
Unconventional Simulation tasks in OrCAD PSpice via Simulation Manager

MILAN JAROŠ1, JAROSLAV KADLEC2, DALIBOR BIOLEK2,3

1 iSEC – IT Services and Enterprise Communications, Inc.,
2 Dept. of Microelectronics, Brno University of Technology

 3 Dept. of EE, University of Defense, Brno, Czech Republic

Abstract: The paper describes a conception of the so-called simulation manager that considerably extends the
application range of the OrCAD PSpice simulation program. It enables operating this program in the so-called
sequential mode, when the relatively independent tasks are run consecutively with a possibility of data exchange. A
powerful programming language also enables iterative runs within the conditional loops, which can be utilized e.g.
for optimization.

Keywords: - PSpice, simulation, analysis, circuit.

1 Introduction
Programs of the Spice or PSpice type are widely used
for solving various problems in electrical engineering
both at academic institutions and in industry [1]. OrCAD
PSpice [2] is one of today’s well-known programs from
this category. In contrast to the WinSpice, ISSpice4 and
other programs, it does not support the utilization of ICL
(Interactive Command Language) [3] for controlling the
simulation tasks. However, this language represents a
powerful tool for operation in the so-called sequential
mode, when the simulation tasks are run consecutively,
with the ability to influence the character of consecutive
operations, depending on the attained state of the
simulation run. That is why the OrCAD PSpice users
cannot solve problems of the following character:
Successive automated runs of different types of
analyses, e.g. AC, Transient, DC, immediately after the
end of the foregoing analysis, utilizing data from this
analysis for the current simulation run. The consecutive
modifications of model parameters, which would depend
on the results of previous analyses. Repeated run of
various simulation tasks in the loops until the optimal
behavior of circuit model is reached.

 The simulation manager (SiM), described in this
paper, is designed to control the OrCAD PSpice in
agreement with the user’s intentions [4]. The controlling
algorithm is defined by the so-called manager control
file (MCF). This file should be written according to the
syntactic rules of special programming language of the
manager. This language contains, among other things,
the instructions for compiling the ECIR (Extended
Circuit File), which is a source text for generating the
PSpice circuit file (PCIR), commands for defining the
variables, for defining the basic PSpice analyses which

should be executed, for controlling the PSpice operation,
and for receiving the simulation results, saving them in
variables, and processing them mathematically.

2 Conception of the simulation
manager

The conception of the co-action of the SiM and the
computing PSpice core is illustrated in Fig. 1.

#assemblycir x.cir

#endassembly

.

.

.

.

.

.

.

.

.

Extended Circuit File

x.cir

psp_cmd.exe

x.dat

x.out

x.csd

x.bias

data from .TRAN, .AC, .DC

data from bias points

run

Manager Control File (MCF)

(ECIR)

PSpice Circuit File
(PCIR)

Fig. 1: Simplified schematic of the communication
between the SiM and the simulation program via the
Manager Control File.

 The commands from the MCF are executed step by
step in a sequence that is defined in this file. The
source text of ECIR for generating the PCIR for
running an independent simulation task is bounded by

12th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July 22-24, 2008

ISBN: 978-960-6766-82-4 189 ISSN: 1790-5117

a pair of the #assemblycir and #endassembly
commands. In this text, the conventional PSpice syntax
can be combined with the extended commands of the
SiM. At the moment of processing the #endassembly
command, the conventional PCIR is automatically
generated, and the computational core psp_cmd.exe is
subsequently run with the generated PCIR as a
parameter. The manager is waiting until the end of
simulation and then it finds out, on the basis of the
return code, if the simulation ran correctly. In the case
of an error, the operation of the manager is terminated.
The user can identify this error from the output file
generated.

 When the simulation run is terminated correctly,
both the output file and – depending on the character
of the simulation task – other files containing the
results of individual analyses (Transient, AC, or DC)
are available, as well as the calculated coordinates of
the bias points. All these results can be read as new
variables of the SiM. For example, we define the VP
variable and save the value of the voltage between the
nodes p and 0 in time 10ms to this variable. These
variables can be used for defining the PCIR of
subsequently executed simulation.

3 Characteristic of the simulation
manager and its language

The MCF serves as the input of the SiM. This file
contains models of simulated circuits in the PSpice
language and special commands for controlling the
simulation tasks for the SiM. The commands for SiM
should be unambiguously distinguishable from the
PSpice commands. The structure of the MCF should be
clear and transparent.

 The MCF is thus a record of a program for the SiM.
It was necessary to design a new, simple programming
language for the above control of simulation tasks. The
requirements for this language were defined as
follows:

• The SiM will read the MCF step-by-step, starting
from the first line (the MCF is processed
sequentially).

• The programming language of the SiM should
support simple mathematical computations. The
program should therefore be able to work with
variables representing real numbers and to
evaluate arithmetic terms which can contain
variables, numerical constants, basic operators (+,
-, *, /, ^), braces, and some mathematical

functions. In other words, some commands should
be defined which enable the definition/declaration
of variables and the evaluation of arithmetic
terms.

• The ECIRs of the circuits being analyzed can
appear in the MCF. Thus commands should exist
for the definition of the beginning and the end of
such an ECIR. The command defining the
beginning should have a parameter indicating the
file name. The given PCIR will then be generated
into this file. The command defining the end of
the ECIR will cause the PSpice to run with the
name of the PCIR as a parameter. The SiM will
wait for the end of the simulation and then it will
continue on the next line of the MCF.

• The PCIR can be modified prior to its generation
by the SiM. Recording the value of arithmetic
term in a certain place of the PCIR is one of the
alternatives. It should be possible to write in the
text of the ECIR a command for evaluating the
arithmetic term. At the moment when the PCIR is
generated this term is evaluated by the SiM and
its numerical value is written into the PCIR. This
method can, for example, modify the parameters
of some circuit components in order to perform
optimization.

• The SiM should be able to process the results of
executed simulations. Thus some commands
should be defined for reading such results. The
results of certain simulations can be saved by
PSpice in the text files. The SiM should be able to
process these files. The commands in the MCF
will enable saving such values into user-defined
variables. It will enable subsequent work with
these values.

• After finishing the activities of the SiM, all the
files generated from all executed simulation runs
should be available. They are all PCIRs and the
corresponding output files, and the data files
containing the results of the simulations which
were generated by utilizing the .SAVEBIAS or
.PROBE commands. The SiM can perform the
conservation of these files such that it will
perform their backup under modified names after
finishing the simulation run. The new file names
will be derived from their original names via their
extension by numbers corresponding to the order
of the simulation run.

• The SiM should include commands for program
loops and chaining (the if and while commands,
known from other programming languages) on the

12th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July 22-24, 2008

ISBN: 978-960-6766-82-4 190 ISSN: 1790-5117

basis of boolean relations. By means of boolean
relations it should be possible to compare the
values of arithmetic terms, as well as to link the
boolean expressions to more complicated units via
logical operators (and, or, negation, etc.).

 The commands for program loops and chaining
should be also placed in the text for generating the
PCIR. In this way, the user can control which parts of
the PCIR will be generated or which parts will be
repeated more times.

 The goto command can also be included among the
commands for program loops and chaining. It serves
for passing the control to the given label (which is
defined by the label command). This whole group is
called “commands for run control”. Thanks to these
commands, we can algorithmize the evaluation of the
results of foregoing simulations and control other
simulations.

• A command should exist for including a file,
analogous to the PSpice command .INC. The
included file could also contain the commands of
the SiM, thus it would be an MCF. That is why the
PSpice command .INC cannot be used for such
cases. Using this method, the program controlling
the SiM could be divided into several files, making
its structure more transparent. We can also reuse
the already generated parts of the program by this
approach.

• The possibility of writing the comments belongs to
the natural demands on the SiM language. A
reasonable choice is to assume the same format as
in PSpice: if the first character on the line is *, then
the content of the line means a comment. When the
comments are written in the ECIR which generates
the PCIR, they will be also written into this PCIR.

 The SiM works as an interpreter of the above
language. The SiM operation can be divided into two
phases. The syntactic analysis of the MCF is
performed in the first step. Syntactic errors can be
found here, i.e. an incorrect notation of the SiM
commands or their incorrect location. The response to
this error means terminating the MCF processing and
displaying an error message.

 During the syntactic analysis, the text of the MCF is
fragmented into individual syntactic elements (e.g.
commands, comments, lines of the generated PCIR,
etc.). The syntactic elements are represented by a data
structure (class). A list of these elements or commands
is created during the syntactic analysis. The second
phase of the SiM operation consists in performing the
commands from this list. The SiM activity is

terminated if the end of this list is achieved or if a
command for breaking or stopping is executed or in the
case of error (e.g. division by zero, etc.).

 In the course of processing the MCF, the syntax
correctness of generated PCIRs is not checked. This
checking will be only done by PSpice itself when
processing this PCIR. Then PSpice will simultaneously
carry out the simulation.

 The result of syntactic checking or the occurrence
of another error can be learned from the return code of
the psp_cmd.exe program. When the return code is
zero, the simulation was carried out without error. If
not, some error appeared. A description of this error is
given in the output file. If such an error occurs during
the simulation, the SiM is terminated.

4 Demonstration of working with SiM
A schematic of transistor amplifier with the
stabilization of operating point via negative feedback is
in Fig. 2.

Vin

1Vac

Cv

10u

Rb1
180k

Rb2
33k

Q1

Re
200

Rc
1.9k

Vbat
12V

0

0

00

in b
c

e

bat

2N2222

Fig. 2: Example of the simulated circuit. Rc is to be
designed such that the voltage gain is 10 on a
frequency of 1kHz.

 The PSpice analysis shows that the AC gain of the
circuit within the amplifier passband is about 9. The
task is to design Rc such that the gain is 10 on a
frequency of 1kHz.
 A complete content of the MCF is listed below. For
lucidity, the individual lines are numbered. Note that
these numbers are not part of the MCF.

1: *transistor amplifier
2: #defsim AC .AC dec 1 1k 10k
3: #set Rc 1.9k gain 1
4: *
5: #while (gain)<=10
6: #assemblycir run.cir
7: *
8: Vbat bat 0 12V

12th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July 22-24, 2008

ISBN: 978-960-6766-82-4 191 ISSN: 1790-5117

9: Q c b e Q2N2222
10: Rc bat c #Rc
11: Re e 0 200
12: Rb1 bat b 180k
13: Rb2 b 0 33k
14: Cv in b 10u
15: Vin in 0 AC 1
16: .lib
17: #runsim AC
18: .print AC v([c])
19: #endassembly
20: #setprobe AC V([c])
21: #getprobe gain AC V(c) 1k
22: #set Rc Rc+20
23: #endwhile

 The first line represents a conventional header of
the circuit file according to common PSpice
conventions. The SiM commands, starting with the
symbol #, are placed on lines 2-6. The simulation type
labeled AC is defined on line 2. It is a basic PSpice AC
analysis which is written on this line in accordance
with common PSpice syntactic rules. Here it is a
single-point AC analysis at a frequency of 1kHz. The
Rc and gain variables are declared by the #set
command on line 3, and the numerical values are
assigned to them. It is an analogy to the PSpice
.PARAM statement. The while loop starts on line 5
with its end on line 23. Its purpose is to test if the gain
variable is less than or equal to 10. If yes, the
instructions within the loop body are performed, else
the activity of the SiM is terminated, because line 23 is
the last line of the MCF.
 The loop body starts by the definition of the ECIR
(the #assemblycir command on line 6 with the pair
command #endassembly on line 19). The PCIR is
generated according to this definition. The
conventional PSpice netlist of the amplifier from Fig. 2
is written on lines 8 to 15 with one exception on line
10, where the formula #Rc is used for the definition
of resistance Rc. The # symbol means that the
interpretation of this formula will be provided by the
SiM. Then the pair characters $ $ follow, between
them is the formula. The numerical value of this
formula is included into the generated PCIR by the
SiM. In this case, the formula is very simple because it
contains only the Rc variable.
 The command for performing the analysis, defined
on line 2, is written on line 17. The difference between
them and the conventional PSpice .AC command
consists in the fact that here the analysis results are
stored automatically into the data file for the PROBE
postprocessor, but in the text format CSDF, which can
be read by the SiM. A detailed setting of the

parameters of .PROBE command can be defined by the
#setprobe command on line 20. According to this
concrete setting, only values of voltages at node c will
be saved to the data file. The PSpice .PRINT command
is added to line 18; it saves the AC voltage of the node
c into the output file. This voltage is equal to the value
of AC gain of the amplifier. The #getprobe command
on line 21 saves the above value into the gain variable.
Then the #set command on line 22 increases the value
of Rc by 20 Ohms. Both the generation of the PCIR
run.cir and its analysis are repeated inside the while
loop until the gain exceeds the value 10.
 In this case, the analysis runs 11 times. One can
find the following pairs of the Rc and V(c) variables in
last two output files:

2100 Ohms, 9.997,
2120 Ohms, 10.09,

thus the optimal value of Rc lies inside the interval of
(2.1 - 2.12) kOhms.

5 Conclusions
The simulation manager (SiM), described in this paper,
is an independent executable program which enables,
with the utilization of the so-called Manager Control
File (MCF), an effective control of the OrCAD PSpice
program. Currently the design of the console-type SiM
is completed, which works on the text file level.
Simultaneously we are developing a graphical user’s
interface which enables comfortable programming of
sequential operations also for users who do not need to
master the script language of the SiM.

Acknowledgment

This work is supported by the Grant Agency of the
Czech Republic under grant No. 102/08/0784, by the
research programmes of BUT MSM0021630503,
MSM0021630513, and UD Brno MO FVT0000403.

References

[1] Vladimirescu, A. ‘The SPICE book’, John
Willey&Sons, Inc., 1994.

[2] PSpice Reference Guide. Cadence Design
Systems, Inc.

[3] Láníček, R. ‘Simulation programs for Electrical
Engineering’. BEN – technical literature, 2000.

[4] Jaroš, M. ‘Simulation manager for SPICE-
compatible programs’, Bachelor’s Thesis, UMEL
FEKT VUT Brno, 2007 (in Czech).

12th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July 22-24, 2008

ISBN: 978-960-6766-82-4 192 ISSN: 1790-5117

