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Abstract

Fault-driven analog and mixed-signal testing calls for rapid fault sim-
ulation techniques. A problem that has not been addressed effectively
by existing research is that circuit parameters have tolerance ranges.
In this paper, we propose representing parameters under variations as
intervals, and present an efficient algorithm — based on interval anal-
ysis and Householder's formula — to compute the worst-case response
bounds ofgood and faulty linear(ized) circuits under parameter varia-
tions. Our approach takes CPU time comparable to one nominal circuit
simulation, and always produces correct and conservative results. The
algorithm has been implemented into SPICE3F5. Experimental results
show an acceptable accuracy.

1 Introduction

In the past few years, analog and mixed-signal integrated circuits
have grown in importance, due to the rapid convergence of com-
puting, consumer electronics, and communication. Since the early
1990s, the average growth rate of the mixed-signal IC market has
been between 15% and 20% per year [3]. The ever increasing
level of integration complexity and shortening product life cycles
of mixed-signal ICs and systems have created many design and test
challenges. Among them, testing the correctness of analog circuits,
i.e., analog testing, is one of the most important issues. It is rec-
ognized that the influence of analog testing on time-to-market and
final cost of the circuit is increasingly significant.

Analog fault simulation is a central issue in analog testing, with
applications in test selection, fault coverage analysis [22], and de-
sign for test [14, 27]. Some research effort has been directed to ex-
ploit standard analog/mixed-signal simulators such as SPICE [7],
Eldo [19], and Saber [4] to perform fault simulation. This line of
research has been plagued by a number of problems. First, ana-
log circuit parameters are associated with tolerance ranges. Only
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parametric variations which cause the circuit performances to be
outside the preset specifications are considered to be faults. As
a result, the responses for both good and faulty circuits arebands,
calledgood (response)bandandfault (response)bandrespectively.
This is illustrated in Figure 1.
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Figure 1: Illustration of good and fault bands.

Another related issue arises in mixed-signal simulation. Un-
known states in digital portion give rise to parameter tolerances in
analog portion, which cannot be handled directly by circuit simu-
lators. In addition, most conventional circuit simulators encounter
the numerical difficulty when simulating circuits that contain opens
and shorts. The problem is further compounded by many numbers
of faults needed to be simulated.

Methods have been proposed to speed up fault simulation of
linear analog circuits some 20 years ago [21, 23] and recently [16,
25]. However, these methods did not address parameter tolerances.
To our knowledge, Pahwa and Rohrer were the first to consider
efficient fault simulation of linear circuits under parameter toler-
ances [18]. Nominal sensitivity analysis is used to estimate the pa-
rameter worst-case conditions. Fault bands are then approximated
from the good band, and the resulting bands are calledband fault.
However, the basic assumption that parameter worst-case condi-
tions remain unchanged even under fault (called theband fault as-
sumption) is not hold in general. As a consequence, band fault may
deviate from fault bands significantly. Furthermore, no method ex-
ists to check whether a given circuit satisfies the band fault assump-
tion.

The most widely used approach to model parameter variations
is the Monte Carlo method. With this technique, simulation is
repeated for random combinations of values chosen from within
the range of each parameter. Unfortunately, accurately determin-
ing bounds on the behavior of a circuit requires a large number
of simulations to be effective. The method becomes prohibitively
expensive for fault simulation, since Monte Carlo method needs
to repeat the random sampling process for each fault. Improve-
ments have been suggested to reduce the simulation time by us-



ing inductive fault analysis and behavioral modeling [6]. However,
no systematic methods exist for extracting behavioral (fault) mod-
els from transistor-level (fault) models. Recently, Spinks and Bell
proposed the use of the Monte Carlo method to estimate the pa-
rameter worst-case conditions, and then approximate the faulty re-
sponses by performing circuit simulation on faulty circuits using
the same parameter worst-case conditions [22]. This method suf-
fers the same shortcoming as the band fault approach.

In this paper, we present a rapid, correct and conservative ap-
proach for frequency-domain fault simulation of linear(ized) ana-
log circuits and systems under parameter variations. A large class
of circuits and systems widely used in video and image processing,
digital signal processing, control, communications, and many other
applications fall into this category. Further, recent studies have re-
vealed that faults which shift the operating point of a transistor-
level analog circuit can be easily detected by inexpensive DC test-
ing or power supply current monitoring, whereas the most difficult
faults to detect are those that only cause performance deviations [5].
It is this class of linearized analog circuits that our research is tar-
geted at.

This paper details our approach and presents a prototype analog
fault simulator utilizing the proposed technique. An interval based
framework for handling parameter variations is introduced in Sec-
tion 2. In Section 3, using this framework, circuit equations are
formulated via Generalized MNA formulation (GNA) approach as
a set of linear interval equations, and analog faults are modeled as
changes of intervals. Computing the good bands amounts to solve a
set of linear interval equations. A recent algorithm for this purpose
is adopted in Section 4. Section 5 shows how fault bands can be
obtained with a very minor computational cost from the good band
using Householder's formula. Implementation and experimental
results are described in Section 6. Section 7 concludes the paper.

2 Notations from Interval Mathematics

Let p 2 R be a real number whose value may not be precisely
known. Instead, we are often given a range andp is uncertain
within this range. This can be represented by aninterval number
pI , with lower (left) boundpL andupper (right) boundpR, denoted
by pI = [pL; pR]. Themidpointmid(pI) of an interval number
pI is defined as:

mid(pI) =
1

2
(pR + p

L);

and theradiusrad(pI) of pI is defined as:

rad(pI ) =
1

2
(pR � p

L):

Given two interval numbersaI andbI , the following interval arith-
metic operations are defined as follows [1]:

a
I + b

I = [aL + b
L
; a

R + b
R]

a
I
� b

I = [aL � b
R
; a

R
� b

L]

a
I
� b

I = [min(aLbL; aLbR; aRbL; aRbR);

max(aLbL; aLbR; aRbL; aRbR)]

a
I
=b

I = [min(aL=bL; aL=bR; aR=bL; aR=bR);

max(aL=bL; aL=bR; aR=bL; aR=bR)]

For example, letxI = [0; 2], then1 � xI = [�1; 1], xI � xI =
[0; 4], and1�xI+xI �xI = [�1; 1]+[0; 4] = [�1; 5], where actu-
ally the value setf1�x+x�x j x 2 xIg = [3=4; 3]. This demon-
strates a peculiar characteristic of interval operation: the value set

may beexpanded(overestimated) due to the fact that correlations
among the values represented by intervals (e.g.,1� xI = [�1;1]
andxI � xI = [0; 4]) are ignored by interval arithmetic.

An interval vectorxI is a vector whose elements are interval
numbers, and we write an interval vector asxI = [xL; xR]. An
interval matrixAI is a matrix whose elements are interval numbers
and we write an interval matrix asAI = [AL; AR].

3 Generalized MNA Formulation of Circuit Equa-
tions and Fault Models

Consider a linear time-invariant circuit, where some circuit param-
eters are under variations, and represented by interval numbers.
TheModified Nodal Analysis(MNA) method developed by Ho,et.
al. [13] and popularized by SPICE [15], is adopted with slight mod-
ification to formulate the circuit equations. Basically, for all the
components which do not have interval parameters, the rules of
MNA are followed. For every component with interval parame-
ters, an additional variable (branch current) and an additional equa-
tion (branch equation) are introduced for every interval parameter.
This is calledgeneralized MNA formulation, or simplyGeneralized
Nodal Analysis) (GNA). Note that the GNA formulation for a cir-
cuit without parameter variations degenerates to the original MNA
formulation. In general, the GNA formulation results in a set of
complex linear interval equations, represented as:

TIxI = wI (1)

Consider a circuit shown in Figure 2, wherer1 is under param-
eter variation.

V(2)r1

r2

V(1)

I=1

Figure 2: A simple two-resistor circuit.

The GNA formulation is as follow: 
0 0 1
0 1=r2 �1
1 �1 �rI1

! 
v(1)
v(2)
i(r1)

!
=

 
1
0
0

!

Note that GNA formulation may have more variables and equa-
tions than the original MNA formulation. Similar to the sparse
tableau formulation [11], it takes approximately the same computa-
tional effort as the MNA by using the sparse matrix technique [26].
However, the proposed GNA formulation has following “nice” prop-
erties:

� At most one interval matrix entry appears in any given row
or any given column ofTI .
� Each interval matrix entry is contributed by a unique circuit

parameter under variation andvice versa.
� If all interval circuit parameters are independent with each

other, then all the matrix entries inTI are independent with
each other.

These properties help to find tight solution bounds.



The system of complex interval equations in Eqs. (1) can be
transformed to a system of real interval equations as follows:�

TI
R
�TI

I

TI
I

TI
R

��
xI
R

xI
I

�
=

�
wI
R

wI
I

�
(2)

where subscriptsR andI denote, respectively, the real part and the
imaginary part of a complex matrix, vector, or number. Therefore,
under our formulation, frequency-domain circuit simulation under
parameter variations amounts to solve Eqs. (2) — a set of linear
interval equations — for a given set of frequency points.

A fault associated with circuit componentcan be represented by
a change of component parameter from an original interval, saypI ,
to a new interval, sayqI . This model captures various analog faults
due to fluctuations in the IC manufacturing process. In particular,

� Parametric faults. Parametric faults are excessive statistical
variations in manufacturing process conditions which cause
circuit performances to be outside of some preset specifica-
tion tolerance. There are two special cases: nominal value
shifting, i.e.,

T
I
ij =) T

I
ij +�t

and variation expansion, i.e.,

T
I
ij =) [TL

ij ��t; T
R
ij +�t]

Here�t is a scalar quantity, not an interval.

� Structural faults. Structural faults are random defects which
cause opens and/or shorts of circuit components,i.e., changes
of circuit topology. Examples of such faults arelithography
errors and oxide pinholes. We distinguish two types of struc-
ture faults. Type I refers to resistive shorts and conductive
opens, which forces the circuit matrix entry to zero, and can
be modeled as:

T
I
ij =) 0

Type II refers to resistive opens and conductive shorts, which
forces the circuit matrix entry to infinity, and can be modeled
as

T
I
ij =)1

4 Solving Systems of Linear Interval Equations

In this section, we consider how to solve a system of real linear
interval equations in the following form

AIxI = bI (3)

The tightest boundsxI can be obtained by solving the set of equa-
tions over all the possible combinations of parameter values within
the given interval ranges and taking the union of the solutions. This
is known asUnited Extension, but it is not computationally feasi-
ble [1]. Gaussian EliminationandLU Decompositionwith interval
arithmetic can be applied [17]. However, these approaches have
been known to produce too loose solution bounds, and were never
applied to practical problems.

We have developed an efficient and elegant algorithm, which
is described in pseudo-code in Fig. 3. The major computation
cost comes from computing the inverse of two matrices (C�1 and
(ML)�1). The complexity of the algorithm isO(n3) — the same
as nominal circuit simulation. We have proved that the computed
bounds always contain the exact solution bounds [20]. Further, the
expansion of solution bounds is relatively small, as we have ob-
served in our experiments.

INTERVAL SYSTEM SOLVE(AI ;bI )
1 Cij  (AL

ij + AR
ij)=2 i; j = 1; 2; : : : ; n

2 MI  C�1AI r I  C�1bI

3 P (ML)�1

4 for i = 1 to n do
5 si  jmid(rIi )j+ rad(rIi )
6 for i = 1 to n do
7 fi  

P
n

j=1
Pijsj

8 gi  fi � 2Piijmid(rIi )j
9 if gi � 0

10 if mid(rIi ) > 0
11 xIi  [�gi; fi]
12 else
13 xIi  [�fi; gi]
14 else
15 if mid(rIi ) > 0
16 xIi  [�gi=(2Pii � 1); fi]
17 else
18 xIi  [�fi; gi=(2Pii � 1)]
19 return x I

Figure 3: An algorithm for solving linear interval systems.

The algorithm is based on an original idea of Hansen [10], and
exploited later in [24]. Lines 1 and 2 transform Eqs.(3) into the
following system:

M IxI = r I (4)

This is known aspreconditioning. Preconditioning may expand the
solution bounds, however, thepreconditionedsystem has a special
property that matrixMI is centered around the identity matrix I ,
i.e.:

1�M
L
ii =M

R
ii � 1 and �M

L
ij = M

R
ij i 6= j

As shown in [20], the rest of the algorithm computes the exact solu-
tion bounds of the preconditioned system. Note that Hansen's orig-
inal method requires the interval matrixAI to bestrongly diagonal
dominant, and is thus not applicable directly to our application.

5 An Efficient Fault Simulation Algorithm

In this section, we show how fault simulation can be performed
using a small amount of computation effort from the simulation re-
sults of the good circuit. The method is based on Householder's in-
verse matrix formula and interval operations. The key is to exploit
the fact that the circuit equation for a faulty circuit differs slightly
from that of the good circuit.

Let us assume that matrix entryTij is shifted by an interval
�tIij. Then the system of faulty circuit equations

TI
fxIf = wI (5)

can be written as

(TI +�tIijeie
T
j )x

I
f = wI (6)

According to Householder's inverse matrix formula [12], we have

(TI
f )
�1 = (TI)�1 �

(TI)�1eie
T
j

(�tIij)
�1 + ((TI)�1)ji

(TI)�1 (7)

Note that

xIf = (TI
f )
�1wI and xI = (TI)�1wI (8)



then we have

x
I
fk = x

I
k �m

I
kx

I
j k = 1; 2; : : : ; n (9)

where

m
I
k =

((TI)�1)ki

(�tI
ij
)�1 + ((TI)�1)ji

(10)

The equation above can be simplified for each specific type of
faults:

� Parametric faults. Let�tIij denotes the difference of matrix
entryTij between the good circuit and faulty circuit, then

m
I
k =

((TI)�1)ki

(�tIij)
�1 + ((TI)�1)ji

(11)

� Structural fault — type I. Suppose a fault forces the value of
matrix entryTij to be zero, for example, short fault of a re-
sistive component and open fault of a conductive component,
then we have

m
I
k =

((TI)�1)ki

�T�1ij + ((TI)�1)ji
(12)

Note thatTij here is the nominal value ofT I
ij instead to be

an interval number.

� Structural fault — type II. Suppose that a fault forces the
value of matrix entryTij to be infinity, for example, open
fault of a resistive component and short fault of a conductive
component, then we have

m
I
k =

((TI)�1)ki

((TI)�1)ji
(13)

Fault simulation consists of computing (9), (11), (12), and (13).
We observe that theith column of(TI)�1 is the solution of the

following system of linear interval equations:

TIxI = ei (14)

whereei is a vector withith component equal to 1, and the rest of
components being 0. Eqs. (14) can be solved very efficiently, since
Eqs. (14) has the same coefficient matrix as Eqs. (1) for the good
circuit, andC�1 andP�1 are available already from good circuit
simulation.

We note that all quantities in Eqs (9), (11), (12), and (13) are
interval complex quantities, and are computed using interval op-
erations. This method is rapid. However, because interval op-
erations ignore the correlation among interval quantities xIk, xIj ,
((TI)�1)ki and((TI)�1)ji in Eqs. (9), (11), (12) and (13), cer-
tain bound expansion may occur. Nevertheless, the results are still
correct—computed bounds always contain the exact bounds. Fur-
ther, as validated by our experiments, the bound expansion is usu-
ally small for not substantially large parameter variations. As an
alternative, we can perform fault simulation by applying directly
the algorithm in Fig. 3 to solve Eqs. (5).

6 Experimental Results

The proposed algorithms have been implemented into a computer
program SIVA -AC (SPICE3IncorporatingVHDL-A). SIVA -AC is
based on SPICE3F5, and extends the sparse matrix package in
SPICE3F5 to implement the proposed algorithms described in Sec-
tions 4-5. A number of experiments have been conducted mainly to
test the validity of analog fault simulation by our interval analysis
based algorithms. The CPU time, which is collected on a SPARC-
Ultra 1 workstation, is also given for comparison.

6.1 State Variable Filter

We test our program on the state variable filter circuit [9]. Its
schematic is shown in Figure 4. The nominal parameter values are
given as

R1 = 10k; R2 = 20k; R3 = 10k; R4 = 10k

R5 = 100k;R6 = 10k;R7 = 30k;R8 = 45:5k

R9 = 2:2k; R10 = 10k; C1 = 1:6nf;C2 = 1:6nf

VIN

C1
C2

V(1)

V(3)

R1

R2

R3

R4

R5

R6

R7

R8
R9

R10

OPAMP2

OPAMP1

OPAMP3

OPAMP4

Figure 4: State variable filter circuit.

We perform parametric fault simulation. Since the outputs of
the state variable filter are very sensitive to parameters, for the clar-
ity of comparison, we assume that all parameters have�0:1% sta-
tistical variations. Two parametric faults considered areR1 with
50% and�50% changes, respectively. The simulated fault bands
and good band are shown in Figs (5)-(6), where thegood band is
computed by the algorithm in Figure 3, and fault bands are com-
puted from Eqs. (9) and (11).
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50% R1 Fault 
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Figure 5: Parametric fault simulation: Magnitude ofV (1).

The CPU time taken for good band computation over 100 fre-
quency points is 16.78 seconds, and 0.93 seconds for one fault
simulation. An interesting observation is that the magnitude fault
bands exhibit significant difference from that of the good band and
also between each other over a wide range of frequency, while the
phase fault bands do not. This implies that the magnitude can be
used as fault detectability measure and diagnosibility measures.
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Figure 6: Parametric fault simulation: Phase ofV (1).

6.2 �A 741 Operational Amplifier

We further test our program on the the more complex�A 741 oper-
ational amplifier. Figure 7 shows its schematic. The nominal values
of circuit parameters are

R1 = 1k;R2 = 50k;R3 = 1k;R4 = 3k

R5 = 39k; R6 = 50; R7 = 25; R8 = 100

R9 = 50k; R10 = 40k; R11 = 50k;COMP = 30pf

IN+ IN-

OUT

+VCC

-VEE

+VCC

Q12

Q11

Q9

Q10

Q1 Q2

Q3 Q4

Q5 Q6

Q7

Q8

Q13
Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Q23

Q24R1 R2 R3R4

R5

R6

R7

R8R9

R10

R11

COMP

Figure 7:�A741 operational amplifier circuit.

All the parameters are assigned�2% statistical variations. We
consider a structural fault: the compensation capacitorComp is
shorted. Figure 8 and Figure 9 show both the magnitude and phase
fault bands, as well as the good bands.

Both the magnitude and phase fault bands show a significant
difference from their corresponding good band over the entire in-
terested frequency range. It can be seen that the 3DB frequency
changing point increases about 10 times if the compensation ca-
pacitor is shorted. For 100 frequency points, the CPU time taken
is 90.44 seconds for good band computation, and 6.49 seconds for
each fault simulation.
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Figure 8: Structural fault simulation: Magnitude ofV (OUT ).

7 Conclusions

An interval-based framework was presented for frequency-domain
fault simulation of linear(ized) analog circuits and systems under
parameter variations. Our approach has several major features that
differentiate it from previous approaches.

1. Our method is extremely fast, and comparable to regular nom-
inal circuit simulation. Suppose that there arem-trial Monte
Carlo simulation forn faults, the proposed fault simulation
method (using Householder's formula) gains a theoretical
speed-up ofO(mn) over the Monte Carlo method.

2. Our method is accurate and conservative. The fault bands
computed by our method always contain accurate fault bands.
This property ensures the correctness and robustness of the
use of our fault simulation method in test selection, fault cov-
erage analysis and design for test. Further, if the ranges of
parameter tolerances are relatively narrow, our method pro-
duces very tight bounds. For those faults that cause a large
change of circuit performance, we note that they can be eas-
ily detected by inexpensive DC testing and power supply cur-
rent monitoring (no AC testing is needed).

3. Since fault simulation is performed by Householder's for-
mula, the numerical singularity problem associated with the
direct use of conventional circuit simulators do not exist.

4. Because fault simulation is performed at the circuit level,
no mapping of faults to the behavioral level, as required by
DRAFTS [16], nor behavioral fault modeling [6, 8], is needed.
This ensures fault coverage unchanged.
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