
The Polyadic �-Calculus: a TutorialRobin MilnerLaboratory for Foundations of Computer Science,Computer Science Department, University of Edinburgh,The King's Buildings, Edinburgh EH9 3JZ, UKOctober 1991AbstractThe �-calculus is a model of concurrent computation based upon thenotion of naming . It is �rst presented in its simplest and original form,with the help of several illustrative applications. Then it is generalized frommonadic to polyadic form. Semantics is done in terms of both a reductionsystem and a version of labelled transitions called commitment ; the knownalgebraic axiomatization of strong bisimilarity is given in the new setting,and so also is a characterization in modal logic. Some theorems about thereplication operator are proved.Justi�cation for the polyadic form is provided by the concepts of sortand sorting which it supports. Several illustrations of di�erent sortings aregiven. One example is the presentation of data structures as processes whichrespect a particular sorting; another is the sorting for a known translation ofthe �-calculus into �-calculus. For this translation, the equational validity of�-conversion is proved with the help of replication theorems. The paper endswith an extension of the �-calculus to !-order processes, and a brief accountof the demonstration by Davide Sangiorgi that higher-order processes may befaithfully encoded at �rst-order. This extends and strengthens the originalresult of this kind given by Bent Thomsen for second-order processes.
This work was done with the support of a Senior Fellowship from the Science andEngineering Research Council, UK.

1 IntroductionThe �-calculus is a way of describing and analysing systems consisting of agentswhich interact among each other, and whose con�guration or neighbourhood iscontinually changing. Since its �rst presentation [19] it has developed, and con-tinues to do so; but the development has a main stream. In this tutorial paperI give an introduction to the central ideas of the calculus, which can be read bypeople who have never seen it before; I also show some of the current developmentswhich seem most important { not all of which have been reported elsewhere.Any model of the world, or of computation (which is part of the world), makessome ontological commitment; I mean this in the loose sense of a commitmentas to which phenomena it will try to capture, and which mental constructionsare seen to �t these phenomena best. This is obvious for the \denotational"models of computing; for example, the set-theoretic notion of function is chosenas the essence or abstract content of the deterministic sequential process by whicha result is computed from arguments. But mathematical operations { adding,taking square-roots { existed long before set theory; and it seems that Churchin creating the �-calculus had \algorithm" more in mind than \function" in theabstract sense of the word.Nevertheless, the �-calculus makes some ontological commitment about com-putation. It emphasizes the view of computation as taking arguments and yieldingresults. By contrast, it gives no direct representation of a heterarchical family ofagents, each with its changing state and an identity which persists from one com-putation to another. One may say that the �-calculus owes its very success to itsquite special focus upon argument-result computations.Concurrent computation, and in particular the power of concurrently activeagents to in
uence each other's activity on the
y, cannot be forced into the \func-tion" mould (set-theoretic or not) without severe distortion. Of course concurrentagents can be assumed (or constrained) to interact in all sorts of di�erent ways.One way would be to treat each other precisely as \function computers"; suchan agent's interaction with its environment would consist of receiving argumentsand giving results and expecting its sub-agents, computing auxiliary functions, tobehave in a similar way. Thus functional computation is a special case of concur-rent computation, and we should expect to �nd the �-calculus exactly representedwithin a general enough model of concurrency.In looking for basic notions for a model of concurrency it is therefore prob-ably wrong to extrapolate from �-calculus, except to follow its example in seekingsomething small and powerful. (Here is an analogy: Music is an art form, but itwould be wrong to look for an aesthetic theory to cover all art forms by extrapol-ation from musical theory.) So where else do we look? From one point of view,there is an embarrassingly wide range of idea-sources to choose from; for concur-rent computation in the broadest sense is about any co-operative activity amongindependent agents { even human organizations as well as distributed computingsystems. One may even hope that a model of concurrency may attain a breadth1

of application comparable to physics; Petri expressed such hopes in his seminalwork on concurrency [25], and was guided by this analogy.Because the �eld is indeed so large, we may doubt whether a single uni�edtheory of concurrency is possible; or, even if possible, whether it is good researchstrategy to seek it so early. Another more modest strategy is to seize upon somesingle notion which seems to be pervasive, make it the focus of a model, and thensubmit that model to various tests: Is its intrinsic theory tractable and appealing?Does it apply to enough real situations to be useful in building systems, or inunderstanding those in existence?This strategy, at least with a little hindsight, is what led to the �-calculus. Thepervasive notion we seize upon is naming. One reason for doing so is that namingstrongly presupposes independence; one naturally assumes that the namer andthe named are co-existing (concurrent) entities. Another reason is that the act ofusing a name, or address, is inextricably confused with the act of communication.Indeed, thinking about names seems to bring into focus many aspects of comput-ing: problems, if not solutions. If naming is involved in communicating, and isalso (as all would agree) involved in locating and modifying data, then we look fora way of treating data-access and communication as the same thing; this leads toviewing data as a special kind of process, and we shall see that this treatment ofdata arises naturally in the �-calculus.Another topic which we can hope to understand better through naming isobject-oriented programming; one of the cornerstones of this topic (which is stilltreated mostly informally) is the way in which objects provide access to one an-other by naming. In [17] I used the term object paradigm to describe modelssuch as the �-calculus in which agents (objects) are assumed to persist and retainindependent identity. David Walker [28] has had initial success in giving formalsemantics to simple object-oriented languages in the �-calculus. A challengingproblem is to reconcile the assumption, quite common in the world of object-oriented programming, that each object should possess a unique name with theview expressed below (Chapter 1) that naming of channels, but not of agents,should be primitive in the �-calculus.By focussing upon naming, we should not give the impression that we expectevery aspect of concurrency to be thereby explained. Other focal notions are likelyto yield a di�erent and complementary view. Yet naming has a strong attraction(at least for me); it is a notion distilled directly from computing practice. Itremains to be seen which intuitions for understanding concurrency will arise frompractice in this way, and which will arise directly from logic { which in turn is adistillation of a kind of computational experience, namely inference. Both sourcesshould be heeded. An example of a logical intuition for concurrency is the lightcast upon resource use by Girard's linear logic [9]. I believe it quite reasonableto view these two sources of intuition as ultimately the same source; then theunderstanding of computation via naming (say) is just as much a logical activityas is the use of modal logics (say) in computer science.2

Background and related work The work on �-calculus really began witha failure, at the time that I wrote about CCS, the Calculus of CommunicatingSystems [15]. This was the failure, in discussion with Mogens Nielsen at Aarhusin 1979, to see how full mobility among processes could be handled algebraically.The wish to do this was motivated partly by Hewitt's actor systems, which heintroduced much earlier [12]. Several years later Engberg and Nielsen [8] succeededin giving an algebraic formulation. The �-calculus [19] is a simpli�cation andstrengthening of their work.Meanwhile other authors had invented and applied formalisms for processeswithout the restriction of a �nite �xed initial connectivity. Two prominent ex-amples are the DyNe language of Kennaway and Sleep [14], and the work onparametric channels by Astesiano and Zucca [3]. These works are comparable tothe �-calculus because they achieve mobility by enriching the handling of channels.By contrast, one can also achieve mobility by the powerful means of transmit-ting processes as messages; this is the higher-order approach. It is well exempli�edby the work Astesiano and Reggio [2] in the context of general algebraic spe-ci�cation, F. Nielson [22] with emphasis upon type structure, Boudol [6] in thecontext of �-calculus, and Thomsen [27]. It has been a deliberate intention inthe �-calculus to avoid higher order initially, since the goal was to demonstratethat in some sense it is su�ciently powerful to allow only names or channels tobe the content of communications. Indeed Thomsen's work supports this conjec-ture, and the present work strengthens his results comparing the approaches. SeeMilner [17] for a discussion contrasting the approaches.Outline There are six short chapters following this introduction.Chapter 2 reviews the formalism of the monadic �-calculus, essentially as itwas presented in [19]; it also de�nes the notion of structural congruence and thereduction relation as �rst given in [17].Chapter 3 is entirely devoted to applications; the �rst de�nes a simple mobiletelephone protocol, the second encodes arithmetic in �-calculus, and the thirdpresents two useful disciplines of name-use (such as may be obeyed in an operatingsystem) in the form of properties invariant under reduction.Chapter 4 generalizes �-calculus to polyadic communications, introduces thenotions of abstraction and concretion which enhance the power of expression ofthe calculus (illustrated by a simple treatment of truth values), and a�rms thatthe reduction relation remains essentially unchanged.Chapter 5 and Chapter 6 provide the technical basis of the work. In Chapter 5,�rst reduction congruence is de�ned; this is a natural congruence based upon re-duction and observability. Next, the standard operational semantics of [19] isreformulated in terms of a new notion, commitment; this, together with the
ex-ibility which abstractions and concretions provide, yields a very succinct present-ation. Then the (late) bisimilarity of [19] is restated in the polyadic setting,with its axiomatization. Its slightly weaker variant early bisimilarity, discussed in3

Part II of [19], is shown to induce a congruence identical with reduction congru-ence. Some theorems about replication are given. Finally, the modal logic of [20],which provides characterizations of both late and early bisimilarity, is formulatedin a new way { again taking advantage of the new setting.Chapter 6 introduces the notions of sort and sorting, which are somewhat ana-logous to the simple type hierarchy in �-calculus, but with signi�cant di�erences.Data structures are shown to be represented as a particularly well-behaved classof processes, which moreover respect a distinctive sorting discipline. Finally, withthe help of sorts, new light is cast upon the encoding of �-calculus into �-calculus�rst presented in [17]; a simple proof is given of the validity of �-conversion in thisinterpretation of �-calculus, using theorems from Chapter 5.Chapter 7 explores higher-order processes, extending the work of Thomsen[27]. It is shown how sorts and sorting extend naturally not only to second-order(processes-as-data), but even to !-order; a key rôle is played here by abstractions.A theorem of Sangiorgi [26] is given which asserts that these !-order processes canbe faithfully encoded in the �rst-order �-calculus (i.e. the calculus of Chapter 4).Some details of this encoding are given.Acknowledgements I thank Joachim Parrow and DavidWalker for the insightswhich came from our original work together on �-calculus, and which have deeplyinformed the present development. I also thank Davide Sangiorgi and Bent Thom-sen for useful discussions, particularly about higher-order processes. I am mostgrateful to Dorothy McKie for her help and skill in preparing this manuscript.The work was carried out under a Senior Fellowship funded by the Science andEngineering Research Council, UK.

4

2 The Monadic �-calculus2.1 Basic ideasThe most primitive entity in �-calculus is a name. Names, in�nitely many, arex; y; : : : 2 X ; they have no structure. In the basic version of �-calculus whichwe begin with, there is only one other kind of entity; a process. Processes areP;Q; : : : 2 P and are built from names by this syntaxP ::= �i2I�i:Pi j P j Q j !P j (�x)PHere I is a �nite indexing set; in the case I = ; we write the sum as 0. In asummand �:P the pre�x � represents an atomic action, the �rst action performedby �:P . There are two basic forms of pre�x:x(y) , which binds y in the pre�xed process, means\input some name { call it y { along the link named x",xy , which does not bind y, means \output the name yalong the link named x".In each case we call x the subject and y the object of the action; the subject ispositive for input, negative for output.A name refers to a link or a channel. It can sometimes be thought of as naminga process at \the other end" of a channel; there is a polarity of names, and x {the co-name of x { is used for output, while x itself is used for input. But thereare two reasons why \naming a process" is not a good elementary notion. The�rst is that a process may be referred to by many names; it may satisfy di�erentdemands, along di�erent channels, for many clients. The second is that a namemay access many processes; I may request a resource or a service { e.g. I may cryfor help { from any agent able to supply it. In fact, if we had names for processeswe would have to have (a di�erent kind of) names for channels too! This wouldoppose the parsimony which is essential in a basic model.Of course in human communities it is often convenient, and a convention, thata certain name is borne uniquely by a certain member (as the name \Robin" isborne uniquely by me in my family, but not in a larger community). So, in processcommunities it will sometimes be a convention that a name x is borne uniquelyby a certain process, in the sense that only this member will use the name x asa (positive) subject; then those addressing the process will use the co-name xas a (negative) subject. But conventions are not maintained automatically; theyrequire discipline! In fact, that a name is uniquely borne is an invariant which isuseful to prove about certain process communities, such as distributed operatingsystems.We dwelt at length on this point about naming, because it illustrates so wellthe point made in the introduction about ontological commitment. We now returnto describing the calculus. 5

The summation form ��i:Pi represents a process able to take part in one { butonly one { of several alternatives for communication. The choice is not made by theprocess; it can never commit to one alternative until it occurs, and this occurrenceprecludes the other alternatives. Processes in this form are called normal processes(because as we see later, all processes can be converted to this normal form). Fornormal processes M;N; : : : 2 N we shall use the following syntax:N ::= �:P j 0 j M+NIn this version of �-calculus we con�ne summation to normal processes, thoughpreviously we have allowed the form P+Q for arbitrary processes. One reason isthat the reduction rules in Section 2.4 are simpler with this constraint; another isthat forms such as (P jQ)+R have very little signi�cance. However, everything inthis paper can be adjusted to allow for the more general use of summation.What do the last three forms of process mean? P jQ { \P par Q" { simplymeans that P and Q are concurrently active, so they can act independently { butcan also communicate. !P { \bang P" { means P jP j : : : ; as many copies as youwish. There is no risk of in�nite concurrent activity; our reduction rules will seeto that. The operator \!" is called replication. A common instance of replicationis !�:P { a resource which can only be replicated when a requester communicatesvia �.Finally, (�x)P { \new x in P" { restricts the use of the name x to P . Anotherway of describing it is that it declares a new unique name x, distinct from allexternal names, for use in P . The behaviour of (�x) is subtle. In fact, the characterof the �-calculus derives from the interplay between its two binding operators: x(y)which binds y somewhat as �y binds y in the �-calculus, and (�x) which has noexact correlate in other calculi (but is the restriction operator of CCS promotedto a more in
uential rôle).Before looking at examples, we introduce a convenient abbreviation. Processeslike x(y):0 and xy:0 are so common that we prefer to omit the trailing \:0" andwrite just x(y) and xy.2.2 Some simple examplesConsider the process xy:0 j x(u):uv:0 j xz:0which we now abbreviate to xy j x(u):uv j xzCall it P j Q j R. One of two communications (but not both) can occur along thechannel x; P can send y to Q, or R can send z to Q. The two alternatives for theresult are 0 j yv j xz or xy j zv j 0Note that R has become yv or zv; thus, the communication has determined whichchannel R can next use for output, y or z.6

Now consider a variant (�x)(xy j x(u):uv) j xzIn this case, the (free) x in R is quite di�erent from the (bound) x in P and Q,so only one communication can happen, yielding0 j yv j xz(The restriction (�x) has vanished; it has no work left to do, since the x which itrestricted has been used up by the communication.)Third, consider xy j !x(u):uv j xzThis di�ers from the �rst case, because Q is now replicated. So !Q can �rst spino� one copy to communicate with P , and the system becomes0 j yv j !Q j xzThen !Q can spin o� another copy to communicate with R, and the system be-comes 0 j yv j !Q j zv j 0We have just seen several examples of reduction, i.e. the transformation of a pro-cess corresponding to a single communication. We now present the �-calculusreduction rules; the analogy with reduction in the �-calculus is striking but so arethe di�erences.2.3 Structural CongruenceWe have already said that there are two binding operators; the input pre�x x(y)(which binds y) and the restriction (�x). So we can de�ne the free names fn(P),and the bound names bn(P) of a process P in the usual way. We extend these topre�xes; note bn(x(y)) = fyg ; fn(x(y)) = fxgbn(xy) = ; ; fn(xy) = fx; ygAlso, the names of a process P are n(P) def= bn(P) [fn(P).Now, to make our reduction system simple, we wish to identify several expres-sions. A typical case is that we want + and j to be commutative and associative.We therefore de�ne structural congruence � to be the smallest congruence relationover P such that the following laws hold:1. Agents (processes) are identi�ed if they only di�er by a change of boundnames 7

2. (N=�; +; 0) is a symmetric monoid3. (P=�; j; 0) is a symmetric monoid4. !P � P j !P5. (�x)0 � 0; (�x)(�y)P � (�y)(�x)P6. If x =2 fn(P) then (�x)(P jQ) � P j (�x)QExercise Use 3, 5 and 6 to show that (�x)P � P when x =2 fn(P).Note that laws 1, 4 and 6 allow any restriction not inside a normal process to bepulled into outermost position; for example, if P � (�y)xy thenx(z):yz j !P � x(z):yz j (�y)xy j !P� x(z):yz j (�y0)xy0 j !P� (�y0)(x(z):yz j xy0) j !PThis transformation has brought about the juxtaposition x(z): � � � j xy0: � � �, whichis reducible by the rules which follow below. The use of structural laws such as theabove, to bring communicands into juxtaposition, was suggested by the ChemicalAbstract Machine of Berry and Boudol [5].2.4 Reduction rulesThis section is devoted to de�ning the reduction relation ! over processes; P ! P 0means that P can be transformed into P 0 by a single computational step. Nowevery computation step consists of the interaction between two normal terms. Soour �rst reduction rule is communication:comm : (� � �+ x(y):P) j (� � �+ xz:Q)! Pfz=yg j QThere are two ingredients here. The �rst is how communication occurs betweentwo atomic normal processes �:P which are complementary (i.e. whose subjectsare complementary). The second is the discard of alternatives; either instanceof \� � �" can be 0 of course, but if not then the communication pre-empts otherpossible communications.comm is the only axiom for ! ; otherwise we only have inference rules, andthey are three in number. The �rst two say that reduction can occur under-neath composition and restriction, while the third simply says that structurallycongruent terms have the same reductions.par : P ! P 0P j Q! P 0 j Q res : P ! P 0(�x)P ! (�x)P 0struct : Q � P P ! P 0 P 0 � Q0Q! Q08

Exercise In Section 2.2 and the previous exercise several reductions were giveninformally. Check that they have all been inferred from the four rules for !.It is important to see what the rules do not allow. First, they do not allowreductions underneath pre�x, or sum; for example we haveu(v):(x(y) j xz) 6!Thus pre�xing imposes an order upon reduction. This constraint is not necessary.However, the calculus changes non-trivially if we relax it, and we shall not considerthe possibility further in this paper.Second, the rules do not allow reduction beneath replication. In some sense,this does not reduce the computational power; for if we have P ! P 0 then, insteadof inferring !P ! !P 0, which is equivalent to allowing unboundedly many coexistingcopies of P to reduce, we can always infer!P � P j P j � � � j P| {z }n times j !P !n P 0 j P 0 j � � � j P 0 j !Pthus (in n reductions) reducing as many copies of P as we require { and for �nitework we can only require �nitely many !Third, the rules tell us nothing about potential communication of a process Pwith other processes. From the reduction behaviour alone of P and Q separately,we cannot infer the whole reduction behaviour of, say, P jQ. (This is just as inthe �-calculus, where �xx and �xxx have the same reduction behaviour { theyhave no reductions { but applying them to the same term �yy gives us two terms(�xx)(�yy) and (�xxx)(�yy) with di�erent reduction behaviour.)If we wish to identify every potential communication of a process, so as to dis-tinguish say xy from xz, then we would indeed become involved with the familiarlabelled transition systems used in process algebra (and introduced later in thispaper). We do not want to do this yet. But for technical reasons we want to do alittle of it. To be precise, we only want to distinguish processes which can performan external communication at some location � { a name or co-name { from thosewhich cannot. So we give a few simple de�nitions.First, we say that Q occurs unguarded in P if it occurs in P but not under apre�x. Thus, for example, Q is unguarded in QjR and in (�x)Q but not in x(y):Q.Then we say P is observable at � { and write P #� { if some �:Q occurs unguardedin P , where � is the subject of � and is unrestricted. Thus x(y) #x and (�z)xz #x,but (�x)xz 6#x; also (�x)(x(y) j xz) 6#x even though it has a reduction.It turns out that we get an interesting congruence over P in terms of ! and#�. This will be set out in Chapter 4; �rst we digress in Chapter 3 to look atseveral applications. 9

3 ApplicationsIn this section, we give some simple illustrations of the �-calculus. We begin byintroducing a few convenient derived forms and abbreviations.3.1 Some derived formsIn applications, we often want forms which are less primitive than the basic con-structions of monadic �-calculus. One of the �rst things we �nd useful is multipleinputs and outputs along the same channel. A natural abbreviation could be towrite e.g. x(yz) for x(y):x(z) and xyz for xy:xz. But this would give a misleadingimpression about the indivisibility of the pair of actions in each case. Considerx(yz) j xy1z1 j xy2z2for example; the intention is that y; z should get bound to either y1; z1 or y2; z2.But if we adopt the above abbreviations there is a third possibility, which is amix-up; y; z can get bound to y1; y2. To avoid this mix-up, a way is needed ofmaking a single commitment to any multiple communication, and this can be doneusing private (i.e. restricted) names. So we introduce abbreviationsx(y1 � � �yn) for x(w):w(y1): � � � :w(yn)xy1 � � �yn for (�w)xw:wy1: � � � :wyn{ writing just x for x() when n = 0. You can check that the mix-up in the exampleis no longer possible. The abbreviation has introduced an extra communication,even in the case n = 1, but this will cause no problem.Next, we often wish to de�ne parametric processes recursively. For example,we may like to de�ne A and B, of arity 1 and 2 respectively, byA(x) def= x(yz):B(y; z) ; B(y; z) def= yz:A(z)If we wish to allow such parametric process de�nitions of the general formK(~x) def=PK , we add P ::= � � � j K(~y)to the syntax of processes, where K ranges over process identi�ers; for each de�n-ition we also add a new structural congruence law K(~y) � PKf~y=~xg to those givenin Section 2.3.However, it is easier to develop a theory if \de�nition-making" does not have tobe taken as primitive. In fact, provided the number of such recursive de�nitions is�nite, we can encode them by replication; then the introduction of new constants,with de�nitions, is just a matter of convenience. We shall content ourselves with10

showing how to encode a single recursive de�nition with a single parameter. Thus,suppose we have A(x) def= Pwhere we assume that fn(P) � fxg, and that P may contain occurrences of A(perhaps with di�erent parameters). The idea is, �rst, to replace every recursivecall A(y) within P by a little process ay which excites a new copy of P . (Here ais a new name.) Let us denote by bP the result of doing these replacements in P .Then the replication !a(x): bPcorresponds to the parametric process A(x). We now have to take care of theoutermost calls of A. So let A(z) occur in some system S; then we replace it by(�a)(az j !a(x): bP)Note that this places a separate copy of the replication at each call A(z) in S.Alternatively one can make do with a single copy; transform S to bS by replacingeach call A(z) just by az, and then replace S by(�a)(bS j !a(x): bP)Of course, these translations do not behave identically with the original, becausethey do one more reduction for each call of A; but they are weakly congruent tothe original (in the sense of [19]), which is all we would require in applications.From now on, in applications we shall freely use parametric recursive de�ni-tions; but, knowing that translation is possible, in our theoretical development weshall ignore them and stick to replication.3.2 Mobile telephonesHere is a \
owgraph" of our �rst application:'& $%base1ZZZZZZgive1ZZZZZZalert1������talk1������switch1 '& $%idlebase2������ give2������alert2���� @@XXXBBk kcar(talk1; switch1)'& $%centre111

This is a simpli�ed version of a system used by Orava and Parrow [23] to illustrate�-calculus. A centre is in permanent contact with two base stations, each ina di�erent part of the country. A car with a mobile telephone moves about thecountry; it should always be in contact with a base. If it gets rather far fromits current base contact, then (in a way which we do not model) a hand-overprocedure is initiated, and as a result the car relinquishes contact with one baseand assumes contact with another.The
owgraph shows the system in the state where the car is in contact withbase1; it may be writtensystem1 def= (� talki; switchi; givei; alerti : i = 1; 2)�car(talk1; switch1) j base1 j idlebase2 j centre1�What about the components?A car is parametric upon a talk channel and a switch channel. On talk it cantalk repeatedly; but at any time along switch it may receive two new channelswhich it must then start to use:car(talk; switch) def= talk :car(talk; switch)+ switch(talk0switch0) :car(talk0; switch0)A base can talk repeatedly with the car; but at any time it can receive alongits give channel two new channels which it should communicate to the car, andthen become idle itself; we de�nebase(t; s; g; a) def= t :base(t; s; g; a)+ g(t0s0) : st0s0 : idlebase(t; s; g; a)An idlebase, on the other hand, may be told on its alert channel to becomeactive: idlebase(t; s; g; a) def= a :base(t; s; g; a)We de�ne the abbreviationbasei def= base(talki; switchi; givei; alerti) (i = 1; 2)and a similar abbreviation idlebasei. Thus, for example,basei � talki :basei + givei(t0s0) : switchit0s0 : idlebaseiidlebasei � alerti :baseiFinally the centre, which initially knows that the car is in contact with base1,can decide (according to information which we do not model) to transmit thechannels talk2, switch2 to the car via base1, and alert base2 of this fact. So wede�ne centre1 def= give1talk2switch2 : alert2 :centre2centre2 def= give2talk1switch1 : alert1 :centre112

Exercise Check carefully that indeed system1 reduces in three steps to system2,which is precisely system1 with the subscripts 1 and 2 interchanged. The reduc-tion is (using ~c for the set of eight restricted channels):system1 � (�~c)�car(talk1; switch1) j base1 j idlebase2 j centre1�! (�~c)�car(talk1; switch1) j switch1talk2switch2 : idlebase1j idlebase2 j alert2 :centre2�! (�~c)�car(talk2; switch2) j idlebase1j idlebase2 j alert2 :centre2�! (�~c)�car(talk2; switch2) j idlebase1 j base2 j centre2�� system2Of course this example is highly simpli�ed. Consider one possible re�nement.There is no reason why the number of available (talk, switch) channel-pairs isequal to the number of bases; nor that each base always uses the same channel-pair. The reader may like to experiment with having an arbitrary (�xed) numberof bases; at each handover the new base could be chosen at random, and achannel-pair picked from a store of available channel pairs maintained (say) in aqueue.3.3 Numerals and arithmeticFor our second application we show that arithmetic can be done in �-calculusin much the same way as it can in �-calculus. Church represented the naturalnumber n in �-calculus by �f�xfn(x){ i.e. the function which iterates its function argument n times.As a �rst attempt in �-calculus, we may choose to represent n by the parametricprocess n(x) def= x: � � � :x| {z }n timeswhich we abbreviate to (x:)n. But this process cannot be tested for zero, and thearithmetic operators (coded also as processes) will need a test for zero.So we give n two parameters, one representing successor, and the other rep-resenting zero: n(xz) def= (x:)n z13

Now, how do we do arithmetic? We shall represent binary summation, for ex-ample, by a parametric process Add(x1z1; x2z2; yw) ; the channels xi; zi representthe arguments and y;w represent the result. (The commas separating the sixparameters of Add are just for clarity.) The correctness of this representation isexpressed by the equation(�x1z1x2z2)�n1(x1z1) j n2(x2z2) j Add(x1z1; x2z2; yw)� � n1+n2(yw)where � means weak congruence. To achieve this, we �rst de�ne \copy" and\successor" by mutual recursion:Copy(xz; yw) def= x:Succ(xz; yw) + z:wSucc(xz; yw) def= y:Copy(xz; yw)Now, though we have not developed the machinery here, one can easily prove byinduction on n that(�xz)�n(xz) j Copy(xz; yw)� � n(yw)(�xz)�n(xz) j Succ(xz; yw)� � n+1(yw)Consider the induction step for example; we have(�xz)�n+1(xz) j Copy(xz; yw)� ! (�xz)�n(xz) j y:Copy(xz; yw)�� y:(�xz)�n(xz) j Copy(xz; yw)�� y:n(yw) (by induction)� n+1(yw)(One step in this argument needs justi�cation: the extraction of y into leadingposition. Also, to complete the argument, one has to show why the reduction! inthe �rst line can be replaced by �. These are routine consequences of the theoryof weak congruence.)Finally, having Copy available, we can de�ne addition byAdd(x1z1; x2z2; yw) def= x1:y:Add(x1z1; x2z2; yw) + z1:Copy(x2z2; yw)Exercise Show that(�x1z1x2z2)�n(x1z1) j 0(x1z2) j Add(x1z1x2z2; yw)� � n(yw)by induction, using a similar argument to the inductive proof given earlier. Thenprove the general correctness property for Add.The reader will have noticed that numerals are ephemeral; n(xz) can only beaccessed once. This is why copying is needed. In fact, if you try to de�ne mul-tiplication you will �nd that you �rst need something like Double(xz; y1w1; y2w2)which produces two copies of n(xz) from one. It is natural to expect replicationto come to our aid. In fact, replication cannot be used directly with the numeralsas de�ned above, but it can be used with the more general representation of datastructures which we treat later. 14

3.4 Invariants in process communitiesWe now look at two desirable behavioural properties of mobile systems, and we areable to �nd syntactic conditions which ensure that these properties are enjoyed.Unique names In Section 2.1 we mentioned the unique naming discipline. Nowwe formalize it in a simple way, and give conditions under which a process com-munity obeys the discipline.Consider a systemS � (�~v)(P1 j � � � j Pm j !N1 j � � � j !Nn)We call each Pi and !Nj a component of S. We say that S is friendly (there is noobvious word to use!) if it satis�es the following conditions:1. fn(S) = ;, i.e. S is a closed system.2. No Pi or Nj contains a composition or a replication.Many systems are friendly; for example, the mobile telephone system in Section 3.2is friendly when its recursion is coded into replication. The �rst thing to noticeabout them is that they stay friendly, that is, friendliness is preserved by reduction.This is easy to prove. Note, however, reduction can change m; a friendly systemworks by spinning o� copies of its replications as often as required { and eachreplica becomes a Pi.Now, let us say that any process P bears the name x if x occurs free in P asa positive subject. This is clearly a necessary condition for P to receive input im-mediately at x. (It is also su�cient, if the occurrence is unguarded.) For example,!Nj bears x if Nj � x(y):P ; then sending a message along x, i.e. \addressing thecomponent by name", will spin o� a copy of the resource !Nj. One thing we wouldensure for a friendly system is that, at any one time, at most one component {whether Pi or !Nj { can receive a message along x. Now consider the conditionon S that3. At most one component bears x.This clearly means that any output along x (from another component) has adetermined destination. But condition (3) is not preserved by reduction! Forone thing, a replication may well produce two components bearing x. Also, acomponent Pi may acquire the bearing of x; for example ifP1 j P2 � v(z):z(w) j vx:x(w)! x(w) j x(w)then clearly condition (3) is destroyed by the reduction. This gives us a hint aboutwhat extra conditions will ensure preservation of (3):15

4. If Nj � ��jk:Qjk, then no Qjk bears x.5. For any v and z, if the expression v(z):P occurs anywhere in S then P doesnot bear z.Note that (4) still allows Nj itself to bear x. Condition (5) says, in e�ect, thatthe bearing of a name can never be acquired.It is not quite obvious, but can be proved, that conditions (1{5) together areinvariant under reduction.Now let us say that a name x is uniquely borne in S if, whenever S !� S0, thenS 0 satis�es condition (3). Intuitively, this means that output along x will alwayshave a determined destination. We have been able to give syntactic conditions,(1{5), which ensure that a given x is uniquely borne in a given system S.Unique handles There is a dual property to unique naming, which it is usefulto ensure in an operating system { even in a sequential one, and a fortiori in aconcurrent one! This is the property that, at any one time, only one componentcan handle a given resource. To make things precise, let us say that P can handlethe name x if x occurs free in P as a negative subject. This is clearly a necessarycondition for P to be able to send output immediately along x { and also su�cient,if the occurrence is unguarded.Now we look at friendly systems S, as before, and we consider the conditionon S that6. At most one component can handle x.This means, for example, that a sequence of messages along x from two di�erentcomponents will not be accidentally interleaved; this is clearly desirable if x givesaccess to a printing device. Again, condition (6) is not preserved by reduction;this can be argued just as for condition (3) above.But now we wish to proceed di�erently from unique naming. In that case, ourconditions ensured that the bearing of a name could never be acquired. Here, bycontrast, we want to allow the handling capability to be transmitted freely amongcomponents, subject to (6). Therefore we do not wish to impose a conditionon inputs, like (5). Instead, we want to impose a condition on outputs; when acomponent transmits a handle, it should neither use it again nor transmit it again.We naturally arrive at the following two conditions:7. No Nj can handle x.8. For any v and z, if vz:P occurs anywhere in S then P does not contain zfree.Condition (8) says, in e�ect, that when an agent transmits a name then it must\forget" it. Note that z may be bound in S; that is, it may stand for a name {perhaps x itself { to be received at some time from another component.16

Now, let us say that a name x is uniquely handled in S if, whenever S !� S0,then S 0 satis�es condition (6). Then the syntactic conditions (1, 2, 6{8) ensurethat a given x is uniquely handled in a given system S.Exercise We have concentrated on simplicity in giving our conditions. Try to�nd slightly weaker conditions which ensure that a name is uniquely borne, oruniquely handled, in a friendly system.The two examples we have just looked at suggest that the syntax of �-calculus isrich enough to allow many interesting structural invariants to be de�ned, whichin turn ensure useful behavioural properties. In both cases, the reader may havefelt that the blanket condition on all inputs in (5), or all outputs in (8), wasunnecessarily strong. But it can be weakened very satisfactorily to apply onlyto names of a particular sort , when we have introduced our sorting discipline inChapter 6.4 The Polyadic �-calculus4.1 AbstractionsIn Section 3.1 we saw that a polyadic input x(y1 � � �yn), or polyadic output xy1 � � �yn,can be encoded quite straightforwardly in the monadic �-calculus. So at �rst sightwe may regard polyadicity as a mere abbreviational device, with no theoreticalinterest. But for more than one reason, we shall gain by taking polyadic commu-nication as primitive.The �rst reason is to do with abstractions. (The second reason is to dowith sorts, and will be deferred to Chapter 6.) An abstraction takes the form(�x1 � � �xn)P or equivalently (�x1) � � � (�xn)P ; it is just an abstraction of namesfrom a process. It is quite di�erent from abstraction in �-calculus, because abound name will only ever be instantiated to a name { never to a compound term.Abstractions are useful in various ways. First, they are the essence of para-metric de�nition; instead of writing K(x1; : : : ; xn) def= P , we naturally writeK def= (�x1 � � �xn)PA second use for abstraction is in de�ning combinators. Consider for example aprocess with two free names x and y, representing links:����Px yNow if we want to chain together several such processes, with the y link of onejoining the x link of its right neighbour, in CCS we would use the renaming17

operator [z=x] to de�ne the chaining combinator, _, thus:P _ Q def= (�z)(P [z=y] j Q[z=x])����Px z ����Q yNow abstraction in the �-calculus renders the renaming operator super
uous. Forin fact we de�ne the chaining combinator _ not over processes but over (binary)abstractions: F _ G def= (�xy)(�z)(Fxz j Gzy)Indeed, suppose F � (�xy)P , and G � (�xy)Q; then we obtain easily(F _ G)xy � (�z)(Pfz=yg j Qfz=xg)where of course substitution fz=xg is a meta-syntactic operator.Thus we see that abstraction is a handy de�nitional device in �-calculus ; butwe should remain clear that it has none of the computational signi�cance which itpossesses in the �-calculus because this signi�cance depends upon instantiating abound variable to an arbitrary term { and this is grammatically incorrect in the�-calculus! 1Now since abstraction earns a place on its own merit, it would be ridiculousto preserve its distinction from the other binding operator for which instantiationis allowed, namely input pre�x. For we can simply declare the abbreviationx(y):P def= x:(�y)Pthus factoring input pre�x into two parts; one part is abstraction, and the otherwe shall call location. In the above, x is the location of (�y)P ; it indicates wherethe name (for which y stands) should be received. But then, of course, it is quiteunreasonable not to allow polyadic input:x(y1 � � �yn):P def= x:(�y1 � � �yn)P1A notational question arises. Adopting the form (�x) for abstraction, we risk the miscon-ception that the �-calculus is an extension of the �-calculus. This is a serious misconception,because one of the main motivations for the �-calculus has been the belief that, in order to unifyfunctional and concurrent computation, we needed basic constructions more primitive than thosein �-calculus! In some ways the lightweight form (x), used by Martin-L�of and others, would havebeen more attractive. But with two forms of binding, abstraction and restriction, it seems clearerto mark each with a symbol. Also, in the higher-order processes in Chapter 7 abstraction ofprocess-variables is used; this is closer to �-calculus, so the symbol � is more appropriate, andit is smoother to have one notation for abstraction in all versions of �-calculus.18

More than this; when we study sorts, we shall �nd that it is not only reasonable,but actually necessary, to allow polyadic input if we wish to respect a very naturalsort discipline.We shall say that the abstraction (�y1 � � �yn)P has arity n. In particular, aprocess P is an abstraction with zero arity.4.2 ConcretionsWe would like to treat output dually to input. This immediately suggests that weconsider the output pre�x form as a derived form:xy1 � � �yn:P def= x:bdy1 � � �yncePthus factoring it into two parts: the co-location x, and the concretion bdy1 � � �ynceP .We consider this equivalent to bdy1ce � � � bdynceP , and its arity is n; we call each yia datum-name of the concretion. Any process P is a concretion with zero arity.Some abbreviations are convenient; we write x:bd~yce for x:bd~yce0, x:P for x:bdceP andx for x:bdce.(It may be useful to consider concretions C;D; : : : as having arity � 0; thenan agent { either an abstraction or a concretion { may have any integer as arity.)Now consider the simple form of reductionx(~y):P j x~z:Q ! Pf~z=~yg j Qwhere ~y; ~z are name vectors of equal length (the components of ~y being distinct).This is the natural generalization of comm to the polyadic case (ignoring + forthe moment). It now takes the formx:F j x:C ! F rCwhere F and C are an abstraction and concretion of equal arity, and the pseudo-application � r� is de�ned in an obvious way (see Section 4.3 below).So far, concretions may appear to be no more than notational elegance. Infact, they have some conceptual signi�cance. We can illustrate this by consideringtruth-values and case-analysis: this will also illustrate the importance of admittingthe use of restriction (�x) upon concretions.In �-calculus, the terms �x�yx and �x�yy are often taken to represent the twotruth-values. Now that we have abstraction, we can analogously de�neTrue def= (�t)(�f)tFalse def= (�t)(�f)fin �-calculus. We would often have a truth-value located at a boolean locationb, e.g. the process b:True. This located truth-value may be compared with thenatural number n(xz) in Section 3.3, which was located by a pair of names; but19

with the introduction of abstractions we now have a purer representation, forunlocated data, and indeed we shall extend this to general data structures later.Now consider the following concretion, representing case-analysis:Cases(P;Q) def= bdtfce(t:P+f:Q)where t and f do not occur in P and Q. It represents the o�er to select P or Q,by using the name t or f . In fact, using pseudo-application, we �ndTrue rCases(P;Q) � t j (t:P+f:Q)! Pand similarlyFalse rCases(P;Q)! Q. This is still slightly imperfect, for we shouldprefer Cases(P;Q) to have no more free names than P and Q. We therefore preferto represent case-analysis by a restricted concretion:Cases(P;Q) def= (�tf)bdtfce(t:P+f:Q)Moreover this ensures that t and f are distinct names. Now, we have insteadTrue rCases(P;Q) � (�tf)(t j (t:P+f:Q))� PNote that the right-hand side not only reduces to P , but is weakly congruent (�)to P , because of the restriction.To emphasize the role played by concretions, consider the familiar conditionalform if b then P else QIn �-calculus we take it to mean \inspect the truth-value located at b and performP or Q according to the value". Now, we can see the conditional form as just theco-located case-analysis b:Cases(P;Q)and indeed we haveb:True j b:Cases(P;Q) ! True rCases(P;Q) � PAn intriguing point is that abstraction and (restricted) concretion o�er twosubtly di�erent forms of closure for an arbitrary process P . For if the free namesof P are ~x, then we may call (�~x)P the abstract closure, and (�~x)bd~xceP the concreteclosure. They di�er in this sense: the concrete closure ensures that P 's free namesare all distinct from each other, and distinct from all names in the environment; onthe other hand, the abstract closure o�ers arbitrary instantiation of these names.Finally, why should we not allow mixed abstraction and concretion, such as(�x)bdyceP or bdyce(�x)P ? To allow this does indeed enrich the calculus in a valuableway. But we leave it to a future paper; the present version of the calculus is anatural whole, and rich enough for our present purposes.20

4.3 Syntax, structural congruence and reductionIn moving from the monadic to the polyadic calculus, the main di�erences are thatpre�xes x(~y) and x~y are no longer primitive, but become abbreviations, and thatwe add the forms for abstractions F;G; : : : and concretions C;D; : : : , calling themcollectively agents A;B; : : : . We use �; �; : : : to range over names and co-names,and ~x; ~y; : : : to stand for vectors of names, with length j~xj; j~yj; : : : .Normal processes : N ::= �:A j 0 j M +NProcesses : P ::= N j P j Q j !P j (�x)PAbstractions : F ::= P j (�x)F j (�x)FConcretions : C ::= P j bdxceC j (�x)CAgents : A ::= F j COver this syntax, we again wish to represent those identi�cations which have nocomputational signi�cance by structural congruence, �. For processes, the laws(1{6) for structural congruence are just those given in Section 2.3, understandingthat change of bound names is allowed in any agent whatever. Then we add thefollowing rules:7. (�y)(�x)F � (�x)(�y)F (x 6= y)8. (�y)bdxceC � bdxce(�y)C (x 6= y)9. (�x)(�y)A � (�y)(�x)A ; (�x)(�x)A � (�x)ASome interesting consequences of these laws are not immediately obvious. We can,in fact, use laws 1 and 7 to convert every abstraction F to a standard formF � (�~x)Pby pushing restrictions inwards. We cannot do the same for concretions, becausethe datum-name y is free in bdyceC. But we can use laws 1 and 8 to pull all restric-tions of data-names outwards, and push all other restrictions inwards, yielding astandard form C � (�~y)bd~xceP (~y � ~x)The arity of the abstraction F or concretion C is just the length of the vector ~xin its standard form.We now de�ne pseudo-application F rC of an abstraction to a concretion, con-�ning ourselves to the case in which F and C have equal arity. Let F � (�~x)Pand C � (�~z)bd~yceQ where ~x \ ~z = ; and j~xj = j~yj. ThenF rC def= (�~z)(Pf~y=~xg j Q)With the help of this, our reduction system is de�ned almost exactly as in themonadic case: 21

De�nition The reduction relation! over processes is the least relation satisfy-ing the following rules:comm : (� � �+ x:F) j (� � �+ x:C)! F rCpar : P ! P 0P j Q! P 0 j Q res : P ! P 0(�x)P ! (�x)P 0struct : Q � P P ! P 0 P 0 � Q0Q! Q0Note that reduction is de�ned only over processes, not over arbitrary agents.Therefore in comm, F and C must have equal arity.The reader may have noticed that we have not de�ned the application Fy ofan abstraction to a name. Formally there was no need to do so, because if we nowde�ne ((�x)F)y def= Ffy=xgthen indeed every instance of application can be eliminated, using structural con-gruence. However, we shall freely use application. In fact if we wish to introduce(recursive) de�nitions of abstraction constants, such asK def= FKwhere FK is an abstraction which may contain K and other abstraction constants,this application is an indispensable abbreviative device. (Recall from Section 3.1that we use parametric recursive de�nition freely in examples, but ignore them intheoretical development, since they can be eliminated in favour of replication, upto weak congruence.)5 Equivalence, Algebra and Logic5.1 Reduction equivalence and congruenceLet us �rst recall from Section 2.4 the notions of unguardness and observability,and de�ne them in the new context of polyadic �-calculus.De�nition An agent B occurs unguarded in A if it has some occurrence in Awhich is not under a pre�x �. A process P is observable at �, written P #�, ifsome �:A occurs unguarded in P with � unrestricted.Now we de�ne a natural notion of bisimilarity which takes observability into ac-count. 22

De�nition (Strong) reduction equivalence, :�r, is the largest equivalence relation� over processes such that P �Q implies1. If P ! P 0, then Q! Q0 for some Q0 such that P 0�Q0.2. For each �, if P #� then Q#�.This notion, also called barbed bisimulation, is studied by Milner and Sangiorgi[21]. Essentially a barbed equivalence is the bisimilarity induced by a reductionrelation, together with an extra condition { observability. 2Reduction equivalence is a natural idea, but is not preserved by process con-structions. For example, x :�r y (recall that x abbreviates x:0), but x jx 6 :�r y jx.Since the left side has a reduction. Therefore we de�neDe�nition (Strong) reduction congruence, �r, is the largest congruence in-cluded in reduction equivalence.It is standard that P �r Q i�, for all process contexts C[]; C[P] :�r C[Q]. Aprocess context C[] is a process term with a single hole, such that placing aprocess in the hole yields a well-formed process.The reason for imposing the observability condition in reduction equivalence isthat reduction congruence then coincides exactly with the strong early congruencerelation of [19]. This is proved in [21]. Here is an example, due to G�erard Boudol,showing the need for the observability condition. For this purpose we use � , thesilent (unobservable) action which we shall introduce formally in the next section.De�ne J def= �:J + a:K ; K def= �:KNote that neither J nor K ever reaches a state in which a reduction is impossible.Now J 6 :�r K, since J #a but K 6#a. However, J and K would be congruent if :�rwere weakened by omission of the observability condition.Later we shall sometimes allude to weak reduction congruence, which is de�nedessentially by replacing ! by its transitive re
exive closure in the above:De�nition Weak reduction equivalence, :�r, is the largest equivalence relation� over processes such that P �Q implies1. If P ! P 0, then Q!� Q0 for some Q0 such that P 0�Q0.2. For each �, if P #� then Q!�#�.2It can be shown that the condition can be relaxed to simply P #) Q#, where P # meansP#� for some �, without changing the induced congruence. But this has not been shown for theweak version. 23

Then weak reduction congruence, �r, is the largest congruence included in weakreduction equivalence.It turns out that this congruence indeed coincides with the weak analogue of strongearly congruence.These coincidences show that a satisfactory semantics for the �-calculus canbe de�ned via reduction and observability. But in one sense the de�nitions aboveare unsatisfactory; quanti�cation over all contexts is far from a direct way ofcharacterizing a congruence, and gives little insight. We now proceed to repeatthe treatment of bisimilarity in [19], though in a form more appropriate to ournew presentation of the �-calculus. The bisimilarity equivalences are very close totheir induced congruences.5.2 Commitment and congruenceAn atomic normal process �:A can be regarded as an action � and a continuationA. (It is perhaps more accurate to think of � as the location of an action; wehave already used this term.) We shall call �:A a commitment ; it is a processcommitted to act at �.The idea we want to formalize is that, semantically, a process is in generalnothing more than a set of commitments. (This means that every process issemantically congruent with a normal process ��i:Ai; we shall justify the term\set" by showing that M +M is congruent with M .) The way we shall formalizeit is by de�ning the relation P � �:Abetween processes and commitments, pronounced \P can commit to �:A". Ofcourse, this is exactly what the labelled transition system of [19] achieved, withdi�erent notation. For example, instead of P � x:bdyceP 0, the labelled transitionP xy! P 0 was used in [19]; similarly, instead of P � x:(�y)P 0, the transition P x(y)! P 0was used. Joachim Parrow indeed suggested using P x! (�y)P 0 for the latter, andthe introduction of concretions in e�ect allows P x! bdyceP 0 for the former. Thisusage is not just notational convenience; it yields a more satisfactory presentationof �-calculus dynamics, as we see below.Two preliminaries are necessary. First, we introduce the unobservable action� , and henceforth we allow �; �; : : : to stand for � as well as for a name or co-name. 3 Second, we wish to extend composition j to operate on abstractions andconcretions (though not to compose an abstraction with a concretion). So, inline with the de�nition of pseudo-application in Section 3.3, let F � (�~x)P andG � (�~y)Q where the names ~x do not occur in G, nor ~y in F . ThenF j G def= (�~x~y)(P j Q)3In fact, the pre�x � is de�nable by �:P def= (�x)(x:P j x) where x 62 fn(P).24

Similarly, let C � (�~x)bd~uceP and D � (�~y)bd~vceQ where the names ~x do not occur inD, nor ~y in C. Then C j D def= (�~x~y)bd~u~vce(P j Q)Clearly, j is associative up to �, but not commutative in general (though it is soupon processes). Note also that, because a process is both an abstraction and aconcretion, AjP is de�ned for any agent A and process P ; moreover, AjP � P jA.We are now ready to de�ne our operational semantics in terms of commitment.De�nition The commitment relation � between processes and commitments isthe smallest relation satisfying the following rules:sum : � � �+ �:A � �:Acomm : P � x:F Q � x:CP j Q � �:(F rC)par : P � �:AP j Q � �:(A j Q) res : P � �:A(�x)P � �:(�x)A (� 62 fx; xg)struct : Q � P P � �:A A � BQ � �:BThe reader who is familiar with [19] will notice how much simpler our operationalsemantics has become. Of course, some of the complexity is concealed in the lawsof structural congruence; but those laws are so to speak digestible without concernfor the dynamics of action, and therefore deserve to be factored apart from thedynamics. The treatment of restriction derives further bene�t from the admissionof restricted concretions; the restriction rule res here covers the two rules res andopen of [19]. Moreover, the only remaining side condition, which is upon res, isthe essence of restriction; all other side-conditions in the rules of [19] were nothingmore than administrative { avoiding clashes of free and bound names.We shall proceed to de�ne the most natural form of bisimilarity in terms ofcommitment. First, a desirable property of relations will make the job simpler:De�nition Let � be an arbitrary binary relation over agents. We say � isrespectable if it includes structural congruence (�), and moreover it is respectedby decomposition of concretions and application of abstractions, i.e.1. If C �D then they have standard forms C � (�~x)bd~yceP and D � (�~x)bd~yceQsuch that P �Q.2. If F �G then their arities are equal, n say, and for any ~y of length n,F~y�G~y. 25

Note that this is dual to a congruence condition; the relation is to be preservedby decomposition rather than composition.Now we de�ne bisimulation and bisimilarity for all agents, not only processes,as follows:De�nition A relation � over agents is a (strong) simulation if it is respectable,and also if P �Q and P � �:A, then Q � �:B for some B such that A�B.� is a (strong) bisimulation if both � and its converse are simulations.(Strong) bisimilarity, :�, is the largest bisimulation.We may also describe :� as the largest respectable equivalence closed under com-mitment. It is the union of all bisimulations; hence to prove P :� Q one need onlyexhibit a bisimulation containing the pair (P;Q). It is the strong late bisimilarityof [19].As pointed out there, it is not quite a congruence relation. In fact, it is notpreserved by substitution (of names for names); for examplex j y :� x:y + y:x but x j x 6 :� x:x+ x:xHowever :� is preserved by every agent construction except abstraction, (�x). Itis therefore much closer to its induced congruence than is the case for reductionequivalence. To close the gap we need only impose closure under substitutions. Let� range over substitutions, i.e. replacements f~y=~xg of names for (distinct) names.Then:De�nition P and Q are strongly congruent , written P � Q, if P� :� Q� for allsubstitutions �.Proposition � is a congruence.Proof Along the lines in [19].5.3 AxiomatizationNow following [19], but making minor adjustments to allow for abstractions andconcretions, we can present an axiomatization of :� which is complete for �niteagents, i.e. those without replication.De�nition The theory SGE (Strong Ground Equivalence) is the smallest set ofequations A = B over agents satisfying the following (we write SGE ` A = B tomean that A=B 2 SGE):1. If A1 � A2 then SGE ` A1 = A2 26

2. SGE is closed under every agent construction except abstraction. For ex-ample, if SGE `M1 =M2 then SGE `M1 +N =M2 +N .3. If SGE ` Fy = Gy for every4 y then SGE ` F = G.4. SGE `M +M =M5. SGE ` (�x)��i:Ai = ��i:(�x)Ai, if no �i is either x or x.6. (Expansion)SGE `M j N = �f�:(A j N) : �:A a summand of Mg+ �f�:(B jM) : �:B a summand of Ng+ �f�:(F rC) : x:F a summand of M (resp. N)and x:C a summand of N (resp. M)g\Ground equivalence" is a synonym for \bisimilarity"; the term \ground" indicatesthat the theory is not closed under substitution for names.Theorem (Soundness of SGE) If SGE ` A = B then A :� B.Proof Along the lines in [19].Theorem (Completeness of SGE) If A and B are �nite and A :� B, thenSGE ` A = B.Proof Along the lines in [19].The essence of SGE is that two agents are equivalent i� they have equivalentcommitments. The proof of completeness depends upon showing that for any P ,there is a normal process (i.e. a sum of commitments)M such that SGE ` P =M .This characterization allows us to show exactly why strong congruence, �, isin fact stronger than strong reduction congruence, �r. For there are processes Pand Q which do not have equivalent commitments, and yet P �r Q. In particular,let M � x(u):P1 + x(u):P2 ; N �M + x(u):P3where P1; P2 and P3 are distinct under �, but P3 behaves like P1 if u takes aparticular value y, and otherwise behaves like P2.5 Then it turns out that indeed4This rule is in e�ect �nitary, since the hypothesis need only be proved for every name y freein F or G, and one new y.5For example P1 � u:y + y:u; P2 � u:y + y:u+ �; P3 � u j y:27

M �r N , whileM 6� N since N has a commitment distinct from any commitmentof M . (We omit full details of this argument.)So how must we modify strong bisimilarity :�, so that its induced congruencecoincides exactly with �r? The answer is that we must relax the condition onpositive commitments only.De�nition Strong early bisimilarity, :�e, is the largest respectable equivalence� such that if P �Q then1. If P � x:F and F has arity n, then for each ~y of length n there exists Gsuch that Q � x:G and F~y�G~y.2. If P � x:C, then Q � x:D for some D such that C �D.Here the condition on positive commitments is weaker, because it has 8~y 9G where:� e�ectively demands the stronger condition 9G8~y. Thus, it is clear that :� � :�e.Again, :�e is nearly a congruence, being closed under every construction exceptabstraction. So we de�neDe�nition P and Q are strongly early-congruent , written P �e Q, if P� :�e Q�for all substitutions �:Proposition �e is a congruence.And �nally, we have recovered reduction congruence:Theorem (Sangiorgi) Strong early congruence coincides with reduction con-gruence; i.e. �e = �r.We shall not consider equational laws for :�e. Joachim Parrow has given an ax-iomatization; it involves an extra process construction which we are not using inthis paper.5.4 Properties of replicationInteresting process systems usually involve in�nite behaviour, hence replication.The equational theory SGE cannot hope to prove all true equations about in�nitesystems { in fact, they are not recursively enumerable. All process algebras [4,10, 13, 16] use techniques beyond purely algebraic reasoning. Here we shall usethe technique of bisimulation due to Park [24]. We wish to prove three simple butimportant properties of replication, which will be needed later.Proposition !P j !P � !P . 28

Proof It can be shown in a routine way that there is a bisimulation � whoseprocess part (i.e. � \P�P) consists of all pairs(�~y)(!P j !P j Q) ; (�~y)(!P j Q)for any ~y, P and Q. By taking ~y to be empty and Q � 0, this ensures !P j !P :� !Pfor any P . But further, the above set of pairs is closed under substitutions, so thecongruence � also holds.This property shows that the duplication of a replicable resource has no behavi-oural e�ect, which is not surprising.We shall now look at a more subtle property, concerning what may be calledprivate resources. If a system S contains the subsystem(�x)(P j !x:F)then we may call !x:F a private resource of P , because only P can acquire areplica of it. (Of course F may contain other free names, so the replica { onceactive { may interact with the rest of S.)Now suppose P � P1jP2 in the above. Then P1 and P2 share the privateresource. Does it make any di�erence if we give each of P1 and P2 its own privateresource? That is, is it true that(�x)(P1 j P2 j !x:F) � (�x)(P1 j !x:F) j (�x)(P2 j !x:F) ?A moment's thought reveals that this cannot hold in general. Take P1 � x:bdyce,P2 � x:(�z)0. Then not only can P1 access the resource; it can also { on the left-hand side but not on the right-hand side { interact with P2. Thus the bisimilarityfails. But this is only because P2 bears the name x, in the terms of Section 3.4. Solet us impose the condition that none of P1, P2 or F bears the name x. On thisoccasion, we shall use a slightly di�erent extra condition from Section 3.4 to makethis property invariant under action. The extra condition amounts to saying thatx is only used in P1, P2 or F to access the resource; that is, it must not occur freeas an object . Then indeed our desired result follows. To be precise:Proposition Assume that every free occurrence of x in P1, P2 and F is as anegative subject. Then(�x)(P1 j P2 j !x:F) � (�x)(P1 j !x:F) j (�x)(P2 j !x:F)Proof It can be shown that there is a bisimulation � such that � \ P�Pconsists of all pairs(�~y)(�x)(P1 j P2 j !x:F) ; (�~y)�(�x)(P1 j !x:F) j (�x)(P2 j !x:F)�29

for any P1, P2, x, F and ~y such that x occurs free in P1, P2 and F only as anegative subject. It can be checked that this relation is closed under substitutions,and hence the result follows by taking ~y to be empty.As we shall see in Section 6.3, persistent data structures are an instance of rep-licable resources. So this proposition can be interpreted as saying that it makesno di�erence whether two processes share a data structure, or each has its ownprivate copy.A good way to think of the previous proposition is \a private resource can bedistributed over composition". This immediately suggests the question \ ... andover what else?" Obviously we hope it can be distributed over replication, andthis is indeed true.Proposition Assume that every free occurrence of x in P and F is as a negativesubject. Then (�x)(!P j !x:F) � !(�x)(P j !x:F)Proof We proceed much as before, but using the notion of bisimulation up to :�from [16]. This just means that we can use known bisimilarities when exhibitingnew bisimulations. Using the previous proposition, it can be shown that there isa bisimulation up to :� containing the process-pairs(�~y)(�x)(!P j !x:F j Q) ; (�~y)� !(�x)(P j !x:F) j (�x)(Q j !x:F)�for any P , Q, x, F and ~y such that x occurs free in P , Q and F only as a negativesubject. Then we take ~y empty and Q � 0 to get the result.A striking consequence of these two propositions, as we shall see in Section 6.4,is that �-conversion is equationally valid in the interpretation of �-calculus in �-calculus. Essentially, this is because we model application of an abstraction �xMto a term N in �-calculus by providing M with access { via x { to the resourceN . It therefore appears that these properties of replication have quite wide applic-ability, since computational phenomena which appear signi�cantly di�erent canbe seen as accessing resources.5.5 Logical characterizationIn [20], a modal logic was de�ned to give an alternative characterization of thebisimilarity relations in �-calculus, following a familiar line in process algebra. Itwas �rst done for CCS by Hennessy and Milner [11]; see also Milner [16], Chapter10. No inference system was de�ned for this logic; the aim was just to de�ne thesatisfaction relation P j= ' between processes P and logical formulae ', in sucha way that P and Q are bisimilar i� they satisfy exactly the same formulae.30

The main attention in [20] was upon the modalities, and in particular themodality for input: hx(y)i'Because \late" and \early" strong bisimilarity di�er just in their requirement uponinput transitions P x(y)! P 0, the input modality must have two versions:6P j= hx(y)il' i� 9P 0 8z : P x(y)! P 0 and P 0fz=yg j= 'fz=ygP j= hx(y)ie' i� 8z 9P 0 : P x(y)! P 0 and P 0fz=yg j= 'fz=ygwhere we have highlighted the only di�erence { quanti�er inversion.Now, we are representing P x(y)! P 0 as the commitment P � x:(�y)P 0; thisfactoring of input pre�x into two parts, location and abstraction, allows us tosimplify our logic by a similar factoring. This holds for output modalities too. Infact, we �nd that the logical constructions for abstraction and concretion are, asone might hope, dependent product and dependent sum; also, the action modalitybecomes suitably primitive.Our logic L, which will characterize late bisimilarity, is the set of formulae 'given by the syntax7' ::= > j ' ^ j :' j x = y j h�i' j (�x)' j (�x)'(where � ranges, as before, over names, co-names and �). The last two, sumand product, bind x; they will only be satis�ed respectively by concretions andabstractions with non-zero arity. On the other hand h�i' will only be satis�ed byprocesses.De�nition The satisfaction relation j= between agents and formulae is given byinduction on formula size, as follows:A j= > alwaysA j= ' ^ i� A j= ' and A j= A j= :' i� not A j= 'A j= x = y i� x and y are the same nameA j= h�i' i� for some A0; A � �:A0 and A0 j= 'A j= (�x)' i� A � bdyceC or (�y)bdyceC, with y =2 fn((�x)')in the latter case, and C j= 'fy=xgA j= (�x)' i� for all y, Ay j= 'fy=xgNote that hxi(�y)' is exactly hx(y)il; we shall consider hx(y)ie later. There isanother intriguing point; one might have expected to need restriction (�y) in the6To be exact, in these de�nition we require y 62 fn(P):7In [20], the form [x = y]' (meaning \if x = y then '") was used in place of the atomicformula x = y. But the two are interde�nable in the presence of : and ^.31

logic, to cope with the output modality { more exactly the bound data-name in aconcretion. But the side condition on y in the (�x)' case takes care of restrictionsin agents. To clarify this, consider P � x:bdyce and Q � x:(�y)bdyce; they are notbisimilar, so { in view of the characterization theorem below { there must be aformula which distinguishes them. In fact, take ' � hxi(�z)(z = y); then indeedP j= ', Q 6j= '.Now the proof of the following can be done along the same lines as in [20]:Theorem (logical characterisation of :�) A :� B i� for every ' 2 L,A j= ' i� B j= 'Our next task is to see how to weaken L, in order to achieve a logic which char-acterizes the weaker (i.e. larger) equivalence :�r, reduction equivalence or earlybisimilarity. The key is that, for P :�r Q, we do not demand that every ab-straction F , to which P can commit at x, must be matched by Q with such anabstraction G; the equivalence only depends on matching every process instanceof such an abstraction, i.e. every pair ~y; P 0 such that for some F , P � x:F andF~y�P 0. Thus the logic must be weakened so that P j= ' cannot depend directlyon properties of each F for which P � x:F . This entails removing from L thepositive action modalities hxi, and replacing them with { in e�ect { the polyadicversion of hx(y)ie', namely:P j= hx(~y)ie' i� for all ~z; P � (�~y)P 0 for some P 0such that P 0f~z=~yg j= 'f~z=~ygLet us call this weakened logic Lr. Then indeed,Theorem (logical characterization of :�r) A :�r B i�, for every ' 2 Lr,A j= ' i� B j= '6 Sorts, Data structures and FunctionsIf we look at the examples which we have used hitherto to illustrate the �-calculus,we see that each one obeys some discipline in its use of names. By this, wemean something very simple indeed: just the length and nature of the vector ofnames which a given name may carry in a communication. For the numerals ofSection 3.3, all names carry the empty vector. For the mobile phones of Section 3.2it is more interesting; alert, give and talk all carry the empty vector, but switchcarries a pair. This is not just any pair; it is a (talk; switch) pair. For the truth-values of Section 4.2, t and f carry nothing, but a boolean location like b carriesa (t; f) pair. 32

It may be that any realistic application of the �-calculus is disciplined in anatural way, but the discipline can be di�erent in each case. A loose analogy isthat when the (untyped) �-calculus is used in an application, rather than studied inits own right, there is almost always a type discipline of some kind; e.g. the simpletype hierarchy, or the second-order �-calculus, or a system of value-dependenttypes.The kind of name-use discipline which �rst comes to mind, for the �-calculus,would employ something like the arities of Martin-L�of; an arity in this sense is justa properly nested sequence of parentheses. A name which carries nothing wouldhave arity (); a name which carries a vector of n names with arities a1; : : : ; an wouldhave arity (a1 � � �an). But this is too simple! Such a hierarchy of arities does notwork, because a name must sometimes carry another name \of the same kind" {i.e. of the same arity { as itself; witness switch in the mobile phone example. Wenow propose a discipline of sorts which is as simple as possible, while admittingthis kind of circularity (which amounts to admitting a kind of self-reference).6.1 Sorts and sortingsAssume now a basic collection S of subject sorts and for each S 2 S an in�nityof names with subject sort S (write x : S). Then the object sorts Ob(S) are justsequences over S; that is Ob(S) = S�We shall write (S1 � � �Sn), possibly interspersed with commas, for an object sort;the empty object sort is (). We let s; t; : : : range over object sorts. We use sbt forthe concatenation of object sorts; e.g. (S1)b(S2S3) = (S1S2S3).Now we de�ne a sorting over S to be a non-empty partial functionob : S * Ob(S)If ob is �nite, we typically write it as fS1 7! ob(S1); : : : ; Sn 7! ob(Sn) g. A sortingjust describes, for any name x : S, the sort of name-vector which it can carry.Thus, for the numerals of Section 3.3 we have the uninteresting sortingf succ 7! (); zero 7! () gwith x; y : succ and z;w : zero. For the phones of Section 3.2, it is a little moreinteresting:falert 7! (); give 7! (); talk 7! (); switch 7! (talk; switch) gwith alerti : alert, : : : , and switchi : switch. Note that there is little reason todistinguish alert from give; but we should distinguish talk, since the distinctiongives more precise information about the kind of messages which can be carriedon a switch channel.Given a sorting ob, we must give the conditions under which an agent is saidto respect ob. To this end, we show how to ascribe an object sort to each suitableagent, equal in length to its numeric arity; thus a process always has sort ().33

De�nition An agent A respects a sorting ob, or is well-sorted for ob, if we caninfer A : s for some object sort s from the following formation rules:x : S F : ob(S)x:F : () x : S C : ob(S)x:C : () P : ()�:P : ()0 : () M : () N : ()M +N : ()P : () Q : ()P j Q : () P : ()!P : () A : s(�x)A : sx : S F : s(�x)F : (S)bs x : S C : sbdxceC : (S)bsExercise First prove { or assume { that if x and y have equal sort and A : s,then Afy=xg : s. Next prove { or assume { that if A : s and A � B, then B : s.(Assume that in a change of bound names, a name is replaced only by another ofequal sort.)Now recall the de�nition of application and composition of abstractions, inSections 4.3 and 5.2. Prove that the following formation rules are admissible:F : (S)bs y : SFy : s F : s G : tF j G : sbt(A rule is admissible if every proof using the rule can be transformed into onewhich does not use it.)Some simple sortings correspond to familiar calculi. The simplest sorting of all,fname 7! () g { one subject sort carrying nothing { is just CCS; the next simplest,fname 7! (name) g, is just the monadic �-calculus.Of course there are more re�ned sortings for the monadic �-calculus; they willclassify the use of names, but clearly ob(S) will always be a singleton sequence forany S. Recall the encoding of multiple inputs and outputs into monadic �-calculusgiven in Section 3.1; for example, in the notation used there,x(y1 � � �yn):P 7! x(w):w(y1): � � � :w(yn):PThis translation destroys well-sortedness! For if y1; : : : ; yn have di�erent sortsthen, whatever subject sort we choose for w, the right-hand side will be ill-sorted.This shows that polyadicity admits a sort discipline which was not possible in themonadic �-calculus. This is the second reason for introducing polyadicity, whichwe promised at the beginning of Chapter 4.34

6.2 Data structuresThe representation of natural numbers in Section 3.3 was rather rough and ready,and does not generalize to arbitrary data structures (by which we mean data freelyconstructed using �nitely many constructors). Let us illustrate a general methodby de�ning single-level list structures, over elements represented by a subject sortval. The sorting will bef list 7! (cons;nil); cons 7! (val; list); nil 7! () gand the constructors are Cons, Nil given byCons(v; l) def= (�cn)c:bdvlceNil def= (�cn)nwhere Cons : (val; list)b(cons;nil) and Nil : (cons;nil). We can think ofsuch simple abstractions { Cons(v; l) and Nil { as nodes of a data structure; inparticular Nil is a leaf node. They are unlocated ; but such a node { in this case alist node { can be located by a name of sort list. Thus a Cons value located at l0is l0:Cons(v; l), and corresponds to the familiar picture of a list cell:Cons-l0 6v -lOne can think of this located node as follows: at its \address" l0 you send it a\form" with two sections, one of which must be �lled in. If the value is a Cons it�lls in the �rst section, c, with its components and signs it; if it is a Nil it signsthe second section, n (there is nothing more to �ll in).Now let us consider lists of truth-values, setting val equal to bool. Whatis the complete list containing (say) the two truth-values True and False? As arestricted composition of list nodes and truth-values, it isL(l0) def= (�b1l1)�l0:Cons(b1; l1) j b1:True j (1)(�b2l2)(l1:Cons(b2; l2) j b2:False j l2:Nil)�Note that l0 is the only free name. Here is the diagram, using � to mark privatelocations: Cons-l0 6�b1 -�l1True Cons6�b2 -�l2False Nil35

Note that this diagram, besides being the standard way of picturing linked lists,is actually a
ow graph drawn in the usual manner for process algebra.Exercise Revisit the numerals of Section 3.3. Now give a representation ofnatural numbers analogous to the above for lists, in terms of the sortingfnat 7! (succ; zero); succ 7! (nat); zero 7! () gAt this point, the general pattern for data structures should be clear; also, clearlythe truth-values of Section 4.2 follow the pattern. By analogy with the case-analysis on truth-values, de�ned earlier, we can give a concretion for case-analysison lists: Listcases(F;Q) def= (�cn)bdcnce(c:F+n:Q)Now to do a little programming on lists, let us �rst de�ne a sugared form of theco-located case-analysis l0:Listcases((� vl)P;Q), in the style of Standard ML, asfollows: case l0 of : Cons(v; l)) P: Nil) Q(Note that the constructions between \:" and) are patterns, binding the variablesv and l in P .) Now de�ne the Append function to concatenate lists, in the sameway that we de�ned addition on numerals:Copy(l;m) def= case l of: Cons(v; l0)) (�m0)�m:Cons(v;m0) j Copy(l0;m0)�: Nil) m:NilAppend(k; l;m) def= case k of: Cons(v; k0)) (�m0)�m:Cons(v;m0) j Append(k0; l;m0)�: Nil) Copy(l;m)Then, if K(k) and L(l) are expressions like (1) representing two lists, and ifM(m)is an expression representing the concatenation of these two lists, we shall indeedhave (�lm)(K(k) j L(l) j Append(k; l;m)) �M(m)The expression (1) exhibits how a list is built from located values and locatednodes. Notice that L(l0) is a located list; its location is l0, the location of its rootnode. Interestingly enough there is no subexpression of (1) which correspondseither to the unlocated list containing True and False, or to the unlocated sublist36

containing just False. But we can transform L(l0) to a strongly bisimilar formwhich does contain such subexpressions. In factL(l0) � l0:L0where L0, L1 and L2 are the unlocated list-values given byL0 def= (�cn)c:(�bl)bdblce(b:True j l:L1) (2)L1 def= (�cn)c:(�bl)bdblce(b:False j l:L2)L2 def= Nil def= (�cn)nNotice that these are closed expressions, just as True and False are closed. Sothey mean the same wherever they are used; it is therefore reasonable to refer tosuch terms as values.6.3 Persistent valuesIn the above treatment, the data structures are purely ephemeral; accessing themdestroys them. But by use of replication they can be made persistent. Revertingto L(l0) at (1), the natural thing to do is to replicate the nodes and the componentvalues, givingM0(l0) def= (�b1l1)� !l0:Cons(b1; l1) j !b1:True jM1(l1)� (3)M1(l1) def= (�b2l2)� !l1:Cons(b2; l2) j !b2:False jM2(l2)�M2(l2) def= !l2:NilNow let us see what happens when we interrogate M0(l0). Let C be the case-analysis concretion at (2); we getC jM0(l0) !2 (�b1l1)�Pfb1l1=vlg j !l0:Cons(b1; l1) j !b1:True jM1(l1)� (4)Thus P is now seeing the following structure, along the links l0, l1 and b1. Noteparticularly the sharing of pointers:Cons-l0 6 -��l1 �b1 True Cons6�b2 -�l2False NilWe get a di�erent story if we apply replication, not to the nodes as we have justdone, but to the sublists. This is best done on the form (2); we consider the37

located list !l0:N0 whereN0 def= (�cn)c:(�bl)bdblce(!b:True j !l:N1)N1 def= (�cn)c:(�bl)bdblce(!b:False j !l:N2)N2 def= Nil def= (�cn)nLet us interrogate !l0:N0 as we did M0(l0). This time we getC j !N0(l0) !2 (�b1l1)(Pfb1l1=vlg j !l0:N0 j !b1:True j !l1:N1)Comparing with (4) we see that there is no sharing of the pointers b1 and l1{ because these names are not free in !l0:N0. So P is now seeing a di�erentstructure along the links l0, l1 and b1:Cons-l0 6�b1 -�l1True Cons6�b2 -�l2False Nil6 -��l1 �b1 True Cons6�b2 -�l2False NilThe diagram makes it clear that, each time the complete list is traversed from l0,a new copy of each component is encountered.We have taken some care to present this phenomenon, because it is the kindof distinction which can give rise to subtle errors in programs { even sequentialprograms. Of course the distinction is most likely to cause serious behaviouraldi�erence when the list elements are not just values like True and False, but areinstead storage cells whose stored values may be updated. The distinction is thatin the second case the storage cell is copied by the replication, while in the �rstcase only the list nodes are copied. This is reminiscent of the distinction betweenPascal's call-by-value and call-by-name parameter-passing mechanisms, in thecase of scalar variables or arrays.Burstall [7] addressed the problem of giving rigorous proofs about list-processingand tree-processing, including the use of assignment. There are some interestingfeatures in common; he used names as locations of list segments, and carried outsuccinct program proofs using terms like x !̀ y, standing for a list segment start-ing at location x, �nishing at y, containing the element-sequence `, and with allinternal locations distinct. It would be intriguing to encode these entities and theproofs into �-calculus using restriction.38

We have seen that the �-calculus can model re�ned phenomena of data storage.For lack of space we shall not deal with updatable storage cells, though theyare quite straightforward { following the method of de�ning registers in CCS, inChapter 8 of [16].Exercise We have seen that M0(l0) and !l0:N0 behave di�erently, and indeedthey are not bisimilar. Try to �nd a logical formula, in the logic of Section 5.5,which is satis�ed by one but not the other. (Hint : test for sharing.)6.4 FunctionsIn [17] it was shown how to translate the lazy �-calculus into �-calculus; thetranslation was discussed fully there, and we shall not go into great detail here.But it is worth repeating the translation in the polyadic setting { particularlybecause we can present the sorting which it respects.Recall that the terms M;N; : : : of �-calculus are given byM ::= x j �xM j MNwhere x ranges over variables. Just for this section we shall underline � in the�-calculus to distinguish �-calculus abstractions from �-calculus abstractions.There are many reduction relations! for the �-calculus, many of which satisfythe rule � : (�xM)N !MfN=xgThe relations di�er as to which contexts admit reduction. The simplest, in somesense, is that which admits reduction only at the extreme left end of a term. Thisis known as lazy reduction, and its model theory has recently been investigated indetail by Abramsky [1]. Thus the lazy reduction relation ! over �-calculus termsis the smallest which satis�es �, together with the ruleappl : M !M 0MN !M 0NFor our translation, we introduce a subject sort var in the �-calculus; wetake the names of sort var to be exactly the variables x; y; : : : of the �-calculus.Intuitively, such a name is the location of the argument to a function. We alsointroduce a subject sort args, with names u; v; : : : ; these names locate argument-sequences. Thus a termM of �-calculus is translated into a �-calculus abstraction(�u)P ; if M reduces to a �-abstraction �xN , then correspondingly P will { afterreduction { receive its argument sequence at u, and will name the �rst of thesearguments x. In fact, an argument sequence is represented by a pair; the name xof the �rst argument, and the name v of the ensuing sequence. This is re
ectedin the sorting fvar 7! (args); args 7! (var;args) g39

and the translation [[�]], given below, is easily seen to respect this sorting:[[�xM]] def= (�u)u:(�x)[[M]][[x]] def= (�u)x:bduce[[MN]] def= (�u)(�v)�[[M]]v j (�x)(v:bdxuce j !x:[[N]])�Note, in the third equation, how M and its argument-list are \co-located" at v.Note also the replication of N ; this is because M may use its (�rst) argumentrepeatedly.It is important to note that this translation is speci�c to the lazy reductionstrategy. The theorems in [17] show that lazy reduction is closely simulated by �-calculus reduction of the translated terms. In [17] a di�erent translation was alsogiven for Plotkin's call-by-value �-calculus; it is striking that the latter translationrespects a di�erent sorting.We shall now outline the proof that �-reduction is equationally valid in our�-calculus interpretation of lazy �-calculus. First, we prove that if M is any termof �-calculus, then to provide [[M]] with a replicable resource consisting of [[N]]located at x is behaviourally equivalent to [[MfN=xg]]:Lemma If x is not free in N then(�x)([[M]] j !x:[[N]]) � [[MfN=xg]]Proof First, we note that the set of equations of this form can be shown to beclosed under substitutions; therefore it will be enough to prove the result with :�in place of �. Note also that the equation is between abstractions; applying bothsides to arbitrary u :args, we need to show (�x)([[M]]u j !x:[[N]]) :� [[MfN=xg]]u.The proof proceeds by induction on the structure of M . We shall not givedetails, but only draw attention to one important step. In the case M � M1M2,the last two propositions about replication in Section 5.4 justify the creation oftwo copies of the private resource !x:[[N]], for use by M1 and M2 separately. Allthe other cases only involve a little reduction, and use of the inductive hypothesis.We can now sketch a proof of the main result.Theorem [[(�xM)N]] � [[MfN=xg]].Proof We assume w.l.o.g. that x does not occur free in N . This is justi�edbecause our translation respects change of bound variables in �-calculus. Next,for the same reasons as before, we need only demonstrate weak bisimilarity :� toconclude the theorem. 40

Now by doing a single reduction we show that, for any u :args,[[(�xM)N]]u :� �:(�x)([[M]]u j !x:[[N]]):� (�x)([[M]]u j !x:[[N]])and it only remains to apply the lemma.7 Higher-order �-calculusRecall from Section 6.1 that pure CCS [16], in which communication carries nodata, corresponds to the sorting fname 7! ()g in �-calculus. Without
ow ofdata in communication, one cannot { except in a very indirect way { representmobility among processes; that is, the dynamic change of neighbourhood. The�-calculus allows names to
ow in communication, and this achieves mobility ina rather concrete way. Another approach is to allow processes themselves to
owin communication; a process P may send to process Q a message which consistsof a third process R. Various authors have studied process
ow. In particular,Thomsen [27] has developed an algebra of higher-order processes, CHOCS, basedupon a natural extension of the operational semantics of CCS.In what follows we shall describe the �rst component of a concretion as adatum. Thus e�ectively CHOCS allows processes as data, while �-calculus allowsonly names.7.1 Processes as dataPart of the motivation of the �-calculus was that one should get all the e�ect ofprocesses as data, simply by using names as data. Crudely speaking: Instead ofsending you a process R, I send you a name which gives you access to R. As asimple example consider P jQ, whereP def= x:bdRceP 0 and Q def= x:(�X)(X j Q0)This is not �-calculus as we have de�ned it, because the concretion has a processR as datum, and X in the abstraction is not a name but a variable over processes.But in a higher-order calculus which allows this, we would expect the reductionP j Q ! P 0 j R j Q0Now, we can get the same e�ect by locating R at a new name z, and sending z:bP j bQ � x:(�z)bdzce(z:R j P 0) j x:(�z)(z j Q0)! (�z)�(z:R j P 0) j (z j Q0)�! P 0 j R j Q041

There are two issues about such an encoding. First, can it be made to work ingeneral? (The above is a special case, and ignores some complications.) Second {and independently { what pleasant properties may be found for the higher-ordercalculus which are not enjoyed by the �rst-order �-calculus? One such propertymay be clarity of expression; even though the encoding may work, the encodedexpressions may be obscure.Here we address the �rst question: Does the encoding work? Thomsen �rstexamined this. He gave a translation { which we shall write (b) { from PlainCHOCS into �-calculus; then he exhibited a detailed correspondence between theoperational behaviours of P and bP . Ideally, one would like to prove the doubleimplication P ' Q () bP ' bQfor some natural congruence ' . Thomsen came close to proving this for � ,observation congruence; but unfortunately the double implication appears to failin both directions, for subtle reasons. However, stimulated by Thomsen's work,Sangiorgi has been able to show that the implication does indeed hold in bothdirections, when ' is taken as weak reduction congruence �r ; this is a naturalanalogue of the strong reduction congruence �r introduced in Section 5.1. Fur-thermore the results holds not only for processes as data, but also { under a sortingconstraint { when data may be process abstractions of arbitrary high order.7.2 Syntax and commitment rulesTo extend our syntax to higher order we must �rst decide what data to allow.We could admit just processes as data, as in CHOCS. But we prefer to go furtherand admit parametrized processes, i.e. abstractions, as data. This adds consider-able expressive power even if we only admit processes with name parameters; forexample, we can de�ne the chaining combinator of Section 4.1 as an abstraction,which we could not do if only processes were admitted as data, as follows:_ def= (�XY)(�xy)(�z)(Xxz j Y zy)Here, X and Y stand for processes abstracted upon two names; one can see howthis parameterization does {among other things { the job of the renaming operatorof CCS.But we can go further and allow the parameters themselves to be abstractions;thus we may proceed directly from �rst-order �-calculus (with just names as data)to !-order �-calculus.The change needed from the syntax of Section 4.3 is slight. Here we give theunsorted version; we treat higher-order sorts in Section 7.3 below. First we mustintroduce abstraction variables X;Y; : : : ; then the syntax of abstractions becomesAbstractions : F ::= P j (�x)F j (�X)F j (�x)Fj X j Fx j FG42

Notice that application is now introduced explicitly; this is needed because ab-straction variables are now present (see the example above). Next, concretionsmay now contain abstractions as data, so they becomeConcretions : C ::= P j bdxceC j bdF ceC j (�x)CFinally, processes remain unchanged except that we must admit an abstractionexpression (e.g. Xxz in the example) as a process, so we add a clause:Processes : P ::= � � � j FThe structural congruence rules of Section 4.3 only need obvious extensions;for example we add the following to rule 8 (for concretions):(�y)bdF ceC � bdF ce(�y)C (y =2 fn(F))We leave it to the reader to supply the obvious rule for the application FG ofone abstraction to another, and the obvious extension to the de�nition of pseudo-application, F rC.Then no change at all is needed to the reduction rules (Section 4.3), nor tothe de�nitions of observability #� (Section 2.4), reduction equivalence :�r andcongruence �r(Section 5.1), and commitment � (Section 5.2). (A minor point: Itis natural to con�ne these de�nitions to agents with no free abstraction variables.)By stark constrast, a subtle and di�cult question arises in trying to generalizethe de�nition of strong bisimilarity :� in Section 5.2. We shall content ourselveshere with an intuitive description of the problem. The issue is to do with concre-tions, and it is this: If P � z:C , then for P :� Q to hold we must require thatQ � z:D for some concretion D which corresponds suitably to C. What shouldthe correspondence be? In Section 5.2 we demanded that they have identical data;that is, C � (�~x)bd~yceP 0 and D � (�~x)bd~yceQ0 where P 0 :� Q0 . This is appropriatefor data names, but not for data abstractions. In the latter case, it is more ap-propriate to ask that they be bisimilar , not identical. Indeed, Thomsen took thiscourse.This is a plausible requirement, but one can argue that it is too strong. Con-sider for example C � (�x)bdx:0ceP 0 and D � (�x)bd0ceQ0 . Certainly x:0 6 :� 0 ; butbecause x:0 is in some sense \bound to P 0" by the restriction (�x) , its x-actioncannot be observed directly. Moreover if we now take P 0 � Q0 � 0 then thereis no way in which this action can ever be complemented, and in this case it isreasonable to take C and D to be equivalent. (This example is due to EugenioMoggi.)Indeed, Sangiorgi [26] has de�ned a natural version of strong bisimilarity whichachieves this equivalence, and whose induced congruence coincides with strong re-duction congruence, �r . Furthermore, by suitably ignoring � actions, the corres-ponding weak bisimilarity induces a congruence which coincides with weak reduc-tion congruence, �r , as de�ned in Section 5.1. This alternative characterizationof the reduction congruences adds to their importance.43

Furthermore, it is up to weak reduction congruence that, in a precise sense,higher-order processes can be encoded as �rst-order processes. In Section 7.4 wegive this encoding, though not the proof by Sangiorgi [26] of its faithfulness (whichis not immediate). But �rst we must extend sorting to higher order.7.3 Higher-order sortsIn our extension to the syntax we ignored sorts, and the reader may have feltuncomfortable { since there is so much more nonsense which can be written inthe unsorted �-calculus at higher order! For example, the application ((�x)x:0)0is clearly nonsense, and our sorting discipline will forbid it.Recalling the �rst-order sorting discipline of Section 6.1, we only have to makea simple change. There, an object sort was a sequence of subject sorts, e.g.(S1S2S3). Now, we must allow object sorts themselves to occur in such sequences,e.g. we must allow (S1(S2S1)S3) and even (S1(S2(S1S2))S3). In other words eachelement of such a sequence may be a data sort , where the data sorts Dat(S) areDat(S) def= S [Ob(S)(a disjoint union), and we de�ne by mutual recursionOb(S) def= Dat(S)�We assume that there are in�nitely many abstraction variables X;Y; : : : at eachobject sort s, and we write X : s.With these new arrangements, the formation rules of Section 6.1 remain un-changed, and we merely extend them with the following for abstractions:X : s F : t(�X)F : (s)btF : (S)bt x : SFx : t F : (s)bt G : sFG : tand for concretions F : s C : tbdF ceC : (s)btAs before, we say that A is well-sorted for ob if we can infer A : s for some sfrom the formation rules.Now we have introduced a rich sort discipline, comparable with the simpletype-hierarchy in �-calculus. It is important to see what is missing, and why.First, note that we might naturally have used an arrow in our sort representation,giving the following syntax for higher-order object sorts:s ::= () j S ! s j s! s44

With this syntax it is clear that every object sort has the formd1 ! � � � ! dn ! ()(n � 0) where each di is a data sort. Indeed, what we have done is to choose towrite this in the form (d1 � � �dn)Thus, in our formation rules, we have written (s)bt for the more familiar s! t.We can now see what is missing; there are no sorts of the formd1 ! � � � ! dn ! SWhy not? What would be an inhabitant of this sort? It would take n dataparameters and return a name. But in the presence of such calculation of names,the simple but subtle behaviour of our restriction operator (�x), which is a scopingdevice for names, appears irretrievably lost! For the essence of syntactic scopingis that \scoped" or \bound" occurrences of a name are syntactically manifest, andthis would no longer be the case with name-calculation. This point is, of course,equally relevant to the �rst-order �-calculus, and it deserves further examination.Given a sorting, and knowing the sort of each name and variable, it is easyenough to determine a unique sort { if it exists { for any agent. More intriguingis the following problem: given an agent A, but no sorting or sort information,�nd a sorting ob and an assignment of sorts to names and variables so that A iswell-sorted for ob. This is a non-trivial problem even at �rst order. It remains tobe seen whether there is in some sense a most general sorting, and how to �nd it.Exercise Find a higher-order sorting ob, and sorts for the names x; y; z and thevariable X, such that P respects ob, whereP � x:bd(�z)z:0ce jx:(�X)(Xy)7.4 Translating higher order to �rst orderHaving generalized the notion of sort, we can now see the relationship betweenthe higher-order �-calculus and Thomsen's (Plain) CHOCS. It is rather clear.Thomsen allows processes, but not names, to be transmitted in communication;that is, every communicated datum in CHOCS has sort (). This corresponds tothe sorting fname 7! (()) gand we are therefore justi�ed in regarding CHOCS as second-order . Notice that�rst-order �-calculus is not subsumed by CHOCS. But now let us de�ne the orderof a sorting as, simply, the maximum depth of nesting of parentheses in its objectsorts. With this de�nition, second order properly includes both the (�rst-order)45

�-calculus and CHOCS, since it admits both their sortings; it also admits othersortings, containing object sorts such as (S(S)).In this section we introduce, by illustration rather than formally, a translationfrom processes of arbitrarily high order to �rst order, e�ectively extending thatof Thomsen for Plain CHOCS. The translation, which we denote by (bb), operatesboth upon sorts and upon processes. There is a close operational correspondencebetween P and bbP ; we shall only illustrate this correspondence rather than expressit as a theorem. But �rst, we wish to state the theorem which expresses thefaithfulness of the translation in terms of preserving congruence. The theoremwas proved by Sangiorgi [26]. It holds for processes which respect a �nite higher-order sorting, and which contain no free abstraction variables. We shall call theseproper processes.Theorem (Sangiorgi) Let ob be a �nite sorting of arbitrarily high order, andlet P;Q be proper processes which respect ob. Then1. bbP respects ccob.2. If ob is �rst-order then ccob = ob and bbP � P .3. P �r Q i� bbP �r bbQ.The translation (bb) is constructed iteratively. Each iteration applies a translation(b) both to the sorting and to the process, and the proof of the theorem proceedsby showing that the asserted results hold exactly for (b), except that cob and bP arenot necessarily �rst-order. But if ob is �nite then cob is lower than ob, accordingto a clearly well-founded ordering; this completes the proof.We illustrate (b). Supposeob = fS1 7! (); S2 7! (S3); S3 7! (S1(S2(S1))((S3))) gSince ob is not �rst-order, we �rst choose a highest-order data sort in a highest-order object sort in the range of ob. Let us choose (S2(S1)). Then we \depress"(S2(S1)), replacing it by a new subject sort S4, and adding S4 7! (S2(S1)) to thesorting. Thus we obtaincob = fS1 7! (); S2 7! (S3); S3 7! (S1S4((S3))); S4 7! (S2(S1)) gIt is clear that iterating (b) upon a �nite sorting will reach �rst order in a �nitenumber of steps.Exercise What measure is decreased by (b)?Let us use a slightly simpler sortingob = fS1 7! (); S2 7! ((S1)) g46

to illustrate the translation of processes. First we havecob = fS1 7! (); S2 7! (S3); S3 7! (S1) gNow let P � x:bdF ceQ j x:(�X)(Xy j Xz)Then P respects ob, provided x : S2, y; z : S1, X : (S1), F : (S1) and Q : (). Wedescribe bP in outline. The translation only a�ects those subexpressions �:A of Pwhose subject is of sort S2, since the object sort ob(S2)=((S1)) has been changedto (S3). In this case both x and x are involved. The appropriate changes are toreplace the datum F , of sort (S1), by a new restricted datum name u :S3, and toabstract a new name v :S3 in place of the abstraction variable X : (S1):bP � x:(�u)bduce(!u: bF j bQ) j x:(�v)(v:bdyce j v:bdzce)The reader may at this point like to compare the simpler example at the beginningof Section 7.1; here we are dealing with the extra complication thatX occurs twice,and is moreover a variable over abstractions, not over processes. Note particularlythe use of replication; since (as here) the datum F may be \used" several timesby its recipient, the translation has to allow repeated access to it. This access isvia u, which becomes bound to v; note how the argument to which X was appliedis, in the translation, transmitted along u in a communication. One can indeedcheck that the reduction P ! Q j Fy j Fzis matched by a triple reduction in the translation:bP !3 (�u)(!u: bF j bQ j bFy j bFz)� (�u)(!u: bF) j bQ j bFy j bFz� bQ j bFy j bFzNote that this single application of (b) only deals with those subexpressions �:A inF and Q for which � :S2. In this example, the translation will then be �rst-order(because the sorting cob is �rst-order). In general, the new pre�xed expression u: bFmay need treatment in a further iteration of (b); noting that u :S3, this would bethe case if cob(S3) were still not �rst-order.In conclusion, we can ask whether our theorem is su�ciently general. Theconstraint of no free abstraction variables is of no great concern. Also, we haveelsewhere questioned whether there are any useful processes which respect nosorting. There remains the constraint that the sorting should be �nite. There areindeed interesting in�nite sortings; but we conjecture that, if a process respectsany sorting at all, then it respects a �nite sorting (and so is amenable to ourtranslation). If this is true, then indeed the theorem is quite general.47

References[1] Abramsky, S., The lazy lambda calculus, To appear in Declarative Pro-gramming, ed. D.Turner, Addison Wesley, 1989.[2] Astesiano, E. and Reggio, G., SMoLCS-driven concurrent calculi, LectureNotes in Computer Science, Vol 249, pp169{201, Springer-Verlag, 1987.[3] Astesiano, E. and Zucca, E., Parametric channels via Label Expressions inCCS, Journal of Theor. Comp. Science, Vol 33, pp45{64, 1984.[4] Baeten, J.C.M. and Weijland, W.P., Process Algebra, Cambridge Uni-versity Press 1990.[5] Berry, G. and Boudol, G., The chemical abstract machine, Proc 17th AnnualSymposium on Principles of Programming Languages, 1990.[6] Boudol, G., Towards a lambda-calculus for concurrent and communicatingsystems, Proc. TAPSOFT 89, Lecture Notes in Computer Science, Vol 351,pp149{161, Springer-Verlag, 1989.[7] Burstall, R.M., Some techniques for proving correctness of programs which al-ter data structures, inMachine Intelligence 7, ed. B.Meltzer and D.Michie,Edinburgh University Press, pp23{50, 1972.[8] Engberg, U. and Nielsen, M., A Calculus of Communicating Systems withLabel-passing, Report DAIMI PB{208, Computer Science Department, Uni-versity of Aarhus, 1986.[9] Girard, J.-Y., Linear logic, J. Theoretical Computer Science, Vol 50, pp1{102,1987.[10] Hennessy, M., Algebraic Theory of Processes, MIT Press, 1988.[11] Hennessy, M. and Milner, R., Algebraic laws for non-determinism and con-currency, Journal of ACM, Vol 32, pp137{161, 1985.[12] Hewitt, C., Bishop, P. and Steiger, R., \A Universal Modular Actor Formal-ism for Arti�cial Intelligence", Proc IJCAI '73, Stanford, California, pp235{245, 1973.[13] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall,1985.[14] Kennaway, J.R. and Sleep, M.R., Syntax and informal semantics of DyNe, aparallel language, Lecture Notes in Computer Science, Vol 207, pp222{230,Springer-Verlag, 1985. 48

[15] Milner, R., A Calculus of Communicating Systems, Lecture Notes inComputer Science, Volume 92, Springer-Verlag, 1980.[16] Milner, R., Communication and Concurrency, Prentice Hall, 1989[17] Milner, R., Functions as processes, Research Report No. 1154, INRIA, SophiaAntipolis, February 1990. To appear in Journal of Mathematical Structuresin Computer Science.[18] Milner, R., Sorts in the �-calculus, Proc. Third Workshop on Concurrencyand Compositionality, Goslar, Germany; to appear as a volume of SpringerVerlag Lecture Notes in Computer Science, 1991.[19] Milner, R., Parrow, J. and Walker D., A calculus of mobile processes, ReportsECS-LFCS{89{85 and {86, Laboratory for Foundations of Computer Science,Computer Science Department, Edinburgh University, 1989. (To appear inJournal of Information and Computation.)[20] Milner, R., Parrow, J. and Walker, D., Modal logics for mobile processes,Report ECS-LFCS{91{136, Laboratory for Foundations of Computer Science,Computer Science Department, Edinburgh University, 1991. (To appear inProceedings of CONCUR '91, Amsterdam.)[21] Milner, R. and Sangiorgi, D., Barbed Bisimulation, Internal memorandum,Computer Science Dept., University of Edinburgh, 1991.[22] Nielson, F., The typed �-calculus with �rst-class processes, Proc. PARLE 89,Lecture Notes in Computer Science, Vol 366, Springer-Verlag, 1989.[23] Orava, F. and Parrow, J., An algebraic veri�cation of a mobile network, In-ternal report, SICS, Sweden, 1990. To appear in Journal of Formal Aspectsof Computer Science.[24] Park, D.M.R., Concurrency and automata on in�nite sequences, LectureNotes in Computer Science, Vol 104, Springer Verlag, 1980[25] Petri, C.A., Fundamentals of a theory of asynchronous information
ow, Proc.IFIP Congress '62, North Holland, pp386{390, 1962.[26] Sangiorgi, D., Forthcoming PhD thesis, University of Edinburgh, 1992.[27] Thomsen, B., Calculi for higher-order communicating systems, PhD thesis,Imperial College, London University, 1990.[28] Walker, D.J., �-calculus semantics of object-oriented programming Languages,Report ECS-LFCS{90{122, Laboratory for Foundations of Computer Science,Computer Science Department, Edinburgh University, 1990. Proc. Conferenceon Theoretical Aspects of Computer Software, Tohoku University, Japan inSeptember 1991. 49

