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Abstract

The vehicle routing problem with backhaul (VRPB) is an extension of the capacitated vehicle routing problem (CVRP). In VRPB,
there are linehaul as well as backhaul customers. The number of vehicles is considered to be fixed and deliveries for linehaul customers
must be made before any pickups from backhaul customers. The objective is to design routes for the vehicles so that the total distance
traveled is minimized. We use multi-ant colony system (MACS) to solve VRPB which is a combinatorial optimization problem. Ant
colony system (ACS) is an algorithmic approach inspired by foraging behavior of real ants. Artificial ants are used to construct a solution
by using pheromone information from previously generated solutions. The proposed MACS algorithm uses a new construction rule as
well as two multi-route local search schemes. An extensive numerical experiment is performed on benchmark problems available in the
literature.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In vehicle routing problem with backhaul (VRPB), there are two groups of customers: linehaul or delivery customers
and backhaul or pickup customers. A linehaul customer requires a given quantity of product to be delivered while a back-
haul customer requires a given quantity of product to be picked up. The problem can be defined using graph theory as
follows. Consider a complete undirected graph G = (N, 4), where N = {0} UL U B is a set of [ + b + 1 vertices and subsets
L=A{1,...,1} and B={I+1,/1+2,...,14+ b} correspond to the linchaul and backhaul customers, respectively. Set
A={(i,)),i,j € N} is a set of arcs. Associated with arc (i, j), there is a nonnegative cost ¢(i, ) and associated with vertex
i there is a non-negative quantity d;. Vertex 0 represents the depot (with fictitious demand 0), where v identical vehicles,
each with capacity Q are located. It is assumed that the number of available vehicles v > max(v,, vg), where v, and vg
are the minimum number of vehicles needed to serve all linehaul and all backhaul customers, separately. The values of
v, and vp can be calculated by solving the bin packing problems (BPP) associated with the subsets of linehaul and backhaul
customers. Although BPP is an NP-hard problem in strong sense, it can be solved optimally within reasonable CPU time
even when the problem involves hundreds of items/customers (see Silvano and Paolo, 1990).

In this paper, we do not deal with mixed service, i.e., we assume that each vehicle is unloaded first by satisfying the
demands of linehaul customers and later it is loaded by collecting the loads from backhaul customers. Also a route con-
sisting entirely of backhaul customers is not allowed (Toth and Vigo, 2001). The objective is to design a set of minimum
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cost routes so that the total load of linehaul or the total load of backhaul customers does not exceed the vehicle capacity on
each route. VRPB is an NP-hard problem in a strong sense since by setting B = ¢, the problem becomes CVRP, which is
known to be an NP-hard problem. In this paper, we use the abbreviations CVRP and VRP interchangeably.

Many exact and heuristic methods are proposed in the literature to solve VRPB with the objective of minimizing the
total distance traveled by the vehicles. Goetschalckx and Jacobsblecha (1989) propose a two phase approach for VRPB.
In the first phase, an initial solution is generated based upon space filling curves for linechaul and backhaul customers.
In the second phase, these solutions are merged to get a final set of vehicle routes. This algorithm is not able to handle
the case where the number of available vehicles is fixed. Goetschalckx and Jacobsblecha (1993) extend the generalized
assignment heuristic of VRP to VRPB. Toth and Vigo (1996) developed a “cluster first and route second” algorithm based
upon the generalized assignment approach of VRP. Further, Toth and Vigo (1999) proposed a new cluster method which
exploits the information associated with the lower bound based on Lagrangian relaxation. This heuristic is used for both
the symmetric as well as asymmetric versions of the problem. Apart from the above, few studies have investigated mixed
service and other variations of VRPB (e.g., Thangiah et al., 1996; Anily, 1996; Wade and Salhi, 2002).

Yano et al. (1987) developed an exact procedure for VRPB using the set covering approach based upon Lagrangian
relaxation and branch and bound framework. They applied the procedure to the routing problem for quality stores where
the number of customers served was small. Toth and Vigo (1997) and Mingozzi et al. (1999) used a branch and bound
algorithm to solve the problem exactly for up to 100 customers. Toth and Vigo (1997) used Lagrangian relaxation of
the underlying integer programming formulation to obtain a lower bound whereas Mingozzi et al. (1999) used a heuristics
to obtain a lower bound in their branch and bound algorithm.

The exact methods such as branch and bound algorithm have limitations in solving a large size problem whereas simple
heuristic approaches have limitations in terms of the solution quality. A metaheuristic attempts to improve the simple heu-
ristics by relaxing the computing time restriction. A metaheuristic may take longer CPU time but it would produce a good
quality solution. Many attempts have been made to solve CVRP using metaheuristic approaches (e.g., Gendreau et al.,
1994; Osman, 1993; Rochat and Taillard, 1995; Rego and Roucairol, 1996). Recently, few attempts have been made to
solve VRPB using Tabu search. Osman and Wassan (2002) proposed reactive tabu search (RTS) for VRPB. Further Was-
san (2004) combined adaptive memory programming with tabu search and proposed reactive tabu adaptive memory pro-
gramming search (RTS-AMP). Both tabu search heuristics use A-interchange of customers as proposed by Osman (1993).
RTS-AMP maintains a set of solutions called elitist solutions and uses these solutions to turn the direction of search
towards the unexplored region of the space. Recently, Brandao (2006) has proposed a new tabu search algorithm where
the initial solution is obtained from a pseudo lower bound based upon the K-tree approach. Other attempts of metaheu-
ristics are based on different variants of VRPB (e.g. Potvin et al., 1996; Thangiah et al., 1996; Duhamel et al., 1997; Rei-
mann et al., 2002; Wade and Salhi, 2004).

In recent times, attempts have also been made to solve CVRP using ant colony system (ACS) metaheuristic. For an
introduction to the ACS approach, see Dorigo et al. (1996). Bullnheimer et al. (1999) designed for the first time an ant
colony system for the vehicle routing problem. This ant colony system is further improved by Doerner et al. (2002) by com-
bining it with the problem based savings heuristic. Recently, Reimann et al. (2004) proposed a decomposition based
approach (D-Ants) for CVRP. In the D-Ants system, the problem is decomposed into several small sub-problems and each
sub-problem is solved using the saving based ant colony system. Reimann et al. (2002) designed insertion based ant colony
system for the vehicle routing problem with backhauls and time windows. Wade and Salhi (2004) designed an ant colony
algorithm for the vehicle routing problem with backhauls and mixed load. Although there are several studies on using tabu
search in VRPB, to our knowledge, there have been no published studies on using the ant colony system in VRPB in which
all linehaul customers are to be served before any backhaul customers.

This paper is organized as follows. Section 2 describes the proposed multi-ant colony system (MACS). We describe two
multi-route local search schemes used in MACS. An extensive computational experiment with benchmark problems avail-
able in the literature is presented in Section 3. We compare the performance of different algorithms with MACS. An inter-
esting property of MACS is the control over solution quality and CPU time, which is discussed in Section 4. Conclusions
follow in Section 5.

2. Multi-ant colony system (MACS) for VRPB

The existing ant colony system for CVRP (Bullnheimer et al., 1999; Doerner et al., 2002) is not suitable when the num-
ber of vehicles is fixed. It can generate an infeasible solution in terms of the number of vehicles required. We use multi-ant
colony system (MACS) to deal with the infeasibility. The concept of multiple types of ants was first proposed by Gambard-
ella et al. (1999) who designed an ant colony system to solve the vehicle routing problem with time windows. They used two
types of ants to minimize the two different objective functions: the first type of ant minimizes the number of vehicles used
while the second type of ant minimizes the total tour length. Our multi-ant approach is inspired by “cluster first and route
second” procedure of VRP. We also use two types of ants to construct a solution. The first type of ant is used to assign
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customers to vehicles and the second type of ant is used to construct a route for a vehicle given the assigned customers; i.e.,
to solve the underlying traveling salesman problem. An outline of the algorithm is given below and a more detailed descrip-
tion of the algorithm is provided in the next sub-section.

Stepl: Initialize the trail intensities and parameters by generating an initial solution. Set COUNT = 1.
Step 2: While COUNT < 5 do the following:
e Generate an ant-solution for each ant using the trail intensities.
e Improve each ant-solution by carrying out the following local search:
1. Use 2-opt local search once.
2. Use the following two local search schemes until there is no further improvement:
(i) Customer insertion/interchange multi-route scheme,
(ii) Sub-path exchange multi-route scheme.
3. Update elitist ants.
4. If there is no change in the elitist ant solutions in the last 10 iterations,
Then
Reinitialize the trail intensity and destroy all elitist ant solutions. Increase COUNT by 1, i.e., set COUNT =
COUNT + 1.
Else
Update trail intensities.
Step 3: Return the best solution found so far.

In MACS, we have added the feature of reinitialization of trail intensities and destroying the elitist ant solutions. This
feature is similar to the re-start feature of Genetic Algorithm used by Prins (2004).

2.1. The initial solution and the reinitialization of trail intensities

The trail intensities are initialized using an initial solution, which is generated using a two-phase procedure. In the first
phase, customers are randomly assigned one by one to v vehicles ignoring the capacity restriction. In the second phase, a
route is constructed for each vehicle by iteratively adding the assigned customers. The initial solution plays an important
role in many metaheuristic approaches such as simulated annealing (Johnson et al., 1989). However, it does not play a sig-
nificant role in ant colony system. Hence, we avoid using a time-consuming procedure for constructing an initial feasible
solution.

We use two types of ants: vehicle-ants and route-ants. The trail intensity of a vehicle-ant t1;, represents the intensity of
customer i being served by vehicle k. The trail intensity of a route-ant 12;;, is the intensity of visiting customer j immediately
after i. Suppose L is the objective function value (i.e., the total tour length) in the initial solution. Initially, we set
tly=1/Lyi=1,....m;k=1,..,v.and 12, =1/L;i=1,....,n;j=1,...,n5i#j.

In Step 2 of the algorithm, trail intensities are reinitialized five times. We use the objective function value of the best
solution found to date to reinitialize the trail intensities. Thus, during re-initialization all t1; and t2;; are set to 1/Ly.q,
where L, is the objective function value (i.e., the total tour length) in the best solution found to date.

2.2. Generation of a solution by an ant

The construction process used in existing ACS (Bullnheimer et al., 1999; Doerner et al., 2002) for solving CVRP can
produce an infeasible solution in terms of the number of vehicles used. In MACS, we keep the number of vehicles fixed.
We use a two phase approach based upon vehicle-ants and route-ants. The approach is described in detail below.

2.2.1. Assigning customers to vehicles
In this phase, we assign customers to vehicles insuring that the capacity of each vehicle is not exceeded. Let
l total number of linehaul customers
b total number of backhaul customers
n = [+ b total number of customers which includes linehaul and backhaul customers
Q the set of customers not yet served

Cy the set of customers to be served by vehicle k
v the number of available vehicles
(0] capacity of each vehicle

ACE available capacity of vehicle & for assigning a linehaul customer
ACE available capacity of vehicle k for assigning a backhaul customer
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Note that as stated in Section 1, v is known and its value is such that feasible solutions exist. The procedure given below
should return a feasible solution as long as such a solution exists. The steps for assigning customers to vehicles are as
follows.

Step I: Initialize the sets and the available capacities:
Q={1,2,3,...,n},
Cv=¢; k=1,2,... 0,
AC; =ACY =0Q; k=1,2....,0.
Step 2: Randomly choose a customer, say customer i, who is not yet assigned to a vehicle. Remove customer i from set €.
Step 3: Let ¥ be the set of feasible vehicles. A vehicle is feasible for assigning customer i if available capacity AC% is more
than or equal to the demand for customer i and i is a linehaul customer, or if AC? is more than the load for cus-

tomer i and i is a backhaul customer. We use the following random-proportional rule for choosing the vehicle to
serve customer i

P = Z/,gw[ﬂih]“[’?h]ﬁl if vehicle k < ¥, (1)
0 otherwise,

where
ACE

—k if customer i is a linehaul customer,
e = ACB (2)
—k& if customer i is a backhaul customer.

~

Here, 7, is called dummy visibility since it insures that a high probability is given to a vehicle that has high available capac-
ity. The dummy visibility increases the chance of generating a feasible solution since it enhances the probability of assigning
at least one linehaul customer to each vehicle. Parameters o1 and f1 reflect the relative influence of trail intensity and
dummy visibility. AC; or AC? is updated once a vehicle is chosen for serving customer i. Customer i is then added to
set C,.

Step 4: if Q = ¢ then stop else go to Step 2.

There is a chance of getting an infeasible solution in Step 3 because of the limited capacity of a vehicle. In particular,
while assigning the last customer, we may find that no vehicle can accommodate the customer; i.e., ¥ = ¢. In this case,
Steps 1-4 are repeated wherein we set customers in @ in non-increasing order of demand. We repeat cycles of Steps 1—4
until a feasible solution is found.

Arranging the customers in non-increasing order of demand increases the likelihood of obtaining a feasible solution in a
given cycle. Since customers are assigned to vehicles according to the random proportion rule, the solution would vary
from cycle to cycle. Since, we are assuming that feasible solutions exist, repeated cycles of Steps -4 would eventually lead
to a feasible solution.

2.2.2. Construction of routes for individual vehicles

Once customers are assigned to vehicles, a route is constructed for each vehicle by solving the underlying traveling sales-
man problem. First, all linehaul customers assigned to vehicle & are considered for visit. When all linehaul customers are
visited, the backhaul customers assigned to vehicle k are considered. The ant starts from the depot and successively builds
the solution by choosing the next customer j probabilistically from the set of feasible customers, Re. Initially, Re is set to
linehaul customers assigned to vehicle £ and it is updated as linehaul customers are visited. When Re becomes empty, it is
set to backhaul customers assigned to vehicle k. The attractiveness value of visiting customer j immediately after customer
i, &; is defined as

3)

: { (22, [s(i,/)]* if i is a customer,
ij —

[Tzii]xz[c(ia]’)}ﬁz if i is a depot.

Here, parameter o2 represents the relative influence of the trail intensity and parameter 2 represents the relative influ-
ence of the saving value. The saving value s(i, j) represents the savings (in terms of distance traveled) when customers i and
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j are served jointly by one vehicle instead of two separate vehicles. Here, ¢(i,)) is the distance between customer i and j. We
use the following random proportional rule to select the next customer j to visit immediately after customer i

i for j € R,
Py = { Z[E:Kg“ J (4)
0 otherwise.

The process is continued until the route for the vehicle is built. Then the procedure is repeated for other vehicles.

2.3. Local search

After the construction of a solution by an ant, the solution is improved by local search. Three types of local search
schemes are used including two multi-route schemes. We use 2-opf local search scheme to improve the solution generated.
Other two local search schemes are the customer insertion/interchange multi-route scheme and the sub-path exchange
multi-route scheme. These local search schemes are described in detail in the next sub-sections. Two multi-route schemes
are used iteratively until both are not able to improve the solution. The best solution obtained by the insertion/interchange
scheme is used as an initial solution for the sub-path exchange scheme and the best solution obtained by the sub-path
exchange scheme is used as an initial solution for the insertion/interchange scheme in the subsequent cycle. The process
is repeated until both multi-route schemes are not able to improve the solution. During our experiment, we found that
generally a local minimum is reached after three or four cycles.

2.3.1. 2-opt local search scheme

The 2-opt local search scheme was originally proposed by Lin (1965) for improving the route in a traveling salesman
problem (TSP). The 2-opt scheme is the one of the best known local search scheme for TSP and it is based on the arc
exchange approach. In CVRP, each vehicle route is a traveling salesman problem. The 2-opt scheme starts with a given
route and breaks it at two places to generate three segments. The route is then reconstructed by reversing the middle seg-
ment (the segment which does not contain the depot). A given route is broken at each combination of two places and is
updated whenever there is an improvement. The process is repeated until there is no further improvement in the solution
(i.e., until there is no improvement in the solution in one complete cycle of the search). In VRPB, we would need to treat
the linehaul and backhaul customers separately while using the 2-opt scheme.

2.3.2. Customer insertionlinterchange multi-route scheme
This approach uses two types of operations for a given customer. These two operations are described below for cus-
tomer i assigned to vehicle p:

1. Insertion operation: Customer i is removed from his original position and inserted in all vehicle routes (including the
same vehicle route). Vehicle capacity is checked before the insertion of customer i to another vehicle. Our variant of
VRPB requires that each vehicle should serve at least one linehaul customer and the linehaul customers on a route must
be served before backhaul customers. In order to maintain this feasibility, the insertion operation for a linehaul cus-
tomer is used only when the remaining number of linehaul customers assigned to vehicle p is more than 1. To insure
feasibility, a linehaul customer is allowed to be inserted at the following positions in the route.

e just after the depot,

e Dbetween two linehaul customers,

e Dbetween the last linehaul customer and the first backhaul customer.

Similarly, a backhaul customer is allowed to be inserted at the following positions in the route.
e between the last linehaul customer and the first backhaul customer,

e between two backhaul customers,

e just before the depot.

2. Interchange Operation: In this operation, customer i (from vehicle p) is shifted to another vehicle ¢ and customer j from
vehicle ¢ is shifted to vehicle p. We place customer i on vehicle ¢ at his best insertion place and similarly we place cus-
tomer j on vehicle p at his best insertion place.

In order to reduce CPU time, the following neighborhood criteria is used before an insertion/interchange operation is
performed. Let the € be some fixed number and let €- neighborhood for customer i, N¢(i) contain the € customers closest (in
term of the distance) to customer 7. The interchange operation between customer i and customer j is performed only if at
least one of the € neighbors of customer i is served by vehicle ¢ and at least one of the € neighbors of customer j is served by
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vehicle p. Similarly, the insertion of customer i on vehicle ¢ is performed only if one of the € neighbors of customer i is
served by vehicle g.
The steps in the local search are:

Step I: Initialize Q = {1,2,...,n}.

Step 2: Randomly choose a customer, say customer i from vehicle p for evaluation, and remove this customer from set Q.

Step 3: Perform insertion of customer i to determine the best insertion position and evaluate the total tour length of the
resultant solution.

Step 4: Consider also the interchange of customer i and each customer j. Both customers i and j must be either linehaul
customers or backhaul customers and the interchange should be feasible in terms of the vehicle capacity. Identify
the best interchange customer j and the corresponding solution after performing the interchange operation.

Step 5: Choose the best solution obtained from Steps 3 and 4 and compare it with the current solution. If the best solution
is better than the current solution then update the current solution.

Step 6: If Q = ¢ then stop and report the current solution, else go to Step 2.

The customer insertion/interchange multi-route improvement scheme is similar to the intersection/exchange schemes
used by other researchers (e.g., Osman, 1993; Van Breedam, 1995; Kindervater and Savelsbergh, 1997). Our insertion oper-
ation is similar with previous work but our interchange operation differs in the way a customer is placed in the new route.
In previous work, the positions of customer i from vehicle p and customer j from vehicle ¢ are interchanged. In our
approach, customer i from vehicle p is placed in the route of vehicle ¢ at his best insertion place. Similarly, customer j from
vehicle ¢ is placed in the route of vehicle p at his best insertion place.

The cost of the solution generated by the interchange as well as the insertion operation can be determined in constant
time. In the absence of the customer neighborhood criteria, the theoretical computational complexity of one iteration of the
insertion/interchange multi-route scheme can be calculated as follows.

The insertion operation has complexity of O(/*> + b?). The interchange operation considers a customer for interchange
with each customer from another vehicle. Hence for linehaul customers, there are a total of / x (/ — I/v) pairs for possible
interchange assuming that » customers are distributed evenly among the v routes. Each customer from a given pair is
placed at his best insertion place. Thus, a customer is evaluated at //v places to find out the best insertion place for
him. Therefore, the overall complexity of an interchange operation for the linehaul customers is

O(1) x O(I — 1/v) x O(1/v) + O(1/v) = O(I* Jv?).

Similarly the interchange operation for backhaul customers has complexity of O(h*/v*). Hence, the overall complexity
of the insertion/interchange multi-route scheme is

O(F* 4+ b*) + O(P/v*) + O(B*/v*) = O(P /v* + b /v?).

The introduction of the customer neighborhood criteria should reduce CPU time in practice. However, in the worst case
scenario, there may still be / x (/ — //v) pairs of linehaul customers and b x (b — b/v) pairs of backhaul customers for
interchange even in the presence of the customer neighborhood criteria. Thus, the theoretical computational complexity
of the scheme remains the same with or without the customer neighborhood criteria.

2.3.3. Sub-path exchange multi-route scheme

The customer insertion/interchange multi-route scheme considers shifting a given customer to another vehicle route.
The sub-path exchange multi-route scheme can shift more than one customer from one route to another. Suppose
S={Ri,Ry,....,Ry,...Ry,...,R,_1,R,} represents a solution to VRPB. Here, R, denote the route of vehicle p. The sub-
path exchange multi-route scheme considers two routes R, and R, and combines them in two new routes R, and R, to pro-
duce a new solution 8" = {Ry,Ry,.. ., R ,..., R, ..., R,_1,R,}. Consider sub-path (e, ..., /) belonging to route R, and sub-
path (g,...,h) belonging to R,. To maintain feasibility, all customers in sub-path (e, ..., f) and sub-path (g,... %) are
either linehaul or backhaul customers. Furthermore, the feasibility in terms of vehicle capacity is checked before an
exchange is considered. The new route R, is obtained by replacing sub-path (e, ..., f) by either sub-path (g,...,h) or
reverse sub-path (A, ...,g). Similarly, the new route R, is obtained by replacing sub-path (g,...,4) by either sub-path
(e,...,[f) or reverse sub-path (f,...,e).

We again use the customer neighborhood criteria to reduce the CPU time. The exchange of sub-path (e, .. ., f) of vehicle
p with sub-path (g, ..., ) of vehicle ¢ is considered only if customer fis among the 15 nearest neighbors of customer g.

Each possible sub-path from route R, and from route R, is considered for possible exchange and the best pair of sub-
paths is used to produce new routes R; and R;. The calculation of the cost of the route produced by an exchange can be
performed in constant time. Let ), represent the immediate predecessor of customer i and 7; represent the immediate suc-
cessor of customer i. Then the cost (i.e., total tour length) of new solution S’ is calculated as follows:
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Cost(S") = Cost(S) — c(y,,e) — c(f, mr) — c(7,,8) — c(h, m)
+ min {(c(ye,g) + C(h, Tff))7 (C(Ve, h) + c(g, TC/‘))} (5)
+min {(c(7y, €) +c(f,m)), (c(vg,f) + cle, ) }-

There are a total of v x (v — 1) combinations of vehicles for the sub-path exchange. Assuming that n customers are
evenly distributed among v routes, there are //v x (I/v — 1)/2 sub-paths for the linehaul customers in a vehicle route. Thus,
the overall complexity of the sub-path exchange scheme for linehaul customers in the absence of neighborhood criteria is

O(v%) x O(I*/v*) x O(I*/v*) = O(I*/v*).

Similarly, the overall complexity of the sub-path exchange scheme for backhaul customers is O(b*/v?). Therefore, the
overall complexity of one iteration of the sub-path exchange local search in absence of neighborhood criteria is
O(l*/v* + b*/1?).

With the customer neighborhood criteria, a given sub-path containing linehaul customers can be exchanged with the
maximum of € x //v sub paths from the other vehicles. Thus, the overall complexity of the sub-path exchange scheme
for linehaul customers with the neighborhood criteria is

O(v*) x O(I*/v*) x O(€ x 1/v) = O(* /v).

Similarly, the overall complexity of the sub-path exchange scheme for backhaul customers is O(b’/v). Therefore, the
overall complexity of one iteration of the sub-path exchange local search schemes with the neighborhood criteria is
O(F /v + b*/v).

The sub-path exchange multi-route scheme is similar to CROSS exchange heuristic of Taillard et al. (1997) and ICROS
heuristic of Brdysy and Dullaert (2003). Our sub-path exchange multi-route scheme falls between the above two heuristics.
Considering all possible sub-paths for possible exchange is similar to CROSS heuristic whereas connecting the reverse sub-
paths is similar to ICROSS heuristic.

2.4. Updating elitist ants

We use elitist ants to update trail intensities. We use ¢ elitist ants which are distinct from one another. Elitist ants are
updated by comparing the present elitist ant solutions with the current ant solution. If the current ant solution is found to
be better than the uth elitist ant solution, then the current ant solution becomes the new uth elitist ant solution. The ranks
of the previous uth elitist ant and the elitist ants below it are lowered by one. All current solutions are considered for updat-
ing the elitist ants. In order to keep o elitist ants distinct from one another, the current solution is compared only if the total
tour length in the current solution is not equal to the total tour length in any of the elitist ant solutions. The hashing func-
tion used by Osman and Wassan (2002) can be used instead of the total tour length for identifying the identical solutions,
but calculation of the hashing function would require more CPU time.

2.5. Updating trail intensities

Vehicle-trail intensities and route-trail intensities are updated using the elitist ant solutions. Vehicle-trail intensities are
updated as follows:

Y = prld 4 Al + > ALy =12, m k=1,2,...,0, (6)
=1
where
Acll — { 1/L*  if customer i is served by vehicle & in the uth elitist ant solution, )
i otherwise,
Al = { 1/L* if customer i is served by vehicle & in the best solution found to date, 8)
% 0 otherwise.

Here, p is the trail persistence and L* is the total tour length in the uth elitist ant solution and L* is the total tour length in
the best solution found to date.
Similarly, Route-trail intensities are updated as follows:

20 = pr2pd F AT+ Y AT i= 1,2, =12, i A, 9)
n=1
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where
Apolt — { 1/L* if customer j is visited after customer iin the uth elitist ant-solution, (10)
v 0 otherwise,
A — { 1/L* if customer j is visited after customer i in the best solution found so far, (1)
v 0 otherwise,

The scheme allows all elitist ants to lay trails with equal importance as opposed to the updating scheme used in an ant
colony system algorithm for VRP by Bullnheimer et al. (1999). The strategy of giving more importance to the best elitist
ant solution and less importance to the solutions of other elitist ants can divert the search towards the global minimum but
it can also increase the risk of being trapped at a local minimum.

The best solution found so far will be equivalent to the top elitist ant solution when COUNT = 0 but it may differ from
the top elitist ant solution when COUNT > 0.

3. Numerical analysis

This section presents the numerical results for MACS and compares MACS with the existing heuristic and metaheuristic
approaches.

3.1. Parameter settings

The quality of the solution depends on the number of ants used which ultimately affects the CPU time of the algorithm.
We use 25 artificial ants of each type in MACS, i.e., at each iteration, 25 solutions are generated and each solution is
improved by local search. We reinitialize the trail intensities and destroy the elitist ants if there is no change in the elitist
ant solutions in the last 10 iterations. Our algorithm stops after the trail intensities are reinitialized 5 times.

Wesetal =f1=3,02=2=1, p=0.95, ¢ = 6. We thus use six elitist ants to update the pheromone. Our customer
interchange local search scheme uses €-neighborhood of size 10. We found that € of more than 10 increases the CPU time
without enhancing the solution quality much. If none of the 10 neighboring customers are served by the given vehicle, then
the probability is low that this customer is served by the same vehicle in the optimal solution. Similarly, our sub-path multi-
route scheme uses €-neighborhood of size 15. Parameters a1, 1, a2, 52, p and ¢ are set by performing sensitivity analysis
carried out in limited CPU time.

3.2. Benchmark problem

The numerical experiment is performed using two sets of problem instances available in literature. The first set (set-1)
was proposed by Goetschalckx and Jacobsblecha (1989). This data set includes 62 instances where the total number of cus-
tomers ranges from 25 to 150 with backhaul customers being 25-50% of the linehaul customers. In problem instances for
set-1, customer coordinates are uniformly distributed in interval [0,24,000] for the x coordinate, and in interval [0,32,000]
for the y coordinate. The depot is located centrally at (x = 12,000, y = 16,000). Customer demands are generated from
Normal distribution with mean of 500 and standard deviation of 200. The second set (set-2 ) was proposed by Toth
and Vigo (1997). This set consists of 33 instances with 21-100 customers. These instances are generated from 11 problems
chosen from the VRP literature. Three instances are generated from each problem with backhaul customers being 50%,
66% and 80% of the linehaul customers.

Euclidean distance between two customers is calculated in two ways in the literature. In the first approach, the distance
is multiplied by 10 and is rounded to the nearest integer. The total distance is then divided by 10 and rounded to the nearest
integer. In the second approach, the distance is used without rounding but the total tour length is rounded to two decimal
places. Since many studies use the distance without rounding, we use only approach 2.

3.3. Existing heuristics for VRPB

We compare MACS with the following metaheuristic algorithms:RTS-AMP: reactive tabu adaptive memory program-
ming of Wassan (2004).
LNS: Ilarge neighborhood search by Ropke and Pisinger (2006).

BTS: new tabu search of Brandao (2006).

We do not include reactive tabu search (RTS) in our table because RTS-AMP has produced either similar or better qual-
ity solutions on all instances at a lower computational cost compared to RTS. Brandao (2006) developed three types of
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tabu search; namely open, K-tree and K-tree_r tabu search. Out of these three methods, K-tree_r seems to yield better solu-
tions on average compared to the other two methods. Therefore, we use the solutions obtained by K-tree_r method alone
and call it BTS for comparison purposes. Similarly, Ropke and Pisinger (2006) developed three configuration of large-scale
neighborhood search; namely standard, 6 R-no learning and 6 R-normal learning. Out of these three methods, we use the
solutions obtained by 6 R-no learning configuration and call it LNS in our comparison. Each of the studies reports solutions
in a different way. RTS-AMP reports the best solution from 8 runs, LNS reports the best solution from 10 runs and BTS
reports a single run solution but uses the best run from 5 runs.

Generally, it is difficult to compare the CPU times of different algorithms as the computational experiments have been
performed on different machines. A comparison of CPU time can be done using Mflops (million floating point calculation
per second ) values of different computers given in the Linpack benchmark report of Dongarra (2006). Specifications of
different computers and their Mflops values are presented in Table 7. We use the Mflops values to scale the running time
of an algorithm in reference to our computer (i.c., Intel Xeon 2.4 GHz ). The scaled CPU time represents the approximate
CPU time if Intel Xeon 2.4 GHz were to be used to run the particular algorithm. We report the average CPU time of
MACS over 8 runs. In order to keep the CPU time of MACS comparable with other algorithms, we have restricted the
number of ants of each type to 25.

3.4. Computational experiment and performance analysis of the algorithms

The proposed MACS was coded in C and implemented on an Intel Xeon with 2.4 GHz computer system. We run
MACS 8 times and report the results under different criteria. The detailed results are reported in Tables 5 and 6 for data
set-1 and set-2, respectively. We summarize the overall results of MACS in Tables 1 and 2 using the following performance
measures.

1. Overall average solution: The overall average cost over 62 problem instances for set-1 and 33 problem instances for set-
2. For each problem instance, the average cost is calculated from costs over 8§ runs.

2. Average standard deviation: The average of the standard deviation over 62 problem instances for set-1 and 33 problem
instances for set-2. For each problem, the standard deviation is computed using the solutions from 8§ runs.

3. Average best solution: The average of the best solutions over 62 problem instances for set-1 and 33 problem instances
for set-2. For each problem instance, the cost associated with the best solution is obtained from 8 runs.

4. Average best run: We execute the algorithm for 8 runs. The best run is the run that gives the lowest average over 62
problem instances for set-1 and 33 problem instances for set-2. The lowest average is called “average best run”.

5. Average scaled CPU time: The average of the scaled CPU time per run over 62 problem instances for set-1 and 33 prob-
lem instances for set-2. For each problem instance, the scaled CPU time per run is calculated using the scaled CPU time
over § runs.

We present summary results of different algorithms in Table 2. A blank space in Table 2 indicates that the corresponding
summary value was not reported in the original paper.

Table 1
Average performance of MACS over 62 instances for set-1 and 33 instances for set-2

Overall average solution Average standard deviation Average best solution Average best run Average scaled CPU time
Set-1 290920.90 276.04 290655.29 290838.73 67.57
Set-2 702.35 0.7985 701.48 701.76 25.64
Table 2
Comparison of MACS with different heuristics for VRPB

RTS-AMP LNS BTS MACS

Set-1
Overall average solution - 291823.34 291305.7 290920.90
Average best solution 290981.8 291014.7 - 290655.29
Average best run - - 291160.4 290838.73
Average scaled CPU time 20.20 26.22 66.84 67.57
Set-1
Overall average solution - 704.54 702.50 702.35
Average best solution 706.48 701.18 - 701.48
Average best run - - 702.15 701.76
Average scaled CPU time 7.95 15.55 24.40 25.64
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Table 3
Effect of trail intensities and local search on solution quality
Setting Set-1 Set-2
Overall average % deviation from the average Overall average % deviation from the average
solution best known sol. solution best known sol.
No change from current MACS 290920.90 0.13 702.35 0.22
Local search applied on 25 randomly 293435.69 0.99 710.70 1.41
generated solution
In the absence of the sub-path exchange 291661.34 0.38 704.92 0.59
multi-route scheme
In the absence of the insertion/interchange  294465.94 1.35 710.73 1.42

multi-route scheme

The results for set-1 reported in Tables 1 and 2 indicate that the proposed multi-ant colony system (MACS) gives better
results than the other heuristics. Table 2 shows that MACS has the lowest overall average solution followed by BTS and
LNS. Also, Table 2 indicate that MACS is on average better than the other algorithms in terms of the best solution and the
best run. In terms of CPU time, MACS and BTS are using equivalent CPU times. LNS takes less than half of the CPU time
than MACS and RTS-AMP takes one third of the CPU time than MACS. However, MACS does have a control over solu-
tion quality and the CPU time and this feature is described in Section 4.

The computational results for set-2 have similar trend in terms of the average solution. MACS has the lowest overall
average solution followed by BTS and LNS. The average best run solution of MACS is slightly better than BTS. The over-
all average solution of MACS is better than LNS and RTS-AMP but the average best solution of MACS is slightly worse
than the average best solution of LNS. The trend of CPU time is similar to the trend for set-1.

Finally, note that we have found four new best known solutions for set-1 and 1 new best known solution for set-2. The
new best solutions are described in Appendices A and B for set-1 and set-2, respectively. The new best known solutions are
shown in bold in Tables 5 and 6.

3.5. Effect of trail intensities and local search schemes on MACS

In order to see the effect of trail intensities and local search schemes on MACS, we executed MACS and calculate the
average solution over 8 runs under each setting. In Table 3, we report the overall average solution its percentage devi-
ation from the average best known solution for each setting. The average best known solution is the average of the best
known solutions for 62 problem instances for set-1 and 33 problem instances for set-2 as reported in the literature. For
each setting, we keep the parameter values to be same and keep the number of ants to be 25. However, we vary the
stopping criteria to keep CPU time comparable. The first row in Table 3 reports the solution without any change in
the algorithm. The second row reports the solution when 25 randomly generated vehicle routes are improved by three
local search schemes used in MACS. In this case, the average solution deteriorates from 0.13% to 0.99% for set-1 and
from 0.22% to 1.41% for set-2. This result indicates that the trail intensities play a crucial role for diverting the solution
towards the global optimum and shows that a purely random search cannot explore the promising regions in an effective
way. When sub-path exchange multi-route scheme is not used in MACS, the percentage deviation deteriorates to 0.38 for
set-1 and 0.59 for set-2. Similarly, when the customer insertion/interchange multi-route scheme is not used, the percent-
age deviation value deteriorates to 1.35 for set-1 and 1.42 for set-2. These two results indicate that the customer inser-

Table 4

The effect of number of ants on solution quality and CPU time

Number of ants of Set-1 Set-2

each type Overall average Average best Average CPU time Overall average Average best Average CPU time
solution solution (seconds) solution solution (seconds)

5 291430.90 290827.20 15.63 703.72 701.73 6.52

10 291128.80 290724.20 30.25 703.08 701.76 11.86

15 291049.90 290719.00 44.25 702.70 701.70 15.81

20 291010.80 290658.40 57.03 702.58 701.67 20.81

25 290920.90 290655.29 67.57 702.35 701.48 25.64

30 290894.10 290662.20 80.16 702.17 701.36 29.92

35 290891.00 290622.90 91.34 702.11 701.18 36.30

40 290868.10 290642.80 103.75 702.05 701.33 41.08

45 290861.10 290629.60 116.94 701.88 701.15 44.18

50 290848.40 290622.80 127.12 701.80 701.15 49.76
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Table 5
Total tour length obtained by MACS for data set-1
No. Class Average solution Standard deviation Best solution Best run Overall best solution® Average CPU time
1 Al 229885.65 0 229885.65 229885.65 229885.65 1.00
2 A2 180119.21 0 180119.21 180119.21 180119.21 1.75
3 A3 163405.38 0 163405.38 163405.38 163405.38 3.00
4 A4 155796.41 0 155796.41 155796.41 155796.41 1.88
5 Bl 239080.16 0 239080.16 239080.16 239080.15 2.13
6 B2 198047.77 0 198047.77 198047.77 198047.77 2.50
7 B3 169372.29 0 169372.29 169372.29 169372.29 2.00
8 Cl 250556.77 0 250556.77 250556.77 250556.77 3.88
9 C2 215020.23 0 215020.23 215020.23 215020.23 4.13
10 C3 199345.96 0 199345.96 199345.96 199345.96 4.88
11 Cc4 195366.63 0 195366.63 195366.63 195366.63 3.88
12 D1 322530.13 0 322530.13 322530.13 322530.13 6.13
13 D2 316708.86 0 316708.86 316708.86 316708.86 6.25
14 D3 239478.63 0 239478.63 239478.63 239478.63 5.63
15 D4 205831.94 0 205831.94 205831.94 205831.94 6.50
16 El 238879.58 0 238879.58 238879.58 238879.58 6.75
17 E2 212263.11 0 212263.11 212263.11 212263.11 6.50
18 E3 206659.17 0 206659.17 206659.17 206659.17 10.38
19 Fl 263173.96 0 263173.96 263173.96 263173.97 11.13
20 F2 265214.16 0 265214.16 265214.16 265214.16 9.13
21 F3 241484.85 420.14 241120.78 241120.78 241120.77 11.25
22 F4 233861.85 0 233861.85 233861.85 233861.84 15.00
23 Gl 307007.11 190.04 306536.78 307074.3 306305.40 18.00
24 G2 245440.99 0 245440.99 245440.99 245440.99 10.38
25 G3 229507.48 0 229507.48 229507.48 229507.48 14.25
26 G4 232521.25 0 232521.25 232521.25 232521.25 21.75
27 G5 221730.35 0 221730.35 221730.35 221730.35 20.38
28 G6 213457.45 0 213457.45 213457.45 213457.45 20.63
29 H1 268996.28 178.8 268933.06 268933.06 268933.06 24.50
30 H2 253365.50 0 253365.50 253365.5 253365.50 21.50
31 H3 247449.04 0 247449.04 247449.04 247449.04 20.25
32 H4 250220.77 0 250220.77 250220.77 250220.77 27.13
33 H5 246121.31 0 246121.31 246121.31 246121.31 26.00
34 H6 249135.32 0 249135.32 249135.32 249135.32 30.25
35 11 350395.33 219.17 350245.28 350245.28 350245.28 41.63
36 12 310318.17 1058.78 309943.84 309943.84 309943.84 37.50
37 I3 294839.85 510.65 294507.38 294507.38 294507.38 43.88
38 14 296129.01 260.39 295988.45 295988.45 295988.44 46.63
39 I5 301826.52 894.41 301236.01 302441.47 301236.00 47.38
40 I 335124.95 218.99 335006.68 335479.75 335006.69 66.63
41 J2 310417.21 0 310417.21 310417.21 310417.21 59.25
42 13 279343.35 351.11 279219.21 279219.21 279219.21 77.63
43 J4 296584.68 145.71 296533.16 296533.16 296533.16 62.75
44 K1 396139.64 676.66 395075.67 395075.67 394071.16 104.88
45 K2 362563.92 462.14 362130.00 362130 362130.00 96.88
46 K3 366709.20 873.68 365694.08 365694.08 365694.09 114.25
47 K4 350317.26 751.71 349870.36 349870.36 348949.39 106.00
48 L1 420063.78 1307.78 417921.58 418828.93 417896.72 148.38
49 L2 401360.36 318.64 401247.70 401247.7 401228.81 142.00
50 L3 404315.09 1896.83 402677.72 403990.54 402677.72 160.63
51 L4 384834.32 274.73 384636.33 385225.91 384636.34 159.50
52 L5 390329.49 1192.23 387564.55 390987.74 387564.56 158.00
53 M1 399120.67 587.75 398729.82 398729.82 398593.19 229.50
54 M2 398156.41 563.83 397324.15 397664.54 396916.97 183.38
55 M3 377812.03 296.44 377328.75 377328.75 375695.41 183.75
56 M4 348464.23 69.28 348417.94 348512.42 348140.16 164.13
57 N1 408168.11 124.97 408100.62 408100.62 408100.62 213.88
58 N2 408246.94 246.84 408065.44 408065.44 408065.44 214.38
59 N3 394701.38 864.08 394337.86 396827 394337.86 199.75
60 N4 394866.92 108.42 394788.36 394788.36 394788.37 219.00
61 N5 374120.15 561.91 373723.46 373723.46 373476.31 272.00
62 N6 374791.55 1488.52 373758.65 373758.65 373758.656 255.00
Average 290920.92 276.04 290655.29 290838.73 290576.218 67.567

# QOverall best solution is the cost associated with the best solution found from different runs while performing overall activity of MACS.
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Table 6
Total tour length obtained by MACS for data set-2
No. Class Average solution Standard deviation Best solution Best run Overall best solution® Average CPU time
1 eil22 50 371.00 0.00 371 371 371 1
2 eil22_66 366.00 0.00 366 366 366 0.13
3 eil22 80 375.00 0.00 375 375 375 0.5
4 eil23_50 682.00 0.00 682 682 682 1.5
5 eil23_66 649.00 0.00 649 649 649 0.63
6 eil23 80 623.00 0.00 623 623 623 3
7 eil30_50 501.00 0.00 501 501 501 1.38
8 eil30_66 537.00 0.00 537 537 537 2
9 eil30_80 514.00 0.00 514 514 514 3
10 eil33_50 738.00 0.00 738 738 738 4.25
11 eil33_66 750.00 0.00 750 750 750 2.88
12 eil33_80 736.00 0.00 736 736 736 2
13 eil51_50 559.00 0.00 559 559 559 8.25
14 eil51_66 548.00 0.00 548 548 548 10.75
15 eil51_80 565.00 0.00 565 565 565 13.25
16 eilA76_50 739.25 0.46 739 739 739 19
17 eilA76_66 768.00 0.00 768 768 768 23.63
18 ¢ilA76_80 782.63 3.85 781 781 781 53.5
19 eilB76_50 801.00 0.00 801 801 801 21.25
20 ¢ilB76_66 873.13 0.35 873 873 873 25.38
21 eilB76_80 920.13 2.80 919 919 919 38.25
22 eilC76_50 713.00 0.00 713 713 713 18.75
23 eilC76_66 734.00 0.00 734 734 734 27.88
24 eilC76_80 736.13 1.55 734 734 733 36
25 eilD76_50 690.00 0.00 690 690 690 27.88
26 eilD76_66 715.00 0.00 715 715 715 28.88
27 eilD76_80 698.63 1.19 696 699 694 42.13
28 eilA101_50 834.75 2.60 831 832 831 56.13
29 eilA101_66 846.00 0.00 846 846 846 59.13
30 eilA101_80 866.88 5.14 860 860 857 88.25
31 eilB101_50 927.63 2.62 925 930 923 67
32 ¢ilB101_66 1008.88 5.03 1002 1002 988 84.88
33 eilB101_80 1008.50 0.76 1008 1008 1008 73.88
Average 702.34 0.80 701.48 701.76 700.82 25.644

% QOverall best solution is the cost associated with the best solution found from different runs while performing overall activity of MACS.

tion/interchange scheme is more effective than the sub-path exchange multi-route scheme. It is interesting to note that a
combination of the two schemes is necessary to produce better quality solutions in the same CPU time. In addition, a
hybrid local search that combines different strategies such as insertion, interchange, exchange, etc., seems to produce bet-
ter solutions than the individual strategies.

4. Effect of number of ants on MACS
An interesting feature of MACS is that the quality of the solution can be controlled by varying the number of ants. In

Table 4, we vary the number of ants and report the overall average solution and the average of best solution. It is evident
that the solution does not deteriorate too much when we reduce the number of ants and thereby reduce the CPU time.

Table 7

Summary of the CPU’s used in testing various heuristics and rough conversion factors (r) relative to a 2.4 GHz Intel Xeon processor with 884 Mflops
Reference CPU used Mflops r
HTV96 and TV99 Toth and Vigo (1996, 1999) IBM 386/20 1.3 0.001
RTS-AMP (Wassan, 2004) Sun Sparc1000 at 50 MHz 10 0.011
BTS (Brandao, 2006) Pentium IIT at 500 MHz 72.5 0.082
LNS (Ropke and Pisinger, 2006) Pentium IV at 1.5 GHz 326 0.369
MACS Intel Xeon 2.4 GHz 884 1

Please cite this article in press as: Gajpal, Y., Abad, P.L., Multi-ant colony system (MACS) for a vehicle routing problem ..., Eur-
opean Journal of Operational Research (2008), doi:10.1016/j.€jor.2008.02.025




Y. Gajpal, P.L. Abad| European Journal of Operational Research xxx (2008) xxx—xxx 13

Table 4, also allows us to compare MACS with other heuristic solutions keeping the CPU time compatible. The CPU
time of MACS is comparable with the CPU time of LNS when the number of ants is set to 10. The solution quality of
MACS when the number of ants is 10 is still better than the solution quality of LNS in terms of the average solution
for both set-1 and set-2. Similarly, the CPU time of RTS-AMP is comparable with the CPU time of MACS when number
of ants is set to 5. The solution quality of MACS is still better than the solution quality of RTS-AMP under the criteria of
best solution for both set-1 and set-2.

5. Conclusions

This paper presents a multi-ant colony system (MACS) algorithm for solving VRPB. MACS contains the following
features:

1. Two types of ants, vehicle-ants and route-ants are used. Similarly, two types of trail intensities — vehicle trail intensity
and route trail intensity — are used to construct a feasible solution.

2. An inherent part of ant colony system is the local search. Two multi-route local search schemes — the customer insertion/
interchange scheme and the sub-path exchange scheme — are used in this paper.

3. While updating trail intensities, no distinction is made between the elitist ants; i.e., equal importance is given to each
elitist ant. This reduces the risk of being trapped at a local minimum.

4. The trail intensities are reinitialized and elitist ants are destroyed when there is no change in the elitist ant solutions in
consecutive 10 iterations. The best solution found to date is used in reinitializing the trail intensities.

Extensive computational experiment on benchmark problems has shown that the overall proposed multi-ant colony sys-
tem (MACS) gives better results than the other algorithm. In addition, MACS has produced five new best known solutions
for the benchmark problem instances available in the literature. Another interesting feature of MACS is that the solution
quality and the CPU time of MACS can be controlled by varying the number of ants. Further research can be done to
improve the local search schemes in ant colony systems. Hybrid local search schemes can make the ant colony system
approach more effective for the other variants of the vehicle routing problem.
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Appendix A. New best solutions obtained by MACS for set-1

Problem 44

Number of Route Delivery Pickup Length
customers demand Demand

8 04 3 35 44 67 50 26 105 0 3556 311 23156.90
8 0 15 23 52 51 18 59 28 54 O 3877 0 25982.26
13 0 49 48 16 68 41 57 1 110 94 103 113 91 109 0O 4047 3669 46279.98
11 0 37 6 47 69 63 2 73 84 92 90 108 0 3812 1458 42502.46
8 0 70 53 75 45 71 14 88 101 O 3573 487 28839.83
14 024 7 17 25 66 46 21 85 112 8 106 82 &1 78 0 3969 3575 52502.62
9 0 55 31 38 43 10 56 72 30 77 O 4098 890 35340.09
14 0 39 11 27 36 61 5 22 32 8 76 87 104 80 107 0O 3758 2748 39654.36
12 0 58 60 13 74 34 29 19 102 99 97 79 111 0 3764 1940 44937.95
16 0 12 65 40 9 33 42 20 62 64 93 83 100 95 96 98 89 0 3737 3485 54874.72
n=113, n;=75, n, =38 Q0 =4100 394071.17

Please cite this article in press as: Gajpal, Y., Abad, P.L., Multi-ant colony system (MACS) for a vehicle routing problem ..., Eur-
opean Journal of Operational Research (2008), doi:10.1016/j.ejor.2008.02.025




§20°20°800C 10 [/9101°01:10p (8007) YoIeasay [euoneradQ jo [eurnor ueado

wo[qoid SunnoIr PIYAA B I0J (SOVIA) WRIsAs Auojod jue-ninjA “T'd ‘Peqyv A ‘Tedlen :se ssaxd ur sponie siy) 9310 asedd

'-In'E[ Coeo

Problem 48

Number of Route Delivery Pickup Length
customers demand Demand
13 0 9 43 19 15 23 20 21 99 131 8 133 104 98 0 3062 3729 39554.42
15 0 64 1 57 56 72 41 31 60 59 45 93 127 113 101 91 O 4376 2820 46503.38
19 0 33 74 34 68 61 5 37 70 69 12 115 150 105 95 84 139 136 120 78 0 4341 4199 56518.64
2 0 54 146 0 215 521 3924.20
18 0 47 65 2 30 29 13 62 24 49 118 126 145 129 87 108 117 112 80 0 3996 4323 43818.08
19 0 63 67 52 66 35 3 28 14 18 121 89 148 103 122 96 125 130 114 119 0 4345 4126 48727.66
17 0 39 46 55 7 16 48 58 75 123 144 83 137 140 143 77 116 102 O 3931 4219 43651.00
17 0 73 22 6 44 42 8 32 38 85 135 76 92 97 128 149 111 142 0 3585 4082 53799.63
14 0 10 40 71 4 11 27 94 134 107 110 109 79 90 100 O 3042 3604 38454.92
16 0 36 26 50 53 51 17 25 82 138 88 141 106 124 132 81 147 0 4200 4078 42944.78
n=150, n;=75, n, =175 Q =4400 417896.71
Problem 55
Number of Route Delivery Pickup Length
customers demand Demand
19 0 51 64 47 62 37 20 42 40 25 17 54 31 7 103 124 110 122 105 117 0 6045 2871 58765.01
18 0 3 35 84 55 88 39 79 46 53 45 24 9 33 98 102 114 101 111 O 6059 1587 59074.48
18 0 15 90 65 66 91 75 36 22 32 29 52 83 71 119 125 118 115 108 O 6135 2790 56400.34
15 0 67 2 99 89 28 43 19 18 96 8 6 106 112 104 107 0 5935 2125 48755.24
13 0 76 63 30 69 68 13 80 48 16 73 4 123 116 0 6156 1003 50132.69
13 0 41 14 94 85 61 5 92 11 27 113 120 109 121 O 5817 2054 30833.82
12 0 59 10 56 72 26 81 50 44 93 100 77 38 O 6198 0 28971.73
6 0 97 49 82 74 34 23 0 2281 0 12135.21
11 0 60 57 1 58 87 78 21 8 12 70 95 0 5578 0 30892.25
n=125, n;=100, n, =25 0 = 6200 375695.42
Problem 56
Number of Route Delivery  Pickup Length
customers demand Demand
22 0 65 66 91 75 45 71 83 52 29 32 22 36 9 24 33 98 102 119 125 118 115 108 0O 7636 3482 69743.48
22 0 41 95 70 57 1 58 87 78 21 86 12 25 17 54 31 7 103 124 110 122 105 117 0 7372 2871 62826.18
19 0 15 90 53 46 79 39 88 55 28 43 19 18 96 8 6 106 112 104 107 O 7799 2125 62637.38
17 0 38 77 100 93 44 50 73 48 16 68 13 80 4 123 114 101 111 O 6898 1471 54704.53
16 0 76 51 64 14 94 85 61 5 92 11 27 40 113 120 109 121 O 6941 2054 34384.73
15 0 59 10 26 81 63 30 69 42 20 37 62 47 56 72 116 0 7795 427 33675.12
14 0 23 34 74 82 97 49 3 35 84 67 2 99 8 60 0 5763 0 30168.75
n =125, n;= 100, n, =25 Q = 8000 348140.16
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Appendix B. New best solutions obtained by MACS for set-2

Problem 31

Number of Route Delivery Pickup Length
customers demand Demand

15 0 45 42 23 9 3 43 46 57 71 100 99 96 98 97 53 0 112 95 113.00
14 0 48 49 19 30 50 47 31 58 72 69 93 92 80 59 0 112 110 117.00
15 0 14 39 2 15 40 17 41 89 67 62 90 84 88 75 64 0 112 104 126.00
15 0 27 7 44 29 22 8 21 37 11 8 87 61 51 70 79 0 110 85 116.00
15 0 16 35 1 26 5 18 33 36 83 60 65 85 55 81 94 0 112 104 147.00
11 0 28 13 20 34 12 38 78 52 77 56 63 0 111 79 121.00
15 04 24 25 10 6 32 95 66 82 68 73 54 74 91 76 0 101 111 183.00
n =100, n;= 50, n, = 50 0=112 923
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