
The Anatomy of a Large-Scale Hypertextual Web Search
Engine

Sergey Brin and Lawrence Page

Isergey, pagel@cs.stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the

structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more
satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24
million pages is available at http:H@oogle.stanford.edu/

To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of web
pages involving a comparable number of distinct terms. They answer tens of n-tillions of queries every day.
Despite the importance of large-scale search engines on the web, very little academic research has been done on
them. Furthermore, due to rapid advance in technology and web proliferation, creating a web search engine today
is very different from three years ago. This paper provides an in-depth description of our large-scale web search
engine -- the first such detailed public description we know of to date.

Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new
technical

challenges involved with using the additional information present in hypertext to produce better search results.
This paper addresses this question of how to build a practical large-scale system which can exploit the additional
infon-nation present in hypertext. Also we look at the problem of how to effectively deal with uncontrolled
hypertext collections where anyone can publish anything they want.

Keywords: World Wide Web, Search Engines, Information Retrieval, PageRank, Google

1. Introduction

(Note: There are two versions of this paper - - a longerfull version and a shorter printed version. The full version is available on the web and
the conference CD-ROM.)

The web creates new challenges for information retrieval. The amount of information on the web is growing rapidly, as well as the number of
new users inexperienced in the art of web research. People are likely to surf the web using its link graph, often starting with high quality
human maintained indices such as Yahoo! or with search engines. Human maintained lists cover popular topics effectively but are subjective,
expensive to build and maintain, slow to improve, and cannot cover all esoteric topics. Automated search engines that rely on keyword
matching usually return too many low quality matches. To make matters worse, some advertisers attempt to gain people's attention by taking
measures meant to mislead automated search engines. We have built a large-scale search engine which addresses many of the problems of
existing systems. It makes especially heavy use of the additional structure present in hypertext to provide much higher quality search results.
We chose our system name, Google, because it is a common spelling of googol, or 10100 and fits well with our goal of building very large-
scale search engines.

1.1 Web Search Engines -- Scaling Up: 1994 - 2000

Search engine technology has had to scale dramatically to keep up with the growth of the web. In 1994, one of the first web search engines, the
World Wide Web Won-n () [McBryan 941 had an index of I 10,000 web pages and web accessible documents. As of November, 1997, the top
search engines claim to index from 2 million (WebCrawler) to 100 million web documents (from Search Enizine Watch). It is foreseeable that by
the year 2000, a comprehensive index of the Web will contain over a billion documents. At the same time, the number of queries search engines
handle has grown incredibly too. In March and April 1994, the World Wide Web Worm received an average of about 1500 queries per day. In
November 1997, Altavista claimed it handled roughly 20 million queries per day. With the increasing number of users on the web, and automated
systems which query search engines, it is likely that top search engines will handle hundreds of millions of queries per day by the year 2000. The
goal of our system is to address many of the problems, both in quality and scalability, introduced by scaling search engine technology to such
extraordinary numbers.

1.2. Google: Scaling with the Web

Creating a search engine which scales even to today's web presents many challenges. Fast crawling technology is needed to gather the web
documents and keep them up to date. Storage space must be used efficiently to store indices and, optionally, the documents themselves. The
indexing system must process hundreds of gigabytes of data efficiently. Queries must be handled quickly, at a rate of hundreds to thousands per
second.

These tasks are becoming increasingly difficult as the Web grows. However, hardware performance and cost have improved dramatically to
partially offset the difficulty. There are, however, several notable exceptions to this progress such as disk seek time and operating system

robustness. In designing Google, we have considered both the rate of growth of the Web and technological changes. Google is designed to scale
well to extremely large data sets. It makes efficient use of storage space to store the index. Its data structures are optimized for fast and efficient
access (see section 4.2). Further, we expect that the cost to index and store text or HTML will eventually decline relative to the amount that will be
available (see A@endix B). This will result in favorable scaling properties for centralized systems like Google.

1.3 Design Goals

1.3.1 Improved Search Quality

Our main goal is to improve the quality of web search engines. In 1994, some people believed that a complete search index would make it possible
to find anything easily. According to Best of the Web 1994 -- Navigators, "The best navigation service should make it easy to find almost anything
on the Web (once all the data is entered)." However, the Web of 1997 is quite different. Anyone who has used a search engine recently, can readily
testify that the completeness of the index is not the only factor in the quality of search results. "Junk results" often wash out any results that a user
is interested in. In fact, as of November 1997, only one of the top four commercial search engines finds itself (returns its own search page in
response to its name in the top ten results). One of the main causes of this problem is that the number of documents in the indices has been
increasing by many orders of magnitude, but the user's ability to look at documents has not. People are still only willing to look at the first few tens
of results. Because of this, as the collection size grows, we need tools that have very high precision (number of relevant documents returned, say in
the top tens of results). Indeed, we want our notion of "relevant" to only include the very best documents since there may be tens of thousands of
slightly relevant

documents. This very high precision is important even at the expense of recall (the total number of relevant documents the system is able to
return). There is quite a bit of recent optimism that the use of more hypertextual information can help improve search and other applications
[Marchiori 97] [Sl2ertus 97] [Weiss 96] [Kleinber.- 98]. In particular, link structure [Page 98] and link text provide a lot of information for making
relevance judgments and quality filtering. Google makes use of both link structure and anchor text (see Sections 2.1 and 2.2).

1.3.2 Academic Search Engine Research

Aside from tremendous growth, the Web has also become increasingly commercial over time. In 1993, 1.5% of web servers were on com domains.
This number grew to over 60% in 1997. At the same time, search engines have migrated from the academic domain to the commercial. Up until
now most search engine development has gone on at companies with little publication of technical details. This causes search engine technology to
remain largely a black art and to be advertising oriented (see Appendix A). With Google, we have a strong goal to push more development and
understanding into the academic realm.

Another important design goal was to build systems that reasonable numbers of people can actually use. Usage was important to us because we
think some of the most interesting research will involve leveraging the vast amount of usage data that is available from modem web systems. For

example, there are many tens of millions of searches performed every day. However, it is very difficult to get this data, mainly because it is
considered commercially valuable.

Our final design goal was to build an architecture that can support novel research activities on large-scale web data. To support novel research
uses, Google stores all of the actual documents it crawls in compressed form. One of our main goals in designing Google was to set up an
environment where other researchers can come in quickly, process large chunks of the web, and produce interesting results that would have been
very difficult to produce otherwise. In the short time the system has been up, there have already been several papers using databases generated by
Google, and many others are underway. Another goal we have is to set up a Spacelab-like environment where researchers or even students can
propose and do interesting experiments on our large-scale web data.

2. System Features

The Google search engine has two important features that help it produce high precision results. First, it makes use of the link structure of the Web
to calculate a quality ranking for each web page. This ranking is called PageRank and is described in detail in [Page 98]. Second, Google utilizes
link to improve search results.

2.1 PageRank: Bringing Order to the Web

The citation (link) graph of the web is an important resource that has largely gone unused in existing web search engines. We have created maps
containing as many as 518 million of these hyperlinks, a significant sample of the total. These maps allow rapid calculation of a web page's
"PageRank", an objective measure of its citation importance that corresponds well with people's subjective idea of importance. Because of this
correspondence, PageRank is an excellent way to prioritize the results of web keyword searches. For most popular subjects, a simple text matching
search that is restricted to web page titles performs admirably when PageRank prioritizes the results (demo available at google.stanford.edu). For
the type of full text searches in the main Google system, PageRank also helps a great deal.

2.1.1 Description of PageRank Calculation

Academic citation literature has been applied to the web, largely by counting citations or backlinks to a given page. This gives some approximation
of a page's importance or quality. PageRank extends this idea by not counting links from all pages equally, and by normalizing by the number of
links on a page. PageRank is defined as follows:

We assume page A has pages TI ... Tn which point to it (i.e., are citations). The parameter d is a damping factor which can be set
between 0 and 1. We usually set d to 0.85. There are more details about d in the next section. Also C(A) is defined as the number of links
going out ofpage A. The PageRank of a page A is given asfollows:

PR(A) = (1-d) + d (PR(TI)IC(TI) + ... + PR(Tn)IC(Tn))

Note that the PageRanksform a probability distribution over web pages, so the sum of all web pages'PageRanks will be one.

PageRank or PR(A) can be calculated using a simple iterative algorithm, and corresponds to the principal eigenvector of the normalized link matrix
of the web. Also, a PageRank for 26 million web pages can be computed in a few hours on a medium size workstation. There are many other
details which are beyond the scope of this paper.

2.1.2 Intuitive Justification

PageRank can be thought of as a model of user behavior. We assume there is a "random surfer" who is given a web page at random and keeps
clicking on links, never hitting "back" but eventually gets bored and starts on another random page. The probability that the random surfer visits a
page is its PageRank. And, the d damping factor is the probability at each page the "random surfer" will get bored and request another random
page. One important variation is to only add the damping factor d to a single page, or a group of pages. This allows for personalization and can
make it nearly impossible to deliberately mislead the system in order to get a higher ranking. We have several other extensions to PageRank, again
see 98].

Another intuitive justification is that a page can have a high PageRank if there are many pages that point to it, or if there are some pages that point
to it and have a high PageRank. Intuitively, pages that are well cited from many places around the web are worth looking at. Also, pages that have
perhaps only one citation from something like the Yahoo! homepage are also generally worth looking at. If a page was not high quality, or was a
broken link, it is quite likely that Yahoo's homepage would not link to it. PageRank handles both these cases and everything in between by
recursively propagating weights through the link structure of the web.

2.2 Anchor Text

The text of links is treated in a special way in our search engine. Most search engines associate the text of a link with the page that the link is on.
In addition, we associate it with the page the link points to. This has several advantages. First, anchors often provide more accurate descriptions of
web pages than the pages themselves. Second, anchors may exist for documents which cannot be indexed by a text-based search engine, such as
images, programs, and databases. This makes it possible to return web pages which have not actually been crawled. Note that pages that have not
been crawled can cause problems, since they are never checked for validity before being returned to the user. In this case, the search engine can
even

return a page that never actually existed, but had hyperlinks pointing to it. However, it is possible to sort the results, so that this particular problem
rarely happens.

This idea of propagating anchor text to the page it refers to was implemented in the World Wide Web Worm [McB[yan 94] especially because it
helps search non-text infon-nation, and expands the search coverage with fewer downloaded documents. We use anchor propagation mostly
because anchor text can help provide better quality results. Using anchor text efficiently is technically difficult because of the large amounts of data
which must be processed. In our current crawl of 24 million pages, we had over 259 million anchors which we indexed.

2.3 Other Features

Aside from PageRank and the use of anchor text, Google has several other features. First, it has location information for all hits and so it makes
extensive use of proximity in search. Second, Google keeps track of some visual presentation details such as font size of words. Words in a larger
or bolder font are weighted higher than other words. Third, full raw HTML of pages is available in a repository.

3 Related Work

Search research on the web has a short and concise history. The World Wide Web Worm [McBryan 941 was one of the first web search
engines. It was subsequently followed by several other academic search engines, many of which are now public companies. Compared to the
growth of the Web and the importance of search engines there are precious few documents about recent search engines [Pinkerton 941. According
to Michael Mauldin (chief scientist, Lycos Inc) rmauldin], "the various services (including Lycos) closely guard the details of these databases".
However, there has been a fair amount of work on specific features of search engines. Especially well represented is work which can get results by
post-processing the results of existing commercial search engines, or produce small scale "individualized" search engines. Finally, there has been a
lot of research on information retrieval systems, especially on well controlled collections. In the next two sections, we discuss some areas where
this research needs to be extended to work better on the web.

3.1 Information Retrieval

Work in infon-nation retrieval systems goes back many years and is well developed [Witten 94]. However, most of the research on information
retrieval systems is on small well controlled homogeneous collections such as collections of scientific papers or news stories on a related topic.
Indeed, the primary benchmark for information retrieval, the Text Retrieval Conference [TREC 961, uses a fairly small, well controlled collection
for their benchmarks. The "Very Large Corpus" benchmark is only 2OGB compared to the 147GB from our crawl of 24 million web pages.
Things that work well on TREC often do not produce good results on the web. For example, the standard vector space model tries to return the
document that most closely approximates the query, given that both query and document are vectors defined by their word occurrence. On the web,
this strategy often returns very short documents that are the query plus a few words. For example , we have seen a major search engine return a
page containing only "Bill Clinton Sucks" and picture from a "Bill Clinton" query. Some argue that on the web, users should specify more
accurately what they want and add more words to their query. We disagree vehemently with this position. If a user issues a query like "Bill

Clinton" they should get reasonable results since there is a enormous amount of high quality information available on this topic. Given examples
like these, we believe that the standard information retrieval work needs to be extended to deal effectively with the web.

3.2 Differences Between the Web and Well Controlled Collections

The web is a vast collection of completely uncontrolled heterogeneous documents. Documents on the web have extreme variation internal to the
documents, and also in the external meta infon-nation that might be available. For example, documents differ intemally in their language (both
human and programming), vocabulary (email addresses, links, zip codes, phone numbers, product numbers), type or format (text, HTML, PDF,
images, sounds), and may even be machine generated (log files or output from a database). On the other hand, we define external meta information
as infon-nation that can be inferred about a document, but is not contained within it. Examples of external meta information include things like
reputation of the source, update frequency, quality, popularity or usage, and citations. Not only are the possible sources of external meta
information varied, but the things that are being measured vary many orders of magnitude as well. For example, compare the usage information
from a major homepage, like Yahoo's which currently receives millions of page
views every day with an obscure historical article which might receive one view
every ten years. Clearly, these two items must be treated very differently by a
search engine.

Another big difference between the web and traditional well controlled
collections is that there is virtually no control over what people can put on the
web. Couple this flexibility to publish anything with the enon-nous influence of
search engines to route traffic and companies which deliberately manipulating
search engines for profit become a serious problem. This problem that has not
been addressed in traditional closed information retrieval systems. Also, it is
interesting to note that metadata efforts have largely failed with web search
engines, because any text on the page which is not directly represented to the
user is abused to manipulate search engines. There are even numerous
companies which specialize in manipulating search engines for profit.

4 System Anatomy

First, we will provide a high level discussion of the architecture. Then, there is
some in-depth descriptions of important data structures. Finally, the major
applications: crawling, indexing, and searching will be examined in depth.

4.1 Google Architecture Overview

In this section, we will give a high level overview of how the whole system works as pictured in Figure
1. Further sections will discuss the applications and data structures not mentioned in this section. Most
of Google is implemented in C or C++ for efficiency and can run in either Solaris or Linux.

In Google, the web crawling (downloading of web pages) is done by several distributed crawlers. There
is a URLserver that sends lists of URLs to be fetched to the crawlers. The web pages that are fetched
are then sent to the storeserver. The storeserver then compresses and stores the web pages into a
repository. Every web page has an associated ID number called a docID which is assigned whenever a
new URL is parsed out of a web page. The indexing function is performed by the indexer and the
sorter. The indexer performs a number of functions. It reads the repository, uncompresses the
documents, and parses them. Each document is converted into a set of word occurrences called hits.
The hits record the word, position in document, an approximation of font size, and capitalization. The
indexer distributes these hits into a set of "barrels", creating a partially sorted forward index. The
indexer performs another important function. It parses out all the links in every web page and stores
important infon-nation about them in an anchors file. This file contains enough information to
determine where each link points from and to, and the text of the link.

these hits into a set of "barrels", creating a partially sorted forward index. The indexer
performs another important function. It parses out all the links in every web page and stores
important information about them in an anchors file. This file contains enough information to
determine where each link points from and to, and the text of the link.

The URLresolver reads the anchors file and converts relative URLs into absolute URLs and in
turn into docIDs. It puts the anchor text into the forward index, associated with the docID that
the anchor points to. It also generates a database of links which are pairs of docIDs. The links
database is used to compute PageRanks for all the documents.

The sorter takes the barrels, which are sorted by docID (this is a simplification, see Section
4.2.5), and resorts them by wordID to generate the inverted index. This is done in place so that
little temporary space is needed for this operation. The sorter also produces a list of wordIDs
and offsets into the inverted index. A program called DumpLexicon takes this list together

with the lexicon produced by the indexer and generates a new lexicon to be used by the
searcher. The searcher is run by a web server and uses the lexicon built by DumpLexicon
together with the inverted index and the PageRanks to answer queries.

4.2 Major Data Structures

Google's data structures are optimized so that a large document collection can be crawled,
indexed, and searched with little cost. Although, CPUs and bulk input output rates have
improved dramatically over the years, a disk seek still requires about IO ms to complete.
Google is designed to avoid disk seeks whenever possible, and this has had a considerable
influence on the design of the data structures.

4.2.1 BigFiles

BigFiles are virtual files spanning multiple file systems and are addressable by 64 bit integers.
The allocation among multiple file systems is handled automatically. The BigFiles package
also handles allocation and deallocation of file descriptors, since the operating systems do not
provide enough for our needs. BigFiles also support rudimentary compression options.

4.2.2 Repository

The repository contains the full HTML of every web page. Each page is compressed
using zlib(see FC1950).The choice of compression technique is a tradeoff between speed
and compression ratio. We chose zlib's speed over a significant improvement in
compression offered by bzip). The compression rate of bzip was approximately 4 to I on
the repository as compared to zlib's 3 to I compression. In the repository, the documents
are stored one after the other and are prefixed by docID, length, and URL as can be seen
in Figure 2. The repository requires no other data structures to be used in order to access
it. This helps with data consistency and makes development much easier; we can rebuild

all the other data structures from only the repository and a file which lists crawler errors.

4.2.3 Document Index

The document index keeps information about each document. It is a fixed width ISAM (Index
sequential
and bulk input output rates have improved dramatically over the years, a disk seek still requires about 10
ms to complete. Google is designed to avoid disk seeks whenever possible, and this has had a
considerable influence on the design of the data structures.

4.2.1 BigFiles

BigFiles are virtual files spanning multiple file systems and are addressable by 64 bit integers. The
allocation among multiple file systems is handled automatically. The BigFiles package also handles
allocation and deallocation of file descriptors, since the operating systems do not provide enough for our
needs. BigFiles also support rudimentary compression options.

4.2.2 Repository

The repository contains the full HTML of every web page. Each page is
compressed using zlib (see RFC 1 950). The choice of compression technique is
a tradeoff between speed and compression ratio. We chose zlib's speed over a
significant improvement in compression offered by bz@i . The compression rate
of bzip was approximately 4 to I on the repository as compared to zlib's 3 to I
compression. In the repository, the documents are stored one after the other and
are prefixed by docED, length, and URL as can be seen in Figure 2. The
repository requires no other data structures to be used in order to access it. This
helps with data consistency and makes development much easier; we can rebuild
all the other data structures from only the repository and a file which lists
crawler errors.

4.2.3 Document Index

The document index keeps information about each document. It is a fixed width ISAM (Index
sequential access mode) index, ordered by docID. The information stored in each entry includes the
current document status, a pointer into the repository, a document checksum, and various statistics. If
the document has been crawled, it also contains a pointer into a variable width file called docinfo which
contains its URL and title. Otherwise the pointer points into the URLlist which contains just the URL.
This design decision was driven by the desire to have a reasonably compact data structure, and the
ability to fetch a record in one disk seek during a search

Additionally, there is a file which is used to convert URLs into docIDs. It is a list of URL checksums
with their corresponding docIDs and is sorted by checksum. In order to find the docID of a particular
URL, the URL's checksum is computed and a binary search is performed on the checksums file to find
its docID. URLs may be converted into docIDs in batch by doing a merge with this file. This is the
technique the URLresolver uses to turn URLs into docIDs. This batch mode of update is crucial
because otherwise we must perform one seek for every link which assuming one disk would take more
than a month for our 322 million link dataset.

4.2.4 Lexicon

The lexicon has several different forms. One important change from earlier systems is that the lexicon
can fit in memory for a reasonable price. In the current implementation we can keep the lexicon in
memory on a machine with 256 MB of main memory. The current lexicon contains 14 million words
(though some rare words were not added to the lexicon). It is implemented in two parts -- a list of the
words (concatenated together but separated by nulls) and a hash table of pointers. For various functions,
the list of words has some auxiliary information which is beyond the scope of this paper to explain fully.

4.2.5 Hit Lists

A hit list corresponds to a list of occurrences of a particular word in a particular document including
position, font, and capitalization infon-nation. Hit lists account for most of the space used in both the
forward and the inverted indices. Because of this, it is important to represent them as efficiently as
possible. We considered several alternatives for encoding position, font, and capitalization -- simple
encoding (a triple of integers), a compact encoding (a hand optimized allocation of bits), and Huffman
coding. In the end we chose a hand optimized compact encoding since it required far less space than the
simple encoding and far less bit manipulation than Huffman coding. The details of the hits are shown in
Figure 3.

Our compact encoding uses two bytes for every hit. There are two types of hits: fancy hits and plain
hits. Fancy hits include hits occurring in a URL, title, anchor text, or meta tag. Plain hits include
everything else. A plain hit consists of a capitalization bit, font size, and 12 bits of word position in a
document (all positions higher than 4095 are labeled 4096). Font size is represented relative to the rest
of the document using three bits (only 7 values are actually used because I I I is the flag that signals a
fancy hit). A fancy hit consists of a capitalization bit, the font size set to 7 to indicate it is a fancy hit, 4
bits to encode the type of fancy hit, and 8 bits of position. For anchor hits, the 8 bits of position are split
into 4 bits for position in anchor and 4 bits for a hash of the docID the anchor occurs in. This gives us
some lin-tited phrase searching as long as there are not that many anchors for a particular word. We
expect to update the way that anchor hits are stored to allow for greater resolution in the position and
doc]]Dhash fields. We use font size relative to the rest of the document because when searching, you do
not want to rank otherwise identical documents differently just because one of the documents is in a
larger font.

The length of a hit list is stored before the hits themselves. To save space,
the length of the hit list is combined with the wordID in the forward index
and the docID in the inverted index. This limits it to 8 and 5 bits respectively
(there are some tricks which allow 8 bits to be borrowed from the wordID).
If the length is longer than would fit in that many bits, an escape code is used
in those bits, and the next two bytes contain the actual length.

4.2.6 Forward Index

The forward index is actually already partially sorted. It is stored in a
number of barrels (we used 64). Each barrel holds a range of wordID's. If a
document contains words that fall into a particular barrel, the docID is
recorded into the barrel, followed by a list of wordID's with hitlists which
correspond to those words. This scheme requires slightly more storage
because of duplicated docIDs but the difference is very small for a
reasonable number of buckets and saves considerable time and coding
complexity in the final indexing phase done by the sorter. Furthermore,
instead of storing actual wordID's, we store each wordID as a relative
difference from the minimum wordID that falls into the barrel the wordID is

in. This way, we can use just 24 bits for the wordID's in the unsorted barrels, leaving 8 bits for the hit
list length.

Running a web crawler is a challenging task. There are tricky performance and reliability issues and
even more importantly, there are social issues. Crawling is the most fragile application since it involves
interacting with hundreds of thousands of web servers and various name servers which are all beyond
the control of the system.

In order to scale to hundreds of millions of web pages, Google has a fast distributed crawling system. A
single URLserver serves lists of URLs to a number of crawlers (we typically ran about 3). Both the
URLserver and the crawlers are implemented in Python. Each crawler keeps roughly 300 connections
open at once. This is necessary to retrieve web pages at a fast enough pace. At peak speeds, the system
can crawl over 100 web pages per second using four crawlers. This amounts to roughly 600K per
second of data. A major performance stress is DNS lookup. Each crawler maintains a its own DNS
cache so it does not need to do a DNS lookup before crawling each document. Each of the hundreds of
connections can be in a number of different states: looking up DNS, connecting to host, sending request,
and receiving response. These factors make the crawler a complex component of the system. It uses
asynchronous 10 to manage events, and a number of queues to move page fetches from state to state.

It turns out that running a crawler which connects to more than half a million servers, and generates tens
of millions of log entries generates a fair amount of email and phone calls. Because of the vast number
of people coming on line, there are always those who do not know what a crawler is, because this is the
first one they have seen. Almost daily, we receive an email something like, "Wow, you looked at a lot
of pages from my web site. How did you like it?" There are also some people who do not know about
the robots exclusion protocol, and think their page should be protected from indexing by a statement
like, "This page is copyrighted and should not be indexed", which needless to say is difficult for web
crawlers to understand. Also, because of the huge amount of data involved, unexpected things will
happen. For example, our system tried to crawl an online game. This resulted in lots of garbage
messages in the middle of their game! It turns out this was an easy problem to fix. But this problem
had not come up until we had downloaded tens of millions of pages. Because of the immense variation
in web pages and servers, it is virtually impossible to test a crawler without running it on large part of
the Internet. Invariably, there are hundreds of obscure problems which may only occur on one page out
of the whole web and cause the crawler to crash, or worse, cause unpredictable or incorrect behavior.
Systems which access large parts of the Internet need to be designed to be very robust and carefully
tested. Since large complex systems such as crawlers will invariably cause problems, there needs to be
significant resources devoted to reading the email and solving these problems as they come up.

4.4 Indexing the Web

o Parsing -- Any parser which is designed to run on the entire Web must handle a huge array of
possible errors. These range from typos in

HTML tags to kilobytes of zeros in the middle of a tag, non-ASCII characters, HTML tags
nested hundreds deep, and a great variety of other errors that challenge anyone's imagination to
come up with equally creative ones. For maximum speed, instead of using YACC to generate a
CFG parser, we use flex to oenerate a lexical analyzer which we outfit with its own stack.
Developing this parser which runs at a reasonable speed and is very robust involved a fair
amount of work.

o Indexing Documents into Barrels -- After each document is parsed, it is encoded into a
number of barrels. Every word is converted

into a wordID by using an in-memory hash table -- the lexicon. New additions to the lexicon
hash table are logged to a file. Once the words are converted into wordID's, their occurrences in
the current document are translated into hit lists and are written into the forward barrels. The
main difficulty with parallelization of the indexing phase is that the lexicon needs to be shared.
Instead of sharing the lexicon, we took the approach of writing a log of all the extra words that
were not in a base lexicon, which we fixed at 14 million words. That way multiple indexers can
run in parallel and then the small log file of extra words can be processed by one final indexer.

9 Sorting -- In order to generate the inverted index, the sorter takes each of the forward barrels
and sorts it by wordID to produce an inverted

barrel for title and anchor hits and a full text inverted barrel. This process happens one barrel at
a time, thus requiring little temporary

storage. Also, we parallelize the sorting phase to use as many machines as we have simply by running
multiple sorters, which can process different buckets at the same time. Since the barrels don't fit into
main memory, the sorter further subdivides them into baskets which do fit into memory based on
wordID and docID. Then the sorter, loads each basket into memory, sorts it and writes its contents into
the short inverted barrel and the full inverted barrel.

4.5 Searching

The goal of searching is to provide quality search results efficiently. Many of the large commercial
search engines seemed to have made great progress in terms of efficiency. Therefore, we have focused

more on quality of search in our research, although we believe our solutions are scalable to commercial
volumes with a bit more effort. The google query evaluation process is show in Figure 4.

To put a limit on response time, once a certain number (currently 40,000) of matching
documents are found, the searcher automatically goes to step 8 in Figure 4. This means
that it is possible that sub-optimal results would be returned. We are currently
investigating other ways to solve this problem. In the past, we sorted the hits according
to PageRank, which seemed to improve the situation.

4.5.1 The Ranking System

Google maintains much more information about web documents than typical search
engines. Every hitlist includes position, font, and capitalization information.
Additionally, we factor in hits from anchor text and the PageRank of the document.
Combining all of this infon-nation into a rank is difficult. We designed our ranking
function so that no particular factor can have too much influence. First, consider the
simplest case -- a single word query. In order to rank a document with a single word
query, Google looks at that document's hit list for that word. Google considers each
hit to be one of several different types (title, anchor, URL, plain text large font, plain
text small font, ...), each of which has its own type-weight. The type-weights make up

a vector indexed by type. Google counts the number of hits of each type in the hit list. Then every
count is converted into a count-weight. Count-weights increase linearly with counts at first but quickly
taper off so that more than a certain count will not help. We take the dot product of the vector of count-
weights with the vector of type-weights to compute an IR score for the document. Finally, the IR score
is combined with PageRank to give a final rank to the document.

For a multi-word search, the situation is more complicated. Now multiple hit lists must be scanned
through at once so that hits occurring close together in a document are weighted higher than hits

1. Parse the query.
2. Convert words into wordIDs.
3. Seek to the start of the doclist in the

short barrel for every word.
4. Scan through the doclists until there

is a document that matches all the
search terms.

5. Compute the rank of that document
for the query.

6. If we are in the short barrels and at
the end of any doclist, seek to the
start of the doclist in the full barrel
for every word and go to step 4.

7. If we are not at the end of any doclist
go to step 4.

Sort the documents that have matched by
rank and return the top k.

Figure 4. Google Query Evaluation

occurring far apart. The hits from the multiple hit lists are matched up so that nearby hits are matched
together. For every matched set of hits, a proximity is computed. The proximity is based on how far
apart the hits are in the document (or anchor) but is classified into 10 different value "bins" ranging
from a phrase match to "not even close". Counts are computed not only for every type of hit but for
every type and proximity. Every type and proximity pair has a type-prox-weight. The counts are
converted into count-weights and we take the dot product of the count-weights and the type-prox-
weights to compute an IR score. All of these numbers and matrices can all be displayed with the search
results using a special debug mode. These displays have been very helpful in developing the ranking
system.

4.5.2 Feedback
The ranking function has many parameters like the type-weights and the type-prox-weights. Figuring
out the right values for these parameters is something of a black art. In order to do this, we have a user
feedback mechanism in the search engine. A trusted user may optionally evaluate all of the results that
are returned. This feedback is saved. Then when we modify the ranking function, we can see the
impact of this change on all previous searches which were ranked. Although far from perfect, this gives
us some idea of how a change in the ranking function affects the search results.

5 Results and Performance

The most important measure of a search engine is the quality of its search results. While a complete
user evaluation is beyond the scope of this paper, our own experience with Google has shown it to
produce better results than the major commercial search engines for most searches. As an example
which illustrates the use of PageRank, anchor text, and proximity, Figure 4 shows Google's results for a
search on "bill clinton". These results demonstrates
some of Google's features. The results are clustered
by server. This helps considerably when sifting
through result sets. A number of results are from
the whitehouse.gov domain which is what one may
reasonably expect from such a search. Currently,
most engine may fit onto a 7GB drive of a new PC.

5.2 System Performance

It is important for a search engine to crawl and
index efficiently. This way infon-nation can be kept
up to date and major changes to the system can be
tested relatively quickly. For Google, the major
operations are Crawling, Indexing, and Sorting. It
is difficult to measure how long crawling took
overall because disks filled up, name servers
crashed, or any number of other problems which
stopped the system. In total it took roughly 9 days
to download the 26 million pages (including errors).
However, once the system was running smoothly, it
ran much faster, downloading the last I I million
pages in just 63 hours, averaging just over 4 million
pages per day or 48.5 pages per second. We ran the
indexer and the crawler simultaneously. The
indexer ran just faster than the crawlers. This is
largely because we spent just enough time
optimizing the indexer so that it would not be a

bottleneck. These optimizations included bulk updates to the document index and placement of critical
data structures on the local disk. The indexer runs at roughly 54 pages per second. The sorters can be
run completely in parallel; using four machines, the whole process of sorting takes about 24 hours.

5.3 Search Performance

Improving the performance of search was not the major focus of our research up to this point. The
current version of Google answers most queries in between I and 10 seconds. This time is mostly
dominated by disk 10 over NFS (since disks are spread over a number of machines). Furthermore,
Google does not have any optimizations such as query caching, subindices on common ten-ns, and other
common optimizations. We intend to speed up Google considerably through distribution and hardware,
software, and algorithmic improvements. Our target is to be able to handle several hundred queries per
second. Table 2 has some sample query times from the current version of Google. They are repeated to
show the speedups resulting from cached 10.

6 Conclusions

Google is designed to be a scalable search engine. The primary goal is to provide high quality
search results over a rapidly growing World Wide Web. Google employs a number of
techniques to improve search quality including page rank, anchor text, and proximity
information. Furthermore, Google is a complete architecture for gathering web pages, indexing
them, and performing search queries over them.

6.1 Future Work

A large-scale web search engine is a complex system and much remains to
be done. Our immediate goals are to improve search efficiency and to scale
to approximately 100 million web pages. Some simple improvements
efficiency include query caching, smart disk allocation, and subindices.
Another area which requires much research is updates. We must have smart algorithms to
decide what old web pages should be recrawled and what new ones should be crawled. Work
toward this goal has been done in [Cho 98]. One promising area of research is using proxy
caches to build search databases, since they are demand driven. We are planning to add simple
features supported by commercial search engines like boolean operators, negation, and
stemming. However, other features are just starting to be explored such as relevance feedback
and clustering (Google currently supports a simple hostname based clustering). We also plan
to support user context (like the user's location), and result summarization. We are also
working to extend the use of link structure and link text. Simple experiments indicate
PageRank can be personalized by increasing the weight of a user's home page or bookmarks.
As for link text, we are experimenting with using text surrounding links in addition to the link
text itself. A Web search engine is a very rich environment for research ideas. We have far too
many to list here so we do not expect this Future Work section to become much shorter in the
near future.

6.2 High Quality Search

The biggest problem facing users of web search engines today is the quality of the results they
get back. While the results are often amusing and expand users' horizons, they are often
frustrating and consume precious time. For example, the top result for a search for "Bill
Clinton" on one of the most popular commercial search engines was the Bill Clinton Joke of
the Day: April 14, 1997. Google is designed to provide higher quality search so as the Web
continues to grow rapidly, information can be found easily. In order to accomplish this Google
makes heavy use of

Aside from the quality of search, Google is designed to scale. It must be efficient in both space and
time, and constant factors are very important when dealing with the entire Web. In implementing
Google, we have seen bottlenecks in CPU, memory access, memory capacity, disk seeks, disk

throughput, disk capacity, and network 10. Google has evolved to overcome a number of these
bottlenecks during various operations. Google's major data structures make efficient use of available
storage space. Furthermore, the crawling, indexing, and sorting operations are efficient enough to be
able to build an index of a substantial portion of the web -- 24 million pages, in less than one week. We
expect to be able to build an index of 100 million pages in less than a month.

6.4 A Research Tool

In addition to being a high quality search engine, Google is a research tool. The data Google has
collected has already resulted in many other papers submitted to conferences and many more on the
way. Recent research such as [Abiteboul 971 has shown a number of limitations to queries about the
Web that may be answered without having the Web available locally. This means that Google (or a
similar system) is not only a valuable research tool but a necessary one for a wide range of applications.
We hope Google will be a resource for searchers and researchers all around the world and will spark the
next generation of search engine technology.

7 Acknowledgments

Scott Hassan and Alan Steremberg have been critical to the development of Google. Their talented
contributions are irreplaceable, and the authors owe them much gratitude. We would also like to thank
Hector Garcia -Molina, Rajeev Motwani, Jeff Ullman, and Terry Winograd and the whole WebBase
group for their support and insightful discussions. Finally we would like to recognize the generous
support of our equipment donors IBM, Intel, and Sun and our funders. The research described here was
conducted as part of the Stanford Integrated Digital Library Project, supported by the National Science
Foundation under Cooperative Agreement IRI-9411306. Funding for this cooperative agreement is also
provided by DARPA and NASA, and by Interval Research, and the industrial partners of the Stanford
Digital Libraries Project.

References

· Best of the Web 1994 -- Navigators http://botw.ora/1994/awards/naviaators.html
· Bill Clinton Joke of the Day: April 14, 1997. http:Hwww.io.com/-

cjburke/clinton/970414.html.

· Bzip2 Homepage http:Hwww.muraroa.demon.co.uk/
· Google Search Engine http:fl2oo2le.stanford.edu/
· Harvest http://harvest.transarc.com/
· Mauldin, Michael L. Lycos Design Choices in an Internet Search Service, IEEE Expert

Interview ht!p://www.computer.or /"ubs/exl2ert/1997/trends/xIO08/mauldin.htm
· The Effect of Cellular Phone Use Upon Driver Attention

httl2://www.webfirst.com/aaa/text/cell/cell0toc.htm
· Search Engine Watch http://www.searchenginewatch.com/
· RFC 1950 (zlib) ftl2://ftp.uu.net/lzraphics/pniz/documents/zlib/zdoc-index.html
· Robots Exclusion Protocol: http:Hinfo.webcrawler.com/m k"/ rojects/robots/exclusion.htm
· Web Growth Summary: http:Hwww.mit.edu/people/mkaray/net/web-2rowth-summary.html

Yahoo! http:Hwww.yahoo.com/

· [Abiteboul 97] Serge Abiteboul and Victor Vianu, Queries and Computation on the Web .

Proceedings of the International Conference on Database Theory. Delphi, Greece 1997. -
· [Bagdikian 97] Ben H. Bagdikian. The Media Monopoly. 5th Edition. Publisher: Beacon,

ISBN: 0807061557
· [Chakrabarti 98] S.Chakrabarti, B.Dom, D.Gibson, J.Kleinberg, P. Raghavan and S.

Rajagopalan. Automatic Resource Compilation by Analyzing Hyperlink Structure and
Associated Text. Seventh International Web Conference 98). Brisbane, Australia,
April 14-18, 1998.

· [Cho 98] Junghoo Cho, Hector Garcia -Molina, Lawrence Page. Efficient Crawling Through
URL Ordering. Seventh International Web Conference (WWW 98). Brisbane, Australia,
April 14-18, 1998.

· [Gravano 94] Luis Gravano, Hector Garcia -Molina, and A. Tomasic. The Effectiveness of
GlOSSfor the Text-Database Discovery Problem. Proc. of the 1994 ACM SIGMOD
International Conference On Management Of Data, 1994.

· [Kleinberg 98] Jon Kleinberg, Authoritative Sources in a Hyperlinked Environment, Proc.
ACM-SIAM Symposium on Discrete Algorithms, 1998.

· [Marchiori 97] Massimo Marchiori. The Questfor Correct Information on the Web: Hyper
Search Engines. The Sixth International Conference (W-WW 97). Santa Clara, USA, April
7-11, 1997.

· [McBryan 94] Oliver A. McBryan. GENVL and - Toolsfor Taming the Web. First
International Conference on the World Wide Web. CERN, Geneva (Switzerland), May 25-
26-27 1994. http:Hwww.cs.colorado.edu/home/mcbryan/mypapers/www9 @s

· [Page 98] Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Manuscript in progress.
http:H2oogle.stanford.edu/-backrub@/ a2eranks b@',

· [Pinkerton 94] Brian Pinkerton, Finding What People Want: Experiences with the
WebCrawler. The Second International WIW Conference Chicago, USA, October 17-
20,1994. http:Hinfo.webcrawler.com/bDAVWW94.htm]

· [Spertus 97] Ellen Spertus. ParaSite: Mining Structural Information on the Web. The Sixth
International Conference 97). Santa Clara, USA, April 7-11, 1997.

· [TREC 96] Proceedings of the fifth Text REtrieval Conference (TREC-5). Gaithersburg,
Maryland, November 20-22, 1996. Publisher: Department of Commerce, National Institute
of Standards and Technology. Editors: D. K. Harman and E. M. Voorhees. Full text at:
htip://trec.nist.2ov/
[Witten 94] Ian H Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images.
New York: Van Nostrand Reinhold, 1994.

· [Weiss 961 Ron Weiss, Bienvenido Velez, Mark A. Sheldon, Chanathip Manprempre, Peter
Szilagyi, Andrzej Duda, and David K. Gifford.
HyPursuit: A Hierarchical Network Search Engine that Exploits Content-Link Hypertext
Clustering. Proceedings of the 7th ACM
Conference on Hypertext. New York, 1996.

Vitae

Sergey Brin received his B.S. degree in
mathematics and computer science from the
University of Maryland at College Park in
1993. Currently, he is a Ph.D. candidate in
computer science at Stanford University where
he received his M.S. in 1995. He is a recipient
of a National Science Foundation Graduate
Fellowship. His research interests include
search engines, information extraction from
unstructured sources, and data mining of large
text collections and scientific data.

Lawrence Page was bom in East Lansing,
Michigan, and received a B.S.E. in Computer
Engineering at the University of Michigan Ann
Arbor in 1995. He is currently a Ph.D.
candidate in Computer Science at Stanford
University. Some of his research interests
include the link structure of the web, human
computer interaction, search engines,
scalability of information access interfaces,
and personal data mining.

8 Appendix A: Advertising
and Mixed

Motives

Currently, the predominant business model for commercial search engines is advertising. The goals of
the advertising business model do not always correspond to providing quality search to users. For
example, in our prototype search engine one of the top results for cellular phone is "The Effect of
Cellular Phone Use Upon Driver Attention", a study which explains in great detail the distractions and
risk associated with conversing on a cell phone while driving. This search result came up first because
of its high importance as judged by the PageRank algorithm, an approximation of citation importance on
the web [Page, 98]. It is clear that a search engine which was taking money for showing cellular phone
ads would have difficulty justifying the page that our system returned to its paying advertisers. For this
type of reason and historical experience with other media [Ba2dikian 831, we expect that advertising
funded search engines will be inherently biased towards the advertisers and away from the needs of the
consumers.

Since it is very difficult even for experts to evaluate search engines, search engine bias is particularly
insidious. A good example was OpenText, which was reported to be selling companies the right to be
listed at the top of the search results for particular queries [Marchiori 971. This type of bias is much
more insidious than advertising, because it is not clear who "deserves" to be there, and who is willing to
pay money to be listed. This business model resulted in an uproar, and OpenText has ceased to be a
viable search engine. But less blatant bias are likely to be tolerated by the market. For example, a
search engine could add a small factor to search results from "friendly" companies, and subtract a factor

from results from competitors. This type of bias is very difficult to detect but could still have a
significant effect on the market. Furthermore, advertising income often provides an incentive to provide
poor quality search results. For example, we noticed a ma or search engine would not return a large
airline's

i

of advertising causes enough mixed incentives that it is crucial to have a competitive search engine that
is transparent and in the academic realm.

9 Appendix B: Scalability

9. 1 Scalability of Google

We have designed Google to be scalable in the near term to a goal of I 00 million web pages. We have
just received disk and machines to handle roughly that amount. All of the time consuming parts of the
system are parallelize and roughly linear time. These include things like the crawlers, indexers, and
sorters. We also think that most of the data structures will deal gracefully with the expansion.
However, at 100 million web pages we will be very close up against all sorts of operating system limits
in the common operating systems (currently we run on both Solaris and Linux). These include things
like addressable memory, number of open file descriptors, network sockets and bandwidth, and many
others. We believe expanding to a lot more than 100 million pages would greatly increase the
complexity of our system.

9.2 Scalability of Centralized Indexing Architectures

As the capabilities of computers increase, it becomes possible to index a very large amount of text for a
reasonable cost. Of course, other more bandwidth intensive media such as video is likely to become
more pervasive. But, because the cost of production of text is low compared to media like video, text is
likely to remain very pervasive. Also, it is likely that soon we will have speech recognition that does a
reasonable job converting speech into text, expanding the amount of text available. All of this provides
amazing possibilities for centralized indexing. Here is an illustrative example. We assume we want to
index everything everyone in the US has written for a year. We assume that there are 250 million
people in the US and they write an average of 10k per day. That works out to be about 850 terabytes.

Also assume that indexing a terabyte can be done now for a reasonable cost. We also assume that the
indexing methods used over the text are linear, or nearly linear in their complexity. Given all these
assumptions we can compute how long it would take before we could index our 850 terabytes for a
reasonable cost assuming certain growth factors. Moore's Law was defined in 1965 as a doubling every
18 months in processor power. It has held remarkably true, not just for processors, but for other
important system parameters such as disk as well. If we assume that Moore's law holds for the future,
we need only 10 more doublings, or 15 years to reach our goal of indexing everything everyone in the
US has written for a year for a price that a small company could afford. Of course, hardware experts are
somewhat concerned Moore's Law may not continue to hold for the next 15 years, but there are certainly
a lot of interesting centralized applications even if we only get part of the way to our hypothetical
example.

Of course a distributed systems like Gloss [Gravano 94] or Harvest will often be the most efficient and
elegant technical solution for indexing, but it seems difficult to convince the world to use these systems
because of the high administration costs of setting up large numbers of installations. Of course, it is
quite likely that reducing the administration cost drastically is possible. If that happens, and everyone
starts running a distributed indexing system, searching would certainly improve drastically.

Because humans can only type or speak a finite amount, and as computers continue improving, text
indexing will scale even better than it does now. Of course there could be an infinite amount of
machine generated content, but just indexing huge amounts of human generated content seems
tremendously useful. So we are optin-tistic that our centralized web search engine architecture will
improve in its ability to cover the pertinent text infon-nation over time and that there is a bright future
for search.

