
Real World Model-based Fault Management

Ravi Kapadia
General Atomics, 16969 Mesamint Street, San Diego, CA 92127

Greg Stanley
Greg Stanley and Associates, 8619 Tranquil Park Drive, Spring, TX 77379

 Mark Walker
General Atomics, 16969 Mesamint Street, San Diego, CA 92127

Abstract: Real world fault management applications encompass

a number of diagnostic activities such as symptom monitoring,

root cause analysis, impact prediction, testing, and recovery.

They motivate powerful knowledge representation schemes to

capture domain expertise and the development of intelligent

algorithms that can exploit this knowledge. There are vast

opportunities for the application of state-of-the-art fault

management in commercial settings and, with billions of dollars

at stake, industries are eager to embrace intelligent knowledge

based solutions. Over the past decade, we have developed an

object-oriented model-based domain-independent methodology

for real world fault management, called SymCure. In this paper,

we use this experience to generalize a set of requirements for

real world fault management. We present an overview of the

architecture and the modeling language of SymCure. We review

a sample of projects where we have applied this approach, and

share the motivations, challenges, successes and failures that

have been our companions along this memorable journey.

1 Introduction

Fault management plays a vital role across a broad

spectrum of commercial and industrial applications,

ranging from service level management and

telecommunications network management in the

Information Technology (IT) world, to abnormal

condition management in manufacturing, chemical, oil

and gas industries. The size and complexity of these

applications often necessitates automated expert system

support for fault management. A small number of root

cause problems in IT communication networks often

result in a large number of messages and alarms that

cannot be handled by human operators in real time.

Failure to identify and repair the root cause problems

results in increased system downtime and poor service

levels. Abnormal conditions in manufacturing and

processing plants may result in unplanned shutdowns,

equipment damage, safety hazards, reduced productivity,

and poor quality products. A study funded by the US

National Institute of Standards and Technology (NIST)

estimates that in the absence of adequate fault

management, billions of dollars are spent in addressing

the problems caused by equipment failure, degradation,

process drift, and operator overload [7].

There is increasing demand for the application of state-of-

the-art fault management across a broad spectrum of

industries. Over the past decade, we have applied model-

based reasoning to address several fault management

functions, including diagnosing root causes, testing them,

predicting their impacts, and recovering from failures.

This experience has guided us in the development of an

object-oriented model-based domain-independent world

fault management methodology, called SymCure (derived

from “Symptom’s Cure”).

Section 2 describes our requirements for addressing large

scale commercial fault management applications. Section

3 describes SymCure’s architecture, reasoning algorithms,

and modeling language. Our diagnostic methodology is

largely domain independent and its applications range

from abnormal condition management for offshore

platforms that drill for oil at the bottom of the ocean to

network management for satellite systems in space.

Section 4 describes some of these applications. Section 5

concludes with a discussion of the lessons we have

learned while applying our model-based diagnostic

methodology in the real world.

2 Background

Fault management across various industries shares some

common goals, such as improving application availability

and utilization, reducing operator overload, and

minimizing operation costs. In order to achieve these

goals, it is necessary to develop fault management tools

with the following capabilities.

Symptom monitoring. Symptoms are manifestations of

underlying root causes and must be monitored to detect

the occurrence of problems as soon as they happen.

Diagnosis identifies the root causes of known symptoms.

(Diagnosis is also often referred to as fault isolation.)

Complex systems are often composed of a large number

of interconnected and interrelated components (e.g.,

networks of computers or satellites, electrical power

generation plants, offshore oil drilling platforms). While

a problem may originate on one component, often it is

manifested on some other related component. In large-

scale systems, it is not uncommon for multiple failures to

overlap. Studies on such systems have shown that

typically up to 80% of the fault management effort is

spent in identifying root causes after the manifestation of

symptoms [10].

Correlation. Modern systems are often richly

instrumented with a large number of sensors that provide

copious amounts of information in the form of messages

and alarms. Often a small number of root causes result in

a large number of messages and alarms that cannot be

handled by human operators in real time. Therefore it is

necessary to provide them with concise notifications of

underlying root causes. Correlation is the process of

recognizing and organizing groups of events that are

related to each other. Usually such events share one or

more root causes.

Prediction. Early prediction of the impacts of underlying

root causes before the effects are manifested is critical for

proactive maintenance, safety, and optimal system

utilization. System operators need to know not just what

impacts are predicted by the application but also when

those impacts are expected to occur so they can plan for

appropriate system repair and recovery.

Testing. In large systems, it is impractical and sometimes

impossible to monitor every variable. Instead key

observable variables are monitored to generate symptom

events. Diagnostic inference typically identifies a set of

suspected root causes. A test planning facility is needed

to select additional variables to be examined to isolate the

root causes. The fault management application then

needs to request or run these tests, and utilize their results

to complete the diagnosis. A test, as originally defined in

[8], can incorporate arbitrarily complex analysis and

actions, as long as it returns a true or false value.

Automated recovery. Identifying and automating recovery

procedures facilitates rapid response to problems and

allows for growth in equipment, processes, and services,

without increasing the supervisory burden on system

operators.

Notification. System operators require notifications of all

critical fault management activity, especially the

identification of root causes, and causal explanations for

alarms, tests, and repair actions in a manner that they can

follow easily. Sometimes they need to distinguish

between what is observed by system sensors versus what

is inferred by the underlying fault management

application.

Postmortem. Information from diagnostic problem

solving is fed back to the fault management system for

historic record keeping and proactive fault management in

the future.

24 hour, year-round fault management. The system

topology may change at run-time over the life span of the

fault management application, e.g., components may be

added, removed, replaced, and modified. Commercial

applications often require fault management on a 24 hour,

year-round basis, so it may not be feasible to take the fault

management system off-line each time that there is a

change in the system topology.

A goal of ours for the past decade has been to develop a

domain independent model-based fault management

methodology to address these requirements.

With some effort at knowledge elicitation, it is often

feasible to develop a high-level qualitative understanding

of failure modes of system components and their effects

on the behavior of the system. Such knowledge facilitates

diagnostic reasoning based on qualitative fault models

(e.g., [3], [5], [10], [11]). Alternative diagnosis

techniques often described as consistency based methods

(e.g., [1], [6]) use models of “normal” behavior, where

diagnosis reasoning focuses on identifying causes for

discrepancies between the normal behavior predicted by

the model, and the aberrant behavior manifested by the

device. Fault models can be far more abstract than

models of normal behavior, and can be easier to construct,

comprehend, and customize to a domain expert’s

specification. For example, fault models can easily

capture causal relations such as “if an IP card fails, the

device cannot communicate”, and “if a pump fails, flow

stops”, without requiring detailed models that simulate

normal behavior.

Causal fault models capture paths of causal interactions

between root causes (i.e., faults) and their effects (i.e.,

symptoms). Diagnosing root causes from known

symptoms is achieved by tracing upstream along the

causal pathways from the symptoms to the faults.

Predicting the impact of root causes is performed by

propagating downstream from causes to effects.

In a number of commercial applications, such knowledge

may be gleaned from domain experts, Failure Modes

Effects and Analyses (FMEA) studies [9], and operational

and product manuals. Domain experts need tools that

allow them to model and analyze the structure and the

diagnostic behaviors of their system. Object oriented

graphical causal fault models facilitate understanding,

capturing, updating, and reusing key elements of their

diagnostic knowledge.

Our methodology, as detailed in the following section,

utilizes graphical object-oriented qualitative causal fault

models as the basis for several fault management

functions, including diagnosis, correlation, prediction,

testing, automated recovery, and notification.

3 SymCure Methodology

SymCure is implemented in G2 which is Gensym

Corporation’s graphical, object-oriented platform for

developing and deploying expert systems applications.

Figure 1 shows the input, processing, and output elements

of a SymCure application.

Diagnostic reasoning

(Specific Fault Model)

 Inputs Processing Outputs

Diagnostic knowledge

Fault management

procedures

Generic fault model

Domain

representation

Incoming

events

Root causes

Explanations

Tests

Repairs

Alarms

Figure 1. SymCure architecture

Domain representation is a graphical object oriented

representation of the domain objects being managed by

SymCure. It includes class definitions for domain

objects, and a system description (also referred to as a

domain map) comprised of specific instances (i.e., the

managed domain objects) and relationships between these

instances, including connectivity (e.g., one object is

connected upstream of another) and containment (i.e., one

object is contained inside another). Figure 2 shows two

simplified illustrations of domain maps that are comprised

of similar components (a furnace and a pair of pumps) but

differ in their connectivity (i.e., Domain map 1 connects

both pumps directly to the furnace, while Domain map 2

connects the pumps to the furnace in series).

Diagnostic knowledge comprises a declarative

component, i.e., generic event-based fault models that are

used to reach diagnostic conclusions, and a procedural

component, i.e., test procedures that verify these

conclusions, and recovery procedures that respond to

these conclusions. We believe that separating out the

declarative aspect of diagnostic knowledge (i.e., how do

things fail, how do failures propagate) from the

procedural aspect (i.e., what to do when something is

suspected to have occurred, what to do when something is

known to have failed) facilitates the articulation,

acquisition, representation, and management of domain

expertise.

A SymCure event
1
 is a statement about a domain object

that indicates the presence or absence of a problem.

Generic fault models are composed of events (that are

defined at the class-level) and their causal relations.

Domain experts define these events using terminology

they are familiar with, and at levels of abstraction suitable

to their application. The fault models are graphical, thus

they are easy to understand and little or no programming

experience is necessary to build them. Another advantage

1
 For the rest of this paper, we refer to a SymCure event simply

as event.

of this approach is that the diagnostic knowledge does not

require any reconfiguration whenever there are changes in

specific instances of equipment, system topology (as

illustrated by the two domain maps of Figure 2), or

system operating modes, and they can be reused easily in

different applications.

SymCure identifies a generic event as a unique

combination of event name and target class (e.g., in the

generic fault model for a pump in Figure 2, “Low flow” is

the event’s name and PUMP is its target class). Causal

relations are represented by edges between generic events.

Figure 2 shows simplified examples of generic fault

models for pumps and furnaces. In the furnace generic

fault model, low fluid flow into a furnace causes the

temperature of the fluid to rise. At high temperatures, the

fluid may undergo undesirable chemical reactions that,

over time, cause carbon deposits inside the furnace tubes

(i.e., fouling). Damage to a pump’s impeller hinders its

ability to impart motion to the fluid in the pump, thus

causing low fluid flow through the pump. Inlet strainers

are devices that keep debris out of a pump that might

otherwise damage or clog it. Low flow through the pump

is also caused by a plugged inlet strainer, which is also

responsible for low inlet pressure. In these simplified

models, low fluid flow into either the pump or furnace is

caused by low flow in any domain object connected

upstream of the pump or furnace. Propagation delays may

be specified by configuring the properties of causal links;

such delays are used to infer the occurrence time for any

event. Although this is not shown in Figure 2, for

illustrative purposes, we have assumed that there is a 3

hour delay between the onset of rising temperature in a

furnace and the onset of fouling in the furnace.

The procedural component of a fault model includes the

following elements.

1. Tests are used to verify the occurrence of an

underlying event. Upon completion, a test action

must return a true or false value for an associated

event.

2. Repair actions are used to recover from failures.

Tests and repair actions are associated with underlying

events. They are enabled or disabled by transitions of the

values of their associated events. For example, in Figure

2, the test “Check inlet pressure” may be used to

determine if the “Low inlet pressure” on a pump is true;

and the repair action “Unclog inlet strainer” may be used

to set in motion the process whereby a plugged inlet

strainer is unclogged. In general, such actions may be

automated, or may simply be a request to an operator, or a

combination of the two, e.g., extracting a data point from

a database or sending a repair technician to a remote site

to conduct manual tests and repairs. A detailed discussion

of tests and repair actions is beyond the scope of this

paper.

Figure 2. Generic fault models, domain maps, and specific fault models

The incoming events stream includes symptoms that

indicate the presence of problems. Symptoms are

manifestations of underlying root causes on specific

domain objects. They are detected by application specific

procedures
2
 that monitor, aggregate, filter and analyze

numerical data, sensor readings, network management

traps, signals, and other forms of raw data. SymCure

responds to an incoming event by diagnosing the root

causes of the incoming event stream, predicting the

impact of the root causes on other events, reporting the

results of diagnosis and impact prediction to system

operators, initiating any tests required to verify the

occurrence of suspected root causes, and initiating

recovery actions to repair the target objects of the root

causes. Incoming events also include test results that

validate or rule out suspected events.

SymCure’s diagnostic algorithms dynamically combine

the domain representation, diagnostic knowledge, and

incoming events to produce a specific fault model that

applies to the specific managed domain objects. A

specific fault model is composed of specific events and

their causal relations. In Figure 2, specific fault models 1

and 2 are derived from domain maps 1 and 2,

respectively, and the generic fault models for pumps and

furnaces. SymCure uniquely identifies a specific event by

its name (e.g., “Low flow”) and the domain object on

which the event occurs (e.g., PUMP-1). For diagnostic

2
 Event detection is outside the scope of this paper; refer to [3]

for further details.

reasoning purposes, specific events may take on the

following symbolic values:

• true, i.e., the event is known or inferred to have

occurred; such an event is depicted with “T” in the

specific fault model (e.g., “High outlet temperature”

on FURNACE-1 in Figure 2),

• false, i.e., the event is known or inferred to not have

occurred; such an event is depicted with “F” in the

specific fault model (e.g., “High outlet pressure” on

PUMP-1 in Figure 2),

• unknown, i.e., it is neither known nor inferred that

the event has occurred; such an event is depicted with

“U” in the specific fault model, and

• suspect, i.e., it is suspected that the event has

occurred; such an event is depicted with “S” in the

specific fault model (e.g., “Pump Impeller damage”

on PUMP-1 in Figure 2).

The specific fault models in Figure 2 are initiated by

assuming that high outlet temperature is observed in each

furnace and manual testing shows the inlet pressures on

all pumps are normal. For each specific fault model,

SymCure infers that the impellers on one or both pumps

must be damaged. For each scenario, SymCure also

predicts that tube fouling will occur.

We use best first search to propagate event values within

a specific fault model. At a very high level (for details

refer to [3]), starting from an incoming event, event

propagation is achieved by the following algorithm.

for any event e if its value changes do

Furnace generic fault model

Pump generic fault model

Domain map 1

Domain map 2
Specific fault model 1

Specific fault model 2

Generic Fault Models + Domain Map = Specific Fault Model

Test and repair actions

1. propagate the value of the event upstream to all

Causes (where Causes = all causes of e);

2. propagate the value of the event downstream to

Effects (where Effects = all effects of {Causes + e});

end for

This for-loop is invoked each time a symptom is

manifested and the result of a test becomes available. The

propagation steps in the for-loop can be configured to

terminate as soon as SymCure identifies a set of root

causes that explain all observed incoming events, even

before a complete specific fault model has been

constructed. To speed up the search process, in steps 1

and 2 SymCure explores events on the same domain

object before it moves on to events defined on different

domain objects. The time complexity of the for-loop is

linear in the number of events (i.e., size) of the specific

fault model. The maximum number of events in a

specific fault model is bound by the product of the

number of managed domain objects and the size of the

largest generic fault model. In practice, since we

construct only the events that are correlated to incoming

symptoms, the actual size of a specific fault model is

usually a small subset of the maximum possible size.

As demonstrated in Figure 2, SymCure constructs system

wide specific fault models, i.e., it is able to reason about

interactions among the individual system components.

We generate a visual representation of the underlying

specific fault model on demand. This allows modelers

and system operators to understand the results of the

diagnostic reasoning process. However, graphical models

can rapidly overwhelm users as the number of nodes

increase. Thus, we provide options to organize the visual

representation of a specific fault model by focusing on

relevant portions of the graph at any given time. For

example, the abridged specific fault model in Figure 3

shows only the potential causes and effects of “High

outlet temperature” in FURNACE-1.

Figure 3. A focused view of Specific fault model 1

SymCure generates messages for root causes and alarms,

and proposes tests and repair actions to resolve and

recover from faults. Such messages are presented to

system operators in one or more diagnostic console

browsers. Figure 4 shows the alarms, root causes, tests,

and repair actions for Specific fault model 1 in Figure 2.

Note that tube fouling is predicted to occur 3 hours after

high outlet temperature in the furnace has become true.

Alarm messages can be suppressed in favor of root causes

so that operators are not flooded with alarms. Requests

for tests and repair actions may be sent automatically to a

rudimentary workflow management component, which

schedules and executes them.

Figure 4. Alarms, repair actions, root causes, and tests for

Specific fault model 1

SymCure’s modeling language. Early versions of

SymCure provided two kinds of events for creating fault

models: OR event and AND event. Their behaviors were

governed by the following rules (where Xi, Yj, and Zk are

events in a fault model; the edge Xi → Yj implies that Xi

causes Yj; and propagating downstream requires

determining a value for Yj from Xi, while propagating

upstream requires determining Xi from Yj).

For any OR event Yi

1. While propagating downstream, if Yi → Z1,…,Zn,

and Yi is true, then Z1,…,Zn are all true.

2. While propagating upstream, if X1,…,Xm → Yj,

and Yi is true, then at least one of X1,…,Xm must

be true.

For any AND event Yi:

1. While propagating downstream (identical to the

case of an OR event), if Yi → Z1,…,Zn, and Yi is

true, then Z1,…,Zn are all true.

2. While propagating upstream, if X1,…,Xm → Yi,

and Yi is true, then all of X1,…,Xm must be true.

The limitations of a causal modeling language comprised

solely of these two events were quickly exposed in

several early projects. In the real world, fault models are

rarely ever complete, i.e., frequently there are causal

influences that are not fully understood or cannot be

modeled. Propagation delays and noise often result in

discrepancies between inferences made by the underlying

fault model and observed events. This may result in root

cause events being exonerated prematurely or being

implicated falsely. We have tried to address these issues

in later versions of SymCure by associating OR and AND

logic at the input and output of an event as shown below:

1. While propagating downstream, if Yi → Z1,…,Zn,

and Yi is true, then Z1,…,Zn are all true (we say

that Yi uses output AND logic).

2. While propagating downstream, if Yi → Z1,…,Zn,

and Yi is true, then at least one of Z1,…,Zn must

be true (we say that Yi uses output OR logic).

3. While propagating upstream, if X1,…,Xm → Yi,

and Yi is true, then at least one of X1,…,Xm must

be true (we say that Yi uses input OR logic).

4. While propagating upstream, if X1,…,Xm → Yi,

and Yi is true, then all of X1,…,Xm must be true

(we say that Yi uses input AND logic).

We can also specify input and output logic with

percentages to reason over a progression of values that

may represent partial degradation. By combining these

rules, we have created 7 different events are capable of

root cause analyses and impact predictions that cannot be

modeled with traditional OR and AND events alone.

Further modeling enhancements, including utilizing NOT

logic, mutual exclusion, and specifying state dependent

behavior. See [3] for detailed examples of SymCure’s

capabilities and modeling language.

4 Applications

SymCure’s diagnostic knowledge representation and

reasoning methodology is domain independent and it has

been applied to solve problems in domains ranging from

networks of telecommunication satellites to offshore oil

drilling platforms. We present a sample of such

applications emphasizing, wherever applicable, the

challenges they posed to our methodology and its

consequent evolution.

Satellite network fault management (1995-2000).
Iridium is a global telephony network of low earth orbit

satellites and ground stations where calls are switched in

the sky from satellite to satellite; as the satellites orbit the

earth, communication links are periodically broken and

are re-formed with different satellites. Diagnosing the

root causes of communication failures required reasoning

over dynamically changing communication links, so

Motorola (Iridium’s original owner) adopted an early

version of SymCure for its satellite network fault

management application. Experience with live monitoring

before satellite launches, prior to full-scale deployment

suggests that, had the fault management application been

fully deployed, it might have saved some satellites that

were lost just after launch [11]. To the best of our

knowledge, the application was in use until 2000. Later,

beset with financial difficulties and other business

problems, Iridium ran out of funds to support the

application.

Enterprise-wide monitoring of networks and
applications (1998-2000). BMC built a line of products

(aimed at Windows 2000 and Microsoft Exchange

servers) for diagnosing faults and predicting their impacts

on enterprise-wide computer networks and applications.

The requirement to automatically diagnose and predict

events over dynamically changing network topology and

software installed on servers, led them to use SymCure as

their fault management reasoning engine. This work

tested some of the limitations of earlier versions of

SymCure’s modeling language because of timing delays

along paths of causal propagation (primarily due to the

lag times between measurements and their time-averaged

thresholds), noise, and incomplete causal models.

Highway traffic management equipment monitoring

(2001-02). L.E.E. developed a SymCure application to

monitor and manage Paris’ highway traffic equipment

including thousands of road sensors, message displays,

cameras, telecommunications equipment, hierarchical

subsystems, energy systems, and supporting network

infrastructure. Diagnostic conclusions are required within

a short (2 minute) event polling cycle, of which only a

fraction (approximately 20 seconds) is available for

diagnostic processing. Early versions of SymCure built

visual representations of complete specific fault models

and reasoned over them. Drawing and updating events at

run-time is inefficient and contributed to the difficulties in

meeting the performance requirements. We realized that

sound software design is as vital as “intelligent”

technology for a successful application. In subsequent

versions of SymCure, visual representations are separated

from underlying specific fault models; they are generated

on demand only and usually focus on a narrow section of

a specific fault model as illustrated by Figure 3 in the

previous section. Along with the introduction of best first

search and efficient data structures like hash tables instead

of lists, this has resulted in a five-fold improvement in the

speed of diagnostic reasoning.

Heaters in oil refineries (2001-02). A middle eastern oil

refinery installed an application for managing abnormal

conditions, focused on diagnosing failures in a generic

class of heaters. The application defined 80 root causes

that account for over 240 different kinds of operator

messages, and provided tests and repair actions that

rapidly guide operators to return a heater to normal

operation. Noureldin and Roveta [4] describe this

application in detail including how they acquire domain

knowledge from human experts. They concluded that the

net savings from using this application substantially

exceeded the cost of the project in less than one year.

Offshore oil production platform (2002-03).
Halliburton KBR created an application for monitoring

the health of offshore oil production platforms. Their

application focused on monitoring the health of the gas

compressors on a platform and demonstrated its ability to

proactively predict compressor failures that could

potentially save millions of dollars that would otherwise

be sacrificed to production losses resulting from

compressor shutdowns [2].

Mineral processing plant (2005-present). SGS

MinnovEX is developing an application to diagnose and

respond to root causes of sub-optimal operations in

mineral processing plants. System components include

equipment such as compressors and pumps, controllers,

and other sub-processes. The application analyzes

historical operational data to detect deviant operational

events and then diagnoses the causes of such events. This

application uses SymCure’s enhanced event logic and

preliminary results indicate success in identifying faults

such as sensor drift and poor controller tuning in the face

of incomplete models and noisy data. However enhancing

the event logic complicates the behaviors of the fault

models. This motivated us to build a graphical fault

model debugger to help domain experts to step through,

analyze, and test their fault models.

Electrical power and energy distribution systems

(2005-present). General Atomics is developing a generic

fault management library for mission critical power and

energy distribution systems. Though a significant degree

of redundancy is typically designed into critical power

systems, the penalties associated with loss of availability

are so high that any software assistance in the detection of

the onset of failure becomes invaluable. Generic fault

models have been developed for electrical system

components including generators, motors, circuit

breakers, transformers, uninterruptible power supplies,

transfer switches, critical load centers, and DC links.

These models enable the diagnosis of complex power

system anomalies such as ground faults, which typically

cause a flood of alarms. The strengths of generic fault

modeling, in conjunction with dynamic instantiation of

energy flow relationships between electrical components,

have effectively diagnosed problems in dynamically

reconfigurable power systems. Combining SymCure’s

fault management methodology with models of normal

behavior that analyze trends and detect discrepancies

between observed and predicted sensor values, facilitates

the prediction of the onset of equipment failure.

SymCure’s graphical fault models facilitate conveying,

communicating, and validating the details of vendor-

supplied Failure Modes and Effects Analysis (FMEA).

General Atomics’ fault management library serves as the

basis for several ongoing projects with the US Navy,

which is increasing its reliance on high-energy

electromagnetic components for next generation

shipboard systems. This includes projects to build

electromagnetic systems to impart the momentum

necessary to launch airplanes from an aircraft carrier and

that arrest the motion of the planes to bring them to a halt

when they land. (The runway in an aircraft carrier is too

small for airplanes to be able to take off and land without

such assistance.) As availability and reliability are critical

for such systems, General Atomics is leveraging

SymCure’s fault management methodology to diagnose

and predict the health and life expectancy of aircraft

launch and landing gear components.

General Atomics is also collaborating with the National

Aeronautics and Space Administration (NASA) for fault

management of its Rocket Engine Test Stand (RETS).

RETS tests the structural integrity of a rocket before it is

launched, and typically provides NASA’s engineers their

last chance to detect and correct any flaws in the fully

assembled rocket. The fault management application is

targeted for deployment at NASA’s Stennis Space Center

facility in southern Mississippi. The subsystems

associated with the testing of solid and liquid fueled

rocket engines involve complex mechanical, electrical,

hydraulic, pneumatic, and thermodynamic processes. All

of these processes, along with their associated system

components, lend themselves well to the generic fault

modeling capabilities of SymCure. The fault

management application will be used to diagnose and

predict RETS anomalies, but will also provide real-time

advisories associated with the quality of results obtained

from the RETS tests.

5 Conclusions

In this paper, we have described a generic model-based

fault management methodology to address fault

management applications in several diverse domains. We

summarize our contributions to the application of model-

based diagnostic techniques in the real world, limitations

of our methodology, and share our thoughts on the lessons

we have learned.

Contributions. SymCure integrates causal fault models

for root cause analysis and impact predictions with test

and repair management thus providing a comprehensive

set of capabilities for developing fault management

applications. SymCure’s modeling language has evolved

over time to address problems with propagation delays,

sensor noise and threshold problems. SymCure’s

reasoning process is capable of detecting and resolving

multiple system failures. SymCure’s fault models are

generic, so they do not require any reconfiguration

whenever there are changes in equipment, system

topology, or system operating modes and they can be

reused in different applications.

Limitations. Like any knowledge based reasoning

system, the accuracy of SymCure’s diagnostic inference is

constrained by the correctness of the underlying fault

models and the availability of instrumentation to observe

symptoms and perform tests to resolve diagnostic

candidates. SymCure cannot handle faults that are not

part of the fault models but it can identify novel

combinations of known faults. Because SymCure

processes an event as soon as it is received, diagnostic

results are susceptible to the order of incoming events. In

theory, this can cause problems over short time spans if

the values of observed events are inconsistent (because of

propagation delays, noise, and faulty sensors). In

practice, this has not been a significant issue. SymCure

allows domain experts to represent events in their

terminology at an arbitrary level of abstraction suitable to

their application. However, the burden of detecting the

occurrence of an event is placed on external monitoring

mechanisms, which may require sophisticated filtering

and aggregation techniques. SymCure does not explicitly

model the likelihoods (i.e., probabilities) of events.

Lessons learned. There are tremendous and exciting

opportunities for the application of state-of-the-art fault

management techniques in commercial settings and, with

billions of dollars at stake, industries are eager to embrace

intelligent knowledge based solutions. However, as we

have learned over the years, there are many challenges

and pitfalls of which practitioners need to be aware.

The fundamental challenge for knowledge based expert

systems applications is the formalization of the domain

knowledge both before and during the development of the

application. Often the knowledge base evolves

incrementally, starting from a small prototype that grows

with further testing and development as new requirements

become evident. Commercial applications require ease of

use so they can be mastered with minimal training and

cost. This motivates not just the development of powerful

user interfaces, but also modeling languages that can be

understood by users whose expertise is limited to their

domain. Modeling aids to efficiently search for, navigate

to, and debug diagnostic knowledge are essential. If such

an application is to be adopted successfully in a

commercial setting, it must be able to demonstrate a

reasonable return on investment. There is a premium on

“out of the box” solutions, where the diagnostic

knowledge is pre-packaged. However, it is imperative

that this knowledge be configurable by end users, since

we have never seen two domain experts ever agree on

everything. Visual representations and explanations are a

crucial ingredient for success; a picture is worth not just a

thousand words but potentially millions of dollars, if it

helps system operators to avert an impending problem.

Efficient computational techniques and sound software

engineering principles are as important as the artificial

intelligence that underlies its reasoning capabilities. Last,

but not the least, human factors, including sky high

expectations, funding cuts, resistance to adopt new

technology, political infighting, and employee turnover

(especially, if it involves someone who is a champion of

the technology) are, not infrequently, serious impediments

to success.

As described in the previous section, we have plumbed

the depths of oceans (with offshore oil production

platforms) and orbited the heavens (with

telecommunication satellites). We believe that the road

ahead promises to be just as exciting. As the future

unfolds, we are embarking on the development of generic

fault model libraries of components in different domains

that can be reused across applications and other

innovative techniques to automate knowledge discovery

and to create adaptive fault models that learn from

successful and failed diagnoses.

References
1. G. Biswas, R. Kapadia, and X. Yu. “Combined Qualitative-

Quantitative Diagnosis of Continuous valued Systems”. In

IEEE Sys. Man, and Cybernetics. Vol 27, No. 2, pp. 167-

185, March 1997.

2. R. Guddeti. “An Expert System for Real-Time Monitoring

of Offshore Platform Equipment”. GUS 2003 Gensym User

Society Worldwide Meeting, Boston, Massachusetts, April

2003.

3. R. Kapadia. “SymCure: A model-based approach for fault

management with causal directed graphs”, Proc. of the 16th

Intl. Conf. IEA/AIE-03, pp. 582-591, Loughborough, UK.

June 2003.

4. H. Noureldin and F. Roveta. “Using Expert System and

Object Technology for Abnormal Condition Management”,

BIAS 2002 International Conference, Milano, Italy.

November 2002.

5. M. Porcheron and B. Ricard. “Model-based diagnosis for

reactor coolant pumps of EDF nuclear power plants”. Proc.

of the 10th Intl. Conf. IEA/AIE 97, pp. 411-420, Atlanta,

USA, June 1997.

6. Readings in Model-based Diagnosis. W. Hamscher, L.

Console, J. deKleer, eds. Morgan Kaufman, 1992.

7. D. Siegel. “Abnormal Condition Management: Minimizing

Process Disruptions and Sustaining Performance through

Expert Systems Technology”. Natl. Petroleum Refiners

Assn. 2001 Comp. Conf., Dallas, Texas, October 2001.

8. W. Simpson and J. Sheppard. “System Test and

Diagnosis”. Kluwer Academic Publishers, Boston 1994.

9. D. Stamatis. “Failure Modes and Effect Analysis”, ASQ

Quality Press. 2003.

10. G. Stanley and R. Vaidhyanathan. “A Generic Fault

Propagation Modeling Approach to On-line Diagnosis and

Event Correlation”. Proc. of the 3rd IFAC Workshop on

On-line Fault Detection and Supervision in the Chemical

Process Industries, Solaize, France, June 1998.

11. R. Stewart, G. Stanley, and V. Vasudevan. “Integrated

Fault Management in a Satellite-Based Global

Telecommunications Network", Software Engineering

Symposium 1995, Ft. Lauderdale, Florida, June 1995.

