoning to address several fault management 

functions, including diagnosing root causes, testing them, 

predicting their impacts, and recovering from failures. 

This experience has guided us in the development of an 

object-oriented model-based domain-independent world 

fault management methodology, called SymCure (derived 

from “Symptom’s Cure”).   

 

Section 2 describes our requirements for addressing large 

scale commercial fault management applications.  Section 

3 describes SymCure’s architecture, reasoning algorithms, 

and modeling language.  Our diagnostic methodology is 

largely domain independent and its applications range 

from abnormal condition management for offshore 

platforms that drill for oil at the bottom of the ocean to 

network management for satellite systems in space.  

Section 4 describes some of these applications. Section 5 

concludes with a discussion of the lessons we have 

learned while applying our model-based diagnostic 

methodology in the real world. 

2 Background 

Fault management across various industries shares some 

common goals, such as improving application availability 

and utilization, reducing operator overload, and 

minimizing operation costs.  In order to achieve these 

goals, it is necessary to develop fault management tools 

with the following capabilities.  

 

Symptom monitoring. Symptoms are manifestations of 

underlying root causes and must be monitored to detect 

the occurrence of problems as soon as they happen. 

 

Diagnosis identifies the root causes of known symptoms. 

(Diagnosis is also often referred to as fault isolation.) 

Complex systems are often composed of a large number 

of interconnected and interrelated components (e.g., 

networks of computers or satellites, electrical power 

generation plants, offshore oil drilling platforms).  While 

a problem may originate on one component, often it is 

manifested on some other related component.  In large-

scale systems, it is not uncommon for multiple failures to 

overlap.  Studies on such systems have shown that 

typically up to 80% of the fault management effort is 

spent in identifying root causes after the manifestation of 

symptoms [10].    

 



Correlation. Modern systems are often richly 

instrumented with a large number of sensors that provide 

copious amounts of information in the form of messages 

and alarms.  Often a small number of root causes result in 

a large number of messages and alarms that cannot be 

handled by human operators in real time.  Therefore it is 

necessary to provide them with concise notifications of 

underlying root causes. Correlation is the process of 

recognizing and organizing groups of events that are 

related to each other.  Usually such events share one or 

more root causes.   

 

Prediction.  Early prediction of the impacts of underlying 

root causes before the effects are manifested is critical for 

proactive maintenance, safety, and optimal system 

utilization.  System operators need to know not just what 

impacts are predicted by the application but also when 

those impacts are expected to occur so they can plan for 

appropriate system repair and recovery. 

 

Testing.  In large systems, it is impractical and sometimes 

impossible to monitor every variable.  Instead key 

observable variables are monitored to generate symptom 

events.  Diagnostic inference typically identifies a set of 

suspected root causes.  A test planning facility is needed 

to select additional variables to be examined to isolate the 

root causes.  The fault management application then 

needs to request or run these tests, and utilize their results 

to complete the diagnosis. A test, as originally defined in 

[8], can incorporate arbitrarily complex analysis and 

actions, as long as it returns a true or false value.  

 

Automated recovery. Identifying and automating recovery 

procedures facilitates rapid response to problems and 

allows for growth in equipment, processes, and services, 

without increasing the supervisory burden on system 

operators. 

 

Notification.  System operators require notifications of all 

critical fault management activity, especially the 

identification of root causes, and causal explanations for 

alarms, tests, and repair actions in a manner that they can 

follow easily.  Sometimes they need to distinguish 

between what is observed by system sensors versus what 

is inferred by the underlying fault management 

application.   

 

Postmortem.  Information from diagnostic problem 

solving is fed back to the fault management system for 

historic record keeping and proactive fault management in 

the future. 

 

24 hour, year-round fault management. The system 

topology may change at run-time over the life span of the 

fault management application, e.g., components may be 

added, removed, replaced, and modified.  Commercial 

applications often require fault management on a 24 hour, 

year-round basis, so it may not be feasible to take the fault 

management system off-line each time that there is a 

change in the system topology.    

 

A goal of ours for the past decade has been to develop a 

domain independent model-based fault management 

methodology to address these requirements.  

 

With some effort at knowledge elicitation, it is often 

feasible to develop a high-level qualitative understanding 

of failure modes of system components and their effects 

on the behavior of the system.  Such knowledge facilitates 

diagnostic reasoning based on qualitative fault models 

(e.g., [3], [5], [10], [11]).  Alternative diagnosis 

techniques often described as consistency based methods 

(e.g., [1], [6]) use models of “normal” behavior, where 

diagnosis reasoning focuses on identifying causes for 

discrepancies between the normal behavior predicted by 

the model, and the aberrant behavior manifested by the 

device.  Fault models can be far more abstract than 

models of normal behavior, and can be easier to construct, 

comprehend, and customize to a domain expert’s 

specification.  For example, fault models can easily 

capture causal relations such as “if an IP card fails, the 

device cannot communicate”, and “if a pump fails, flow 

stops”, without requiring detailed models that simulate 

normal behavior.   

 

Causal fault models capture paths of causal interactions 

between root causes (i.e., faults) and their effects (i.e., 

symptoms).  Diagnosing root causes from known 

symptoms is achieved by tracing upstream along the 

causal pathways from the symptoms to the faults.  

Predicting the impact of root causes is performed by 

propagating downstream from causes to effects. 

 

In a number of commercial applications, such knowledge 

may be gleaned from domain experts, Failure Modes 

Effects and Analyses (FMEA) studies [9], and operational 

and product manuals.  Domain experts need tools that 

allow them to model and analyze the structure and the 

diagnostic behaviors of their system. Object oriented 

graphical causal fault models facilitate understanding, 

capturing, updating, and reusing key elements of their 

diagnostic knowledge.   

 

Our methodology, as detailed in the following section, 

utilizes graphical object-oriented qualitative causal fault 

models as the basis for several fault management 

functions, including diagnosis, correlation, prediction, 

testing, automated recovery, and notification. 

3 SymCure Methodology 

SymCure is implemented in G2 which is Gensym 

Corporation’s graphical, object-oriented platform for 

developing and deploying expert systems applications. 



Figure 1 shows the input, processing, and output elements 

of a SymCure application.   
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Figure 1.  SymCure architecture 

Domain representation is a graphical object oriented 

representation of the domain objects being managed by 

SymCure.  It includes class definitions for domain 

objects, and a system description (also referred to as a 

domain map) comprised of specific instances (i.e., the 

managed domain objects) and relationships between these 

instances, including connectivity (e.g., one object is 

connected upstream of another) and containment (i.e., one 

object is contained inside another).   Figure 2 shows two 

simplified illustrations of domain maps that are comprised 

of similar components (a furnace and a pair of pumps) but 

differ in their connectivity (i.e., Domain map 1 connects 

both pumps directly to the furnace, while Domain map 2 

connects the pumps to the furnace in series). 

 

Diagnostic knowledge comprises a declarative 

component, i.e., generic event-based fault models that are 

used to reach diagnostic conclusions, and a procedural 

component, i.e., test procedures that verify these 

conclusions, and recovery procedures that respond to 

these conclusions.  We believe that separating out the 

declarative aspect of diagnostic knowledge (i.e., how do 

things fail, how do failures propagate) from the 

procedural aspect (i.e., what to do when something is 

suspected to have occurred, what to do when something is 

known to have failed) facilitates the articulation, 

acquisition, representation, and management of domain 

expertise.  

 

A SymCure event
1
 is a statement about a domain object 

that indicates the presence or absence of a problem.  

Generic fault models are composed of events (that are 

defined at the class-level) and their causal relations.  

Domain experts define these events using terminology 

they are familiar with, and at levels of abstraction suitable 

to their application.  The fault models are graphical, thus 

they are easy to understand and little or no programming 

experience is necessary to build them.  Another advantage 

                                                 
1
 For the rest of this paper, we refer to a SymCure event simply 

as event. 

of this approach is that the diagnostic knowledge does not 

require any reconfiguration whenever there are changes in 

specific instances of equipment, system topology (as 

illustrated by the two domain maps of Figure 2), or 

system operating modes, and they can be reused easily in 

different applications.  

 

SymCure identifies a generic event as a unique 

combination of event name and target class (e.g., in the 

generic fault model for a pump in Figure 2, “Low flow” is 

the event’s name and PUMP is its target class).   Causal 

relations are represented by edges between generic events.  

Figure 2 shows simplified examples of generic fault 

models for pumps and furnaces.  In the furnace generic 

fault model, low fluid flow into a furnace causes the 

temperature of the fluid to rise.  At high temperatures, the 

fluid may undergo undesirable chemical reactions that, 

over time, cause carbon deposits inside the furnace tubes 

(i.e., fouling).  Damage to a pump’s impeller hinders its 

ability to impart motion to the fluid in the pump, thus 

causing low fluid flow through the pump.   Inlet strainers 

are devices that keep debris out of a pump that might 

otherwise damage or clog it.  Low flow through the pump 

is also caused by a plugged inlet strainer, which is also 

responsible for low inlet pressure. In these simplified 

models, low fluid flow into either the pump or furnace is 

caused by low flow in any domain object connected 

upstream of the pump or furnace. Propagation delays may 

be specified by configuring the properties of causal links; 

such delays are used to infer the occurrence time for any 

event.  Although this is not shown in Figure 2, for 

illustrative purposes, we have assumed that there is a 3 

hour delay between the onset of rising temperature in a 

furnace and the onset of fouling in the furnace. 

 

The procedural component of a fault model includes the 

following elements. 

1. Tests are used to verify the occurrence of an 

underlying event.  Upon completion, a test action 

must return a true or false value for an associated 

event. 

2. Repair actions are used to recover from failures.   

 

Tests and repair actions are associated with underlying 

events.  They are enabled or disabled by transitions of the 

values of their associated events.  For example, in Figure 

2, the test “Check inlet pressure” may be used to 

determine if the “Low inlet pressure” on a pump is true; 

and the repair action “Unclog inlet strainer” may be used 

to set in motion the process whereby a plugged inlet 

strainer is unclogged.  In general, such actions may be 

automated, or may simply be a request to an operator, or a 

combination of the two, e.g., extracting a data point from 

a database or sending a repair technician to a remote site 

to conduct manual tests and repairs.  A detailed discussion 

of tests and repair actions is beyond the scope of this 

paper. 



 
Figure 2.  Generic fault models, domain maps, and specific fault models 

 

The incoming events stream includes symptoms that 

indicate the presence of problems. Symptoms are 

manifestations of underlying root causes on specific 

domain objects.  They are detected by application specific 

procedures
2
 that monitor, aggregate, filter and analyze 

numerical data, sensor readings, network management 

traps, signals, and other forms of raw data.   SymCure 

responds to an incoming event by diagnosing the root 

causes of the incoming event stream, predicting the 

impact of the root causes on other events, reporting the 

results of diagnosis and impact prediction to system 

operators, initiating any tests required to verify the 

occurrence of suspected root causes, and initiating 

recovery actions to repair the target objects of the root 

causes. Incoming events also include test results that 

validate or rule out suspected events. 

 

SymCure’s diagnostic algorithms dynamically combine 

the domain representation, diagnostic knowledge, and 

incoming events to produce a specific fault model that 

applies to the specific managed domain objects.  A 

specific fault model is composed of specific events and 

their causal relations. In Figure 2, specific fault models 1 

and 2 are derived from domain maps 1 and 2, 

respectively, and the generic fault models for pumps and 

furnaces. SymCure uniquely identifies a specific event by 

its name (e.g., “Low flow”) and the domain object on 

which the event occurs (e.g., PUMP-1).  For diagnostic 

                                                 
2
 Event detection is outside the scope of this paper; refer to [3] 

for further details. 

reasoning purposes, specific events may take on the 

following symbolic values: 

• true, i.e., the event is known or inferred to have 

occurred; such an event is depicted with “T” in the 

specific fault model (e.g., “High outlet temperature” 

on FURNACE-1 in Figure 2), 

• false, i.e., the event is known or inferred to not have 

occurred; such an event is depicted with “F” in the 

specific fault model (e.g., “High outlet pressure” on 

PUMP-1 in Figure 2), 

• unknown, i.e., it is neither known nor inferred that 

the event has occurred; such an event is depicted with 

“U” in the specific fault model, and 

• suspect, i.e., it is suspected that the event has 

occurred; such an event is depicted with “S” in the 

specific fault model (e.g., “Pump Impeller damage” 

on PUMP-1 in Figure 2). 

 

The specific fault models in Figure 2 are initiated by 

assuming that high outlet temperature is observed in each 

furnace and manual testing shows the inlet pressures on 

all pumps are normal.   For each specific fault model, 

SymCure infers that the impellers on one or both pumps 

must be damaged.  For each scenario, SymCure also 

predicts that tube fouling will occur. 

 

We use best first search to propagate event values within 

a specific fault model.  At a very high level (for details 

refer to [3]), starting from an incoming event, event 

propagation is achieved by the following algorithm.  

for any event e if its value changes do 

Furnace generic fault model 

Pump generic fault model 

 

Domain map 1 

Domain map 2 
Specific fault model 1 

Specific fault model 2 

Generic Fault Models       +       Domain Map                =           Specific Fault Model 

Test and repair actions 



1. propagate the value of the event upstream to all 

Causes (where Causes = all causes of e); 

2. propagate the value of the event downstream to 

Effects (where Effects = all effects of {Causes + e}); 

end for 

 

This for-loop is invoked each time a symptom is 

manifested and the result of a test becomes available.  The 

propagation steps in the for-loop can be configured to 

terminate as soon as SymCure identifies a set of root 

causes that explain all observed incoming events, even 

before a complete specific fault model has been 

constructed.  To speed up the search process, in steps 1 

and 2 SymCure explores events on the same domain 

object before it moves on to events defined on different 

domain objects.  The time complexity of the for-loop is 

linear in the number of events (i.e., size) of the specific 

fault model.  The maximum number of events in a 

specific fault model is bound by the product of the 

number of managed domain objects and the size of the 

largest generic fault model.  In practice, since we 

construct only the events that are correlated to incoming 

symptoms, the actual size of a specific fault model is 

usually a small subset of the maximum possible size.   

 

As demonstrated in Figure 2, SymCure constructs system 

wide specific fault models, i.e., it is able to reason about 

interactions among the individual system components.  

We generate a visual representation of the underlying 

specific fault model on demand.  This allows modelers 

and system operators to understand the results of the 

diagnostic reasoning process.  However, graphical models 

can rapidly overwhelm users as the number of nodes 

increase.  Thus, we provide options to organize the visual 

representation of a specific fault model by focusing on 

relevant portions of the graph at any given time.  For 

example, the abridged specific fault model in Figure 3 

shows only the potential causes and effects of “High 

outlet temperature” in FURNACE-1.   

 

 
Figure 3. A focused view of Specific fault model 1 

 

SymCure generates messages for root causes and alarms, 

and proposes tests and repair actions to resolve and 

recover from faults. Such messages are presented to 

system operators in one or more diagnostic console 

browsers.  Figure 4 shows the alarms, root causes, tests, 

and repair actions for Specific fault model 1 in Figure 2. 

Note that tube fouling is predicted to occur 3 hours after 

high outlet temperature in the furnace has become true.  

Alarm messages can be suppressed in favor of root causes 

so that operators are not flooded with alarms.  Requests 

for tests and repair actions may be sent automatically to a 

rudimentary workflow management component, which 

schedules and executes them.  

 

 
Figure 4. Alarms, repair actions, root causes, and tests for 

Specific fault model 1 

 

SymCure’s modeling language. Early versions of 

SymCure provided two kinds of events for creating fault 

models: OR event and AND event.  Their behaviors were 

governed by the following rules (where Xi, Yj, and Zk are 

events in a fault model; the edge Xi → Yj implies that Xi 

causes Yj; and propagating downstream requires 

determining a value for Yj from Xi, while propagating 

upstream requires determining Xi from Yj). 

For any OR event Yi 

1. While propagating downstream, if Yi → Z1,…,Zn, 

and Yi is true, then Z1,…,Zn are all true. 

2. While propagating upstream, if X1,…,Xm → Yj, 

and Yi is true, then at least one of X1,…,Xm must 

be true. 

 

For any AND event Yi: 

1. While propagating downstream (identical to the 

case of an OR event), if Yi → Z1,…,Zn, and Yi is 

true, then Z1,…,Zn are all true. 

2. While propagating upstream, if X1,…,Xm → Yi, 

and Yi is true, then all of X1,…,Xm must be true. 

 

The limitations of a causal modeling language comprised 

solely of these two events were quickly exposed in 

several early projects.  In the real world, fault models are 

rarely ever complete, i.e., frequently there are causal 

influences that are not fully understood or cannot be 

modeled.  Propagation delays and noise often result in 

discrepancies between inferences made by the underlying 

fault model and observed events.  This may result in root 

cause events being exonerated prematurely or being 

implicated falsely. We have tried to address these issues 

in later versions of SymCure by associating OR and AND 

logic at the input and output of an event as shown below: 

1. While propagating downstream, if Yi → Z1,…,Zn, 

and Yi is true, then Z1,…,Zn are all true (we say 

that Yi uses output AND logic).  

2. While propagating downstream, if Yi → Z1,…,Zn, 

and Yi is true, then at least one of Z1,…,Zn must 

be true (we say that Yi uses output OR logic). 

3. While propagating upstream, if X1,…,Xm → Yi, 

and Yi is true, then at least one of X1,…,Xm must 

be true (we say that Yi uses input OR logic). 



4. While propagating upstream, if X1,…,Xm → Yi, 

and Yi is true, then all of X1,…,Xm must be true 

(we say that Yi uses input AND logic). 

 

We can also specify input and output logic with 

percentages to reason over a progression of values that 

may represent partial degradation. By combining these 

rules, we have created 7 different events are capable of 

root cause analyses and impact predictions that cannot be 

modeled with traditional OR and AND events alone.  

Further modeling enhancements, including utilizing NOT 

logic, mutual exclusion, and specifying state dependent 

behavior.  See [3] for detailed examples of SymCure’s 

capabilities and modeling language. 

4 Applications 

SymCure’s diagnostic knowledge representation and 

reasoning methodology is domain independent and it has 

been applied to solve problems in domains ranging from 

networks of telecommunication satellites to offshore oil 

drilling platforms. We present a sample of such 

applications emphasizing, wherever applicable, the 

challenges they posed to our methodology and its 

consequent evolution. 

 

Satellite network fault management (1995-2000).  
Iridium is a global telephony network of low earth orbit 

satellites and ground stations where calls are switched in 

the sky from satellite to satellite; as the satellites orbit the 

earth, communication links are periodically broken and 

are re-formed with different satellites.  Diagnosing the 

root causes of communication failures required reasoning 

over dynamically changing communication links, so 

Motorola (Iridium’s original owner) adopted an early 

version of SymCure for its satellite network fault 

management application. Experience with live monitoring 

before satellite launches, prior to full-scale deployment 

suggests that, had the fault management application been 

fully deployed, it might have saved some satellites that 

were lost just after launch [11]. To the best of our 

knowledge, the application was in use until 2000. Later, 

beset with financial difficulties and other business 

problems, Iridium ran out of funds to support the 

application.   

Enterprise-wide monitoring of networks and 
applications (1998-2000).  BMC built a line of products 

(aimed at Windows 2000 and Microsoft Exchange 

servers) for diagnosing faults and predicting their impacts 

on enterprise-wide computer networks and applications.  

The requirement to automatically diagnose and predict 

events over dynamically changing network topology and 

software installed on servers, led them to use SymCure as 

their fault management reasoning engine.  This work 

tested some of the limitations of earlier versions of 

SymCure’s modeling language because of timing delays 

along paths of causal propagation (primarily due to the 

lag times between measurements and their time-averaged 

thresholds), noise, and incomplete causal models.   

 

Highway traffic management equipment monitoring 

(2001-02).  L.E.E. developed a SymCure application to 

monitor and manage Paris’ highway traffic equipment 

including thousands of road sensors, message displays, 

cameras, telecommunications equipment, hierarchical 

subsystems, energy systems, and supporting network 

infrastructure. Diagnostic conclusions are required within 

a short (2 minute) event polling cycle, of which only a 

fraction (approximately 20 seconds) is available for 

diagnostic processing.  Early versions of SymCure built 

visual representations of complete specific fault models 

and reasoned over them.  Drawing and updating events at 

run-time is inefficient and contributed to the difficulties in 

meeting the performance requirements.  We realized that 

sound software design is as vital as “intelligent” 

technology for a successful application.  In subsequent 

versions of SymCure, visual representations are separated 

from underlying specific fault models; they are generated 

on demand only and usually focus on a narrow section of 

a specific fault model as illustrated by Figure 3 in the 

previous section.  Along with the introduction of best first 

search and efficient data structures like hash tables instead 

of lists, this has resulted in a five-fold improvement in the 

speed of diagnostic reasoning.   

 

Heaters in oil refineries (2001-02).  A middle eastern oil 

refinery installed an application for managing abnormal 

conditions, focused on diagnosing failures in a generic 

class of heaters.  The application defined 80 root causes 

that account for over 240 different kinds of operator 

messages, and provided tests and repair actions that 

rapidly guide operators to return a heater to normal 

operation. Noureldin and Roveta [4] describe this 

application in detail including how they acquire domain 

knowledge from human experts.  They concluded that the 

net savings from using this application substantially 

exceeded the cost of the project in less than one year.     

 

Offshore oil production platform (2002-03). 
Halliburton KBR created an application for monitoring 

the health of offshore oil production platforms. Their 

application focused on monitoring the health of the gas 

compressors on a platform and demonstrated its ability to 

proactively predict compressor failures that could 

potentially save millions of dollars that would otherwise 

be sacrificed to production losses resulting from 

compressor shutdowns [2].   

 

Mineral processing plant (2005-present). SGS 

MinnovEX is developing an application to diagnose and 

respond to root causes of sub-optimal operations in 

mineral processing plants.  System components include 

equipment such as compressors and pumps, controllers, 

and other sub-processes. The application analyzes 



historical operational data to detect deviant operational 

events and then diagnoses the causes of such events.  This 

application uses SymCure’s enhanced event logic and 

preliminary results indicate success in identifying faults 

such as sensor drift and poor controller tuning in the face 

of incomplete models and noisy data. However enhancing 

the event logic complicates the behaviors of the fault 

models.  This motivated us to build a graphical fault 

model debugger to help domain experts to step through, 

analyze, and test their fault models.   

 

Electrical power and energy distribution systems 

(2005-present). General Atomics is developing a generic 

fault management library for mission critical power and 

energy distribution systems.  Though a significant degree 

of redundancy is typically designed into critical power 

systems, the penalties associated with loss of availability 

are so high that any software assistance in the detection of 

the onset of failure becomes invaluable.  Generic fault 

models have been developed for electrical system 

components including generators, motors, circuit 

breakers, transformers, uninterruptible power supplies, 

transfer switches, critical load centers, and DC links. 

These models enable the diagnosis of complex power 

system anomalies such as ground faults, which typically 

cause a flood of alarms.  The strengths of generic fault 

modeling, in conjunction with dynamic instantiation of 

energy flow relationships between electrical components, 

have effectively diagnosed problems in dynamically 

reconfigurable power systems.  Combining SymCure’s 

fault management methodology with models of normal 

behavior that analyze trends and detect discrepancies 

between observed and predicted sensor values, facilitates 

the prediction of the onset of equipment failure.  

SymCure’s graphical fault models facilitate conveying, 

communicating, and validating the details of vendor-

supplied Failure Modes and Effects Analysis (FMEA).   

 

General Atomics’ fault management library serves as the 

basis for several ongoing projects with the US Navy, 

which is increasing its reliance on high-energy 

electromagnetic components for next generation 

shipboard systems.  This includes projects to build 

electromagnetic systems to impart the momentum 

necessary to launch airplanes from an aircraft carrier and 

that arrest the motion of the planes to bring them to a halt 

when they land.  (The runway in an aircraft carrier is too 

small for airplanes to be able to take off and land without 

such assistance.)  As availability and reliability are critical 

for such systems, General Atomics is leveraging 

SymCure’s fault management methodology to diagnose 

and predict the health and life expectancy of aircraft 

launch and landing gear components.   

 

General Atomics is also collaborating with the National 

Aeronautics and Space Administration (NASA) for fault 

management of its Rocket Engine Test Stand (RETS).  

RETS tests the structural integrity of a rocket before it is 

launched, and typically provides NASA’s engineers their 

last chance to detect and correct any flaws in the fully 

assembled rocket. The fault management application is 

targeted for deployment at NASA’s Stennis Space Center 

facility in southern Mississippi.  The subsystems 

associated with the testing of solid and liquid fueled 

rocket engines involve complex mechanical, electrical, 

hydraulic, pneumatic, and thermodynamic processes.  All 

of these processes, along with their associated system 

components, lend themselves well to the generic fault 

modeling capabilities of SymCure.  The fault 

management application will be used to diagnose and 

predict RETS anomalies, but will also provide real-time 

advisories associated with the quality of results obtained 

from the RETS tests.   

5 Conclusions 

In this paper, we have described a generic model-based 

fault management methodology to address fault 

management applications in several diverse domains.  We 

summarize our contributions to the application of model-

based diagnostic techniques in the real world, limitations 

of our methodology, and share our thoughts on the lessons 

we have learned. 

 

Contributions.  SymCure integrates causal fault models 

for root cause analysis and impact predictions with test 

and repair management thus providing a comprehensive 

set of capabilities for developing fault management 

applications. SymCure’s modeling language has evolved 

over time to address problems with propagation delays, 

sensor noise and threshold problems. SymCure’s 

reasoning process is capable of detecting and resolving 

multiple system failures. SymCure’s fault models are 

generic, so they do not require any reconfiguration 

whenever there are changes in equipment, system 

topology, or system operating modes and they can be 

reused in different applications.   

 

Limitations.  Like any knowledge based reasoning 

system, the accuracy of SymCure’s diagnostic inference is 

constrained by the correctness of the underlying fault 

models and the availability of instrumentation to observe 

symptoms and perform tests to resolve diagnostic 

candidates.  SymCure cannot handle faults that are not 

part of the fault models but it can identify novel 

combinations of known faults. Because SymCure 

processes an event as soon as it is received, diagnostic 

results are susceptible to the order of incoming events. In 

theory, this can cause problems over short time spans if 

the values of observed events are inconsistent (because of 

propagation delays, noise, and faulty sensors).  In 

practice, this has not been a significant issue. SymCure 

allows domain experts to represent events in their 

terminology at an arbitrary level of abstraction suitable to 

their application. However, the burden of detecting the 



occurrence of an event is placed on external monitoring 

mechanisms, which may require sophisticated filtering 

and aggregation techniques.  SymCure does not explicitly 

model the likelihoods (i.e., probabilities) of events. 

 

Lessons learned. There are tremendous and exciting 

opportunities for the application of state-of-the-art fault 

management techniques in commercial settings and, with 

billions of dollars at stake, industries are eager to embrace 

intelligent knowledge based solutions.  However, as we 

have learned over the years, there are many challenges 

and pitfalls of which practitioners need to be aware.   

 

The fundamental challenge for knowledge based expert 

systems applications is the formalization of the domain 

knowledge both before and during the development of the 

application. Often the knowledge base evolves 

incrementally, starting from a small prototype that grows 

with further testing and development as new requirements 

become evident.  Commercial applications require ease of 

use so they can be mastered with minimal training and 

cost.  This motivates not just the development of powerful 

user interfaces, but also modeling languages that can be 

understood by users whose expertise is limited to their 

domain. Modeling aids to efficiently search for, navigate 

to, and debug diagnostic knowledge are essential.  If such 

an application is to be adopted successfully in a 

commercial setting, it must be able to demonstrate a 

reasonable return on investment.  There is a premium on 

“out of the box” solutions, where the diagnostic 

knowledge is pre-packaged.  However, it is imperative 

that this knowledge be configurable by end users, since 

we have never seen two domain experts ever agree on 

everything. Visual representations and explanations are a 

crucial ingredient for success; a picture is worth not just a 

thousand words but potentially millions of dollars, if it 

helps system operators to avert an impending problem. 

Efficient computational techniques and sound software 

engineering principles are as important as the artificial 

intelligence that underlies its reasoning capabilities.  Last, 

but not the least, human factors, including sky high 

expectations, funding cuts, resistance to adopt new 

technology, political infighting, and employee turnover 

(especially, if it involves someone who is a champion of 

the technology) are, not infrequently, serious impediments 

to success.  

 

As described in the previous section, we have plumbed 

the depths of oceans (with offshore oil production 

platforms) and orbited the heavens (with 

telecommunication satellites). We believe that the road 

ahead promises to be just as exciting.  As the future 

unfolds, we are embarking on the development of generic 

fault model libraries of components in different domains 

that can be reused across applications and other 

innovative techniques to automate knowledge discovery 

and to create adaptive fault models that learn from 

successful and failed diagnoses. 
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