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Abstract - In this paper we present ACS, a distributed
algorithm for the solution of combinatorial optimization
problems which was inspired by the observation of real
colonies of ants. We apply ACS to both symmetric and
asymmetric traveling salesman problems. Results show
that ACS is able to find good solutions to these problems.

I. Introduction
In this paper we present Ant Colony System (ACS), a

novel distributed approach to combinatorial optimization
based on the observation of real ant colonies behavior. ACS
finds its ground in one of the authors previous work on the
so-called Ant System (AS) [1],[2],[5],[7] and in Ant-Q [8]
an extension of AS with Q-learning [12], a reinforcement
learning technique. In particular, ACS is a revisited version
of Ant-Q where a different way to update the experience
accumulated by the artificial ants has been introduced [6].

All the mentioned systems belong to the Artificial Ant
Colonies (AAC) family of algorithms that has been applied
to various combinatorial optimization problems like the
symmetric and asymmetric traveling salesman problems
(TSP and ATSP respectively), the quadratic assignment
problem [10], and the job-shop scheduling problem [3].

This paper is centered on the presentation of the ACS
algorithm and on its application to both the symmetric and
asymmetric versions of the TSP.

II. The ACS algorithm
We introduce the ACS algorithm by its application to the

traveling salesman problem (TSP) or to the more general
asymmetric traveling salesman problem (ATSP).  They are
defined as follows.

TSP
Let V = {v1, ...  , vn

} be a set of cities,

A = { (r,s) : r,s∈ V} be the edge set, and drs= dsr be a cost

measure associated with edge (r,s) ∈  A.
The TSP is the problem of finding a minimal length closed
tour that visits each city once.
In the case cities vi ∈  V are given by their coordinates (xi, yi)
and drs is the Euclidean distance between r and s then we
have an Euclidean TSP.

ATSP
If drs ≠ dsr for at least one (r,s) then the TSP becomes an
ATSP.

In the following of this section we will talk generically of
ATSP problems, which includes TSP as a special case.

Let k be an agent whose task is to make a tour: visit all
the cities and return to the starting one.  Associated to k
there is the list J

k
(r) of cities still to be visited, where r is the

current city (this is equivalent to say that agent k remembers
already visited cities).  An agent k situated in city r moves to
city s using the following rule, called pseudo-random-
proportional action choice rule (or state transition rule) :
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where:
• τ(r,s), is a positive real value associated to edge (r,s) and

is the ACS algorithm counterpart of pheromone left by
the real ants. τ(r,s)'s are changed at run time and are
intended to indicate how useful it is to make move s (i.e.,
to go to city s) when in state r.
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• η(r,s), is a heuristic function which evaluates the utility
of move s when in city r. For example, in the ATSP
η(r,s) is the inverse of the distance between cities r and s.

• Parameter β weigh the relative importance of the
heuristic function.

• q is a value chosen randomly with uniform probability in
[0, 1], and q0 (0≤ q0≤1) is a parameter: the smaller q0 the
higher the probability to make a random choice. In short
q0 determines the relative importance of exploitation
versus exploration in formula (1).

• S is a random variable selected according to the
distribution given by formula (2) which gives the
probability with which an agent in city r chooses the city
s to move to.

[ ] [ ]
[ ] [ ]p r s

r s r s

r z r z
s J r

k z J r

k

k

( , ) =

( , ) ( , )

( , ) ( , )
      if  ( )

                                        otherwise

( )

τ η
τ η

β

β

⋅
⋅

∈









∈
∑

0
   

 (2)

This state transition rule will favor transitions towards
nodes connected by short edges with an high amount of trail.
Formula (1) shows how a transition can either exploit
accumulated knowledge about the problem (knowledge
accumulates in the form of different amount of trail on
edges) or explore new edges (exploration is biased towards
short and high trail edges).

T h e l ocal - u p dat i n g  r u l e

While building a solution (i.e., a tour) of the TSP, ants
visit edges and change their trail by applying the following
local updating rule:

τ ρ τ ρ τ( , ): ( ) ( , )r s r s= − ⋅ + ⋅1 0                      (3)

where τ0 is a parameter.  The effect of the application of
formula (3) will be discussed in Section III.

T h e g l o bal - u p dat i n g  r u l e

Once all ants have completed their solutions, edges (r,s)
belonging to the shortest tour made by an ant have their trail
changed by applying the following global updating rule:

τ α τ α( , ): ( ) ( , ) ( )r s r s Lbest iter= − ⋅ + ⋅ −
−1 1       (4)

Global trail updating provides a higher amount of trail to
shorter tours.  In a sense, this is similar to a reinforcement
learning scheme in which better solutions get a higher

reinforcement (as it happens, for example, in genetic
algorithms).

We have defined two different ways to choose the ant that
is allowed to perform the global updating: iteration-best
updating and global-best updating. In the iteration-best
method the selected agent is the agent who did the shortest
tour in the current iteration while in the global-best method
the selected agent is the agent who did the shortest tour since
the beginning of the computation1 . In all the experiments
presented in this paper we will apply the global-best
updating strategy.

In words the ACS algorithm is presented in Figure 1 and
can be described as follows.

First, at Phase 1 there is an initialization phase in which
an initial value τ0 is given to τ-values, and each agent k is
placed on a city r

k1  chosen according to some policy (in the
following experiments we place maximum one agent for
each city).  Also, the set J

k
(r

k1
 ) of the still to be visited cities

is initialized.
Then, at Phase 2, a cycle, in which each of the m agents

makes a move and the τ(r,s)’s are updated according to
formula (3), is repeated until each agent has finished its tour
and is back in the starting city.

At Phase 3, the length L
best

 of the tour done by agent who
made the shortest tour is computed, and it is used to compute
the delayed reinforcements (L

best-iter
)-1. Then τ(r,s)’s are

updated using formula (4).
Finally, Phase 4 checks whether a termination condition

is met, and if it is not the case the algorithm returns to Phase
2.

Usually the termination condition is verified after a fixed
number of cycles, or when no improvement is obtained for a
fixed number of cycles. (In experiments in which the optimal
value was known a priori the algorithm was stopped as soon
as the optimum was found.)

We would like to point out that in ACS (and in general
in any application of AAC systems to ATSP) the only
knowledge related to ATSP problems is the heuristic
function η(r,s) that represents the inverse distance between
node r and node s. In ACS we do not use any local tour
improvement heuristics (like r-opt, Lin&Kerningan, see [9]
and [11] for a complete presentation of TSP heuristics) to
modify the results of our computation and we do not
maintain any explicit notion of tour. Tours are globally used
(see formula 4)  to reinforce a set of edges in the ATSP
graph but, later on, we only use the accumulated trail to
generate new tours.  Possible extensions of ACS that
includes dedicated ATSP heuristics will be discussed in
section V.

                                                       
1 An analisys of the behaviour of Ant-Q (the predecessor of ACS) using

these two different updating policies has  been presented in [8].



3

1./* Initialization phase */
For each pair (r,s) τ(r,s):= τ0  End-for

For k:=1 to m do
Let rk1 be the starting city for agent k
Jk(rk1):= {1, ..., n} - rk1

/* J
k
(r

k1
) is the set of yet to be visited cities for 

    agent k in city r
k1

 */
rk:= rk1 /*  r

k
 is the city where agent k is located */

End-for
2. /* This is the phase in which agents build their tours. The

tour of agent k is stored in Tour
k.. */

For i:=1 to n do
    If i<n

Then
For k:=1 to m do
Choose the next city sk according to formula (1) 
and formula (2)
If i<n-1 Then Jk(sk):= Jk(rk) - sk

If i=n-1 Then Jk(sk):= Jk(rk) - sk +  rk1

Tourk(i):=(rk ,sk)
End-for

Else
For k:=1 to m do  /* In this cycle all the agents go 

                          back to the initial city r
k1

 */
sk := rk1

Tourk(i):=(rk ,sk)
End-for

        /* In this phase local updating is computed and
   τ-values are updated using formula (3)*/
For k:=1 to m do

τ(rk ,sk):=(1-ρ)τ(rk ,sk)+ ρτ0

rk := sk /*  New city for agent k */
End-for

End-for
3. /* In this Phase delayed reinforcement is computed and

   τ-values are updated */
For k:=1 to m do

Compute Lk  /* L
k
 is the length of the tour done

      by agent k*/
End-for
Compute Lbest-iter

 /*Update edges belonging to L
best-iter

  using  formula(4) */
For each edge (r,s)

τ(rk ,sk):=(1-α)τ( rk ,sk)+ α (Lbest-iter)
-1

End-for
4. If (End_condition = True)

then Print shortest of Lk
else goto Phase 2

Figure 1:  The ACS algorithm

III.Algorithm Analysis
In this section we present results of a micro-level

investigation in which we observe how trail changes on
edges as a function of ACS performance. In all the
experiments of this and of the following sections we set
parameter values, if not differently indicated, as follows:
q0=0.9, β=2, ρ=α=0.1, m=10, and τ0=a very small constant
(we found that a good value was (n·Lnn)-1, where Lnn is the

tour length produced by the nearest neighbor heuristic2  and
n is the number of cities).

In order to try to understand which mechanism ACS uses
to direct the search we study how the trail–closeness product

[ ] [ ]τ η
β

( , ) ( , )r s r s⋅ changes at run-time.  Consider Figure 2,
where we show how the trail–closeness product changes with
the number of steps while ants are building a solution3 

(steps refer to the Phase 2 of the ACS algorithm):  the
abscissa goes therefore from 1 to n, where n is the number of
cities).

We consider three family of edges (see Figure 2):
1.  those belonging to the last best tour (BE, Best Edges),
2.  those which do not belong to the last best tour, but

which recently did (TE, Testable Edges),
3.  those that either have never or haven’t for a long time

belonged to a best tour (UE, Uninteresting Edges).

The average trail–closeness product is then computed as
the average of trail–closeness values of all the edges within a
family. The graph clearly shows that ACS favors
exploitation of edges in BE (BE edges are chosen with
probability q0=0.9) and exploration of edges in TE (remind
that, since formula (2), edges with higher trail–closeness
product have a higher probability of being explored).

An interesting aspect is that while edges are visited by
ants, the application of the local updating rule, formula (3),
makes their trail diminish, making them less and less
attractive, and favoring therefore the exploration of not yet
visited edges.

Experimental observation has shown that edges in BE,
when ACS achieves a good performance, will be
approximately downgraded to TE after an iteration of the
algorithm and that edges in TE will soon be downgraded to
UE, unless they happen to belong to a new shortest tour.

In Figures 3 and 4 we report two typical behaviors of trail
when the system has respectively a good or a bad
performance.

                                                       
2 To be true, any very rough approximation of the optimal tour length would

do.
3 Note that the graph in Figure 2 is an abstraction of graphs obtained

experimentally.  Examples of these are given in Figure  3 and  Figure 4.
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Steps

Average trail-closeness product

UE:uninteresting edges

BE:Edges of the last best tour

TE:Edges which recentely
belonged to a best tour

Figure 2. Families of edges classified according to different
behavior with respect to the amount of trail.  In this figure
we show how the average trail level changes in each family
during one iteration of the algorithm (i.e., during n steps).
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Figure 3. Trail behavior  of ACS.  Problem: Eil51. Trail
behavior when the system performance is good.  Best
solution found after 1000 iterations:  426, α=ρ=0.1.
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Figure 4. Trail behavior of ACS. Problem: Eil51. Trail
behavior when the system performance is bad.  Best solution
found after 1000 iterations:  465, α=ρ=0.9.

IV. Experiments
In this section we presents ACS results in the solution of
different instances of TSP and ATSP proposed in the “First
International Contest on Evolutionary Optimization”

 In the following experiments we set ACS parameters in
the following way: q0=0.9, β=2, ρ=α=0.1, m=10, and
τ0=(n·Lnn)-1.  For each problem we performed a total number

of evaluations4  (generated tours) given by the following
formula:

evaluations problem size problems type=100* _ * _

where  problems_type=100 for TSP and problems_type=200
for ATSP problems. For TSP problems att532, rat783,
fl1577 we performed 1,000,000 evaluations.

In Table 1 and Table 2 we report the results obtained for
TSP an ATSP problems. In the first column we report the
problem name, the number of cities (in parentheses) and the
total number of evaluations (in square brackets). In the
second column we report the best result obtained by ACS out
of 15 trials:  we give the integer length of the shortest tour,
and the number of evaluations required to find it (in square
brackets).  In the third column we report ACS average on 15
trials and its standard deviation in square brackets.  In the
fourth column we report the optimal result (for fl1577 we
give, in square brackets, the known lower and upper bounds,
given that the optimal solution is not known).  In the last
column we give the error percentage, a measure of the
quality of the best result found by ACS:
100*((ACS_Best_Result - Optimal_Result)/Optimal_Result).

Table 1.  ACS performance for TSP problems.
Problem (cities)

[#evaluations]

ACS

Best Result

ACS

Average

Best Known

Result

% Error

eil51 (51)

[510,000]

426

[1,080]

428.06

[2.48]

426 0.0 %

kroa100 (100)

[1,000,000]

21,282

[36,610]

21,420

[141.72]

21,282 0.0 %

d198 (198)

[1,980,000]

15,888

[585,000]

16,054

[71.15]

15,780 0.68 %

att532 (532)

[1,000,000]

28,147

[830,658]

28,522.80

[275.37]

27,686 1.67 %

rat778 (778)

[1,000,000]

9,015

[991,276]

9,066

[28.25]

8,806 2.37%

fl1577 (1577)

[1,000,000]

22,977

[942,000]

23,163

[116.55]

[22,137 –

22,249]

3.27÷

3.79 %

                                                       
4 In case of m agents ACS is executed for evaluation/m iterations.
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Table 2.  ACS performance for ATSP problems.
Problem (cities)

[#evaluations]

ACS

Best Result

ACS

Average

Best Known

Result

% Error

p43 (43)

[860,000]

2,810

[16,850]

2,811.95

[1.61]

2,810 0.0 %

ry48p (48)

[960,000]

14,422

[233,140]

14,565.45

[115.23]

14,422 0.0 %

ft70 (71)

[1,400,000]

38,781

[996,020]

39,099.05

[170.32]

38,673 0.28 %

kroa124p (100)

[2,000,000]

36,241

[536,170]

36,857.00

[521.19]

36,230 0.03 %

ftv170 (170)

[3,400,000]

2,774

[939,100]

2,826.47

[33.84]

2,755 0.69 %

In these runs we implemented a slightly modified version
of ACS which incorporates a more advanced data structure
known as candidate list, a data structure normally used
when trying to solve big TSP problems [9],[11].  A candidate
list is a list of preferred cities to be visited;  it is a static data
structure which contains, for a given city i, the cl closest
cities, where cl is a parameter that we set to cl =20 in our
experiments.  In practice, an ant in ACS with candidate list
first chooses the city to move to among those belonging to
the candidate list.  Only if none of the cities in the candidate
list can be visited (failure) then it considers the rest of the
cities.

In Table 3 we report the results related to the application
of different candidate list size to eil51 problems. In the first
column we report the size of the candidate list. In the second
column we report the average result of ACS over 15 trials
for 500 iterations with 10 agents. In the third column we
report the best integer result over the same 15 trials. In the
fourth column we report the average time for each trial,
performed on a Sun UltraSparc1, and in the fifth column we
report the average number of failures for each agents during
tour construction. It is interesting to note that, the
performance of the system is at best both in term of average
time per trial and in term of the quality of the generated
tours when cl=10.

Table 3. Comparison between candidate list size.
Candidate
 list size

ACS
Average

ACS
Best

Average Time
(sec)

Number of
failures

0 433.87 428 35.33 50.00

10 431.00 426 13.93 0.73

20 431.27 427 23.93 0.48

30 435.27 429 33.93 0.36

40 433.47 426 44.26 0.11

50 433.87 429 55.06 0.01

V. Discussion and Conclusions
In this paper we presented ACS a novel approach to
combinatorial optimization based on the cooperation of a set
of agents.  The research was first inspired by a study of ant
colonies behavior [4] which gave rise first to the Ant System
[7], then to Ant-Q [8], an hybridization of AS with Q-
learning. ACS is an extension of Ant-Q where we
experimented a different local trial updating policy in order
to improve the performance of the system in term of  speed
and quality of results (see [6] for a comparison between Ant-
Q and ACS).

Although the results presented in this paper are very
encouraging we intend to study a specialized version of ACS
for the solution of TSP and ATSP problems. In Figure 5 we
report the typical behavior of ACS during the experiments
presented in this paper. Usually, the length of the best
solution is improved very  fast in the initial phase of the
algorithm (10% of the total number of iterations). Later on,
(until the 50% of the total number of iterations) new good
solutions are discovered but phenomena of local stagnation
starts to appear. In the last phases of the computation new
improved solutions are discovered more rarely and situations
of local minima appears more frequently.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%Iterations

Tour Length

Best Tour Length

Figure 5. Typical behavior of  the ACS algorithm.

We believed that, in order to escape from local minima, and
to increase the speed of the search, one possible extension of
ACS is the introduction of local optimization heuristics
during agent’s computation. Our idea is to add to the
artificial ant colony some new ant explicitly dedicated to
local optimization. They will try to improve the best path
applying their local optimization heuristics. In the case they
find a solution that decreases the length of the tour, they will
apply  formula (4) changing the trial on their new best tour.

An other possible improvement is related to the
organization of the colony of agents. Until now, the
population of agents that perform the search in parallel, is
composed of identical individuals (they all have the same
parameters). This limitation requires sometimes parameter
recalibration in order to avoid local stagnation and to
improve the speed of the search.
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Our idea is to take inspiration from the observation of
natural phenomena (and in some way from Genetic
Algorithms) and to define a population of agents with
different structural parameters. Then, a  new mechanisms
will be introduced in ACS that will allow agents which
perform better than others to survive and reproduce.
Analysis will be also carried out to understand the role of the
parameters in order to identify when and how new agents
must be introduced into the system.
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