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Abstract - In this paper we present ACS, a distributed
algorithm for the solution of combinatorial optimization
problems which was inspired by the observation of real
colonies of ants. We apply ACS to both symmetric and
asymmetric traveling salesman problems. Results show
that ACSisableto find good solutionsto these problems.

|. Introduction

In this paperwe presentAnt Colony System(ACS), a
novel distributed approachto combinatorial optimization
basedon the observatiorof real ant coloniesbehavior ACS
finds its groundin one of the authorsprevious work on the
so-calledAnt System(AS) [1],[2],[5],[7] andin Ant-Q [8]
an extensionof AS with Q-learning[12], a reinforcement
learningtechniqueln particular,ACS is a revisitedversion
of Ant-Q where a different way to updatethe experience
accumulated by the artificial ants has been introduced [6].

All the mentionedsystemsbelongto the Artificial Ant
Colonies(AAC) family of algorithmsthat hasbeenapplied
to various combinatorial optimizaion problems like the
symmetric and asymmetric traveling salesmanproblems
(TSP and ATSP respectiely), the quadratic assignment
problem[10], and the job-shop scheduling probl§sh

This paperis centeredon the presentationof the ACS
algorithmandon its applicationto both the symmetricand
asymmetric versions of the TSP.

II. The ACSalgorithm

We introducethe ACS algorithmby its applicationto the
traveling salesmarproblem (TSP) or to the more general
asymmetrictraveling salesmarproblem (ATSP). They are
defined as follows.
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ISP
LetV={v, ... ,v }be asetof cities,

A = {(r,9 : r,;s0V} bethe edgeset,andd = d_ be a cost
measure associated with edgs) O A.

The TSPis the problemof finding a minimal length closed
tour that visits each city once.

In the casecitiesv, [ V aregivenby their coordinategx, y,)
andd is the Euclideandistancebetweenr and s then we
have an Euclidean TSP.

ATSP
If d, # d for at leastone (r,s) thenthe TSP becomesan
ATSP.

In the following ofthis sectionwe will talk genericallyof
ATSP problems, which includes TSP as a special case.
Let k be an agentwhosetaskis to makea tour: visit all
the cities and return to the starting one. Associatedto k
thereis thelist J (r) of citiesstill to bevisited, wherer is the

currentcity (thisis equivalentto saythat agentk remembers
already visited cities) An agentk situatedin city r movesto
city s using the following rule, called pseudo-random-
proportional action choice rule (or state tratigh rule) :

Eﬁrguﬂ]}i((r){[r (r.9)] dn(r.9)] B} ifqs gy (exploration) "
s=

S otherwise  (exploitation)
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where:

« 1(r,9), is a positivereal valueassociatedo edge(r,s) and
is the ACS algorithm counterpartof pheromoneleft by
the real ants 1(r,s)'s are changedat run time and are
intendedto indicatehow usefulit is to makemoves (i.e.,
to go to citys) when in state.



* n(r,9), is a heuristicfunction which evaluateghe utility
of move s whenin city r. For example,in the ATSP
n(r,s) is the inverse of the distance between citiaads.

» Parameter3 weigh the relative importance of the
heuristic function

e gisavaluechoserrandomlywith uniform probability in
[0, 1], andq, (0< g,=1) is a parameterthe smallerg, the
higherthe probability to makea randomchoice.In short
q, determinesthe relative importance of exploitation

versus exploratioin formula (1).

e S is a random variable selected according to the
distribution given by formula (2) which gives the
probability with which an agentin city r chooseghe city
sto move to.
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This statetransition rule will favor transitionstowards
nodes connected by short edges witthigh amountof trail.
Formula (1) shows how a transition can either exploit
accumulated knowledge about the problem (knowledge
accumulatesin the form of different amount of trail on
edges)or explore new edges(explorationis biasedtowards
short and high trail edges).

if sOJ,(r) @

othewise

The local-updating rule

While building a solution (i.e., a tour) of the TSP, ants
visit edgesand changetheir trail by applying the following
local updating rule:

T(r,s):=1-p)ar.9+plky 3

where T, is a parameter. The effect of the applicationof
formula (3) will be discussed in Sectitih

The global-updating rule

Onceall antshavecompletedtheir solutions,edges(r,s)
belonging to theshortestour madeby an anthavetheir trail
changed by applying the following global updating rule:
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T(r,s):=Q-a)&(r,s)+a E(Lbst—iter) @

Globaltrail updatingprovidesa higheramountof trail to
shortertours. In a sensethis is similar to a reinforcement
learning schemein which better solutions get a higher

reinforcement (as it happens, for example, in genetic
algorithms).

We have defined two different ways to choose the ant that
is allowed to perform the global updating iteration-best
updating and global-best updating. In the iteration-best
methodthe selectedagentis the agentwho did the shortest
tour in the currentiterationwhile in the global-best method
the selected agent is the agent who did the shortessitog
the beginningof the computatiod. In all the experiments
presentedin this paper we will apply the global-best
updating strategy

In wordsthe ACS algorithmis presentedn Figurel and
can be described as follows.

First, at Phasel thereis aninitialization phasein which
an initial value Tty is given to 1-values,and eachagentk is
placedon acity r,, chosenaccordingto somepolicy (in the

following experimentswe place maximum one agent for
each city) Also,thesetJ,(r,, ) of thestill to bevisited cities
is initialized.

Then,at Phase2, a cycle,in which eachof the m agents
makesa move and the t(r,s)’s are updatedaccordingto
formula(3), is repeatedintil eachagenthasfinishedits tour
and is back in the starting city.

At Phases, the length,,  of thetour doneby agentwho
made the shortest tour is computed, and it is tsedmpute
the delayed reinforcements(L, Then 1(r,9)’'s are
updated using formulaf).

Finally, Phase4 checkswhethera terminationcondition
is met, and if it is not the casiee algorithmreturnsto Phase
2.

-1
best-iter) '

Usuallythe terminationconditionis verified after a fixed
numberof cycles,or whenno improvements obtainedfor a
fixed number of cycles. (In experiments in which tptimal
valuewasknowna priori the algorithmwasstoppedassoon
as the optimum was found.)

We would like to point out thatin ACS (andin general
in any application of AAC systemsto ATSP) the only
knowledge related to ATSP problems is the heuristic
function n(r,s) that representghe inversedistancebetween
noder and nodes. In ACS we do not use any local tour
improvementheuristics(like r-opt, Lin&Kerningan, see[9]
and[11] for a completepresentatiorof TSP heuristics)to
modify the results of our computationand we do not
maintainany explicit notion of tour. Toursare globally used
(seeformula 4) to reinforce a set of edgesin the ATSP
graph but, later on, we only use the accumulatedrail to
generatenew tours. Possible extensionsof ACS that
includes dedicated ATSP heuristics will be discussedin
section V.

1 an analisysof the behaviourof Ant-Q (the predecessoof ACS) using
these two different updating policies has been presented in [8].



1./* Initialization phase */
For each pair (r,s)(r,s):=1, End-for
For k:=1to m do
Letr,, be the starting city for agent k
Jr)={1, ...,n}-r,
¥ 3(r,,) isthe set of yet to be visited cities for
agentkincityr, */
re="r., I* r isthecity where agent k is located */
End-for
2. /* Thisisthe phase in which agents build their tours. The
tour of agent kis stored in Tour, . */
Fori:=1tondo
If i<n
Then
For k:=1to m do
Choose the next city ccording to formula (1)
and formula (2)
If i<n-1 Then J(s):= J(r) - S,
Ifi=n-1 Then J(s):=J(r) - s+ 1,
Tour (i):=(r,.S)
End-far
Else
For k:=1to m do /Mnthiscycleall the agents go
back to theinitial cityr,, */
ST fa
Tour (i):=(r,.S)
End-for
/*In this phase local updating is computed and
T-values are updated using formula (3)*/
For k:=1to m do
T(rk ,%)::(1'[3).[(“( !%)4- pTo
r.:= . /* New city for agent k */
End-for
End-for
3. /I* In this Phase delayed reinforcement is computed and
T-values are updated */
For k:=1to m do
Compute L /* L, isthelength of the tour done
by agent k*/
End-for
CompUte I'fjest-iter
/*Update edges belonging to L.
For each edge (r,s)
T(rk '%)::(1{1).[( rk '§<)+ a (Lbest—ter)_l
End-for
4. If (End_condition = True)
then Print shortest of L
else goto Phase 2

bestiter USING formula(4) */

Figure 1: The ACSalgorithm

[11.Algorithm Analysis

In this section we presentresults of a micro-level
investigationin which we observehow trail changeson
edges as a function of ACS performance.In all the
experimentsof this and of the following sectionswe set
parametervalues, if not differently indicated, as follows:
0o=0.9, B=2, p=0=0.1, m=10, and to=a very small constant
(we found that a goodvaluewas (n-Lnp)t, whereLpp is the

tour length producedby the nearesneighborheuristi@ and
n is the number of cities).

In order totry to understandvhich mechanisnACS uses
to directthe searchwe studyhow the trail-closenesgroduct

[T(r,s)] Eﬁn(r,si B changesat run-time. ConsiderFigure 2,

where we show how the trail-closeness product changes with

the number of stepswhile ants are building a solutior?
(stepsrefer to the Phase2 of the ACS algorithm) the
abscissa goes therefore fronoln, wheren is the numberof
cities).

We consider three family of edges (see Fidl)re

1.those belonging to the last best tour (BE, Best Edges),

2. thosewhich do not belongto the last besttour, but
which recently did (TE, Testable Edges),

3. thosethat eitherhaveneveror haven'tfor along time
belonged to a best tour (UE, Uninteresting Edges).

The averagdrail-closenesgroductis then computedas
the average of trail-closeness valuealbthe edgeswithin a
family. The graph clearly shows that ACS favors
exploitation of edgesin BE (BE edgesare chosenwith
probability g,=0.9) and explorationof edgesin TE (remind
that, since formula (2), edgeswith higher trail-closeness
product have a higher probability of being explored).

An interestingaspectis that while edgesare visited by
ants,the applicationof the local updatingrule, formula (3),
makes their trail diminish, making them less and less
attractive,and favoring thereforethe explorationof not yet
visited edges.

Experimentalobservationhas shownthat edgesin BE,
when ACS achieves a good performance, will be
approximatelydowngradedto TE after an iteration of the
algorithmandthat edgesin TE will soonbe downgradedo
UE, unless they happen to belong to a new shortest tour.

In Figures3 and4 we report two typical behaviors tfil
when the system has respectively a good or a bad
performance.

To be true, any very rough approximatiofithe optimaltour lengthwould
do.

Note that the graph in Figure 2 is an abstractionof graphs obtained
experimentally. Examples of these are given in Figdiend Figure 4



rrrrrrrrr UE:uninteresting edges

BE:Edges of the last best tour

————— TE:Edges which recentely
belonged to a best tour

Steps

Figure 2. Families of edges classified according to different
behavior with respect to the amount of trail. In this figure
we show how the average trail level changesin each family
during one iteration of the algorithm (i.e., during n steps).
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Figure 3. Trail behavior of ACS. Problem: Eil51. Trail
behavior when the system performance is good. Best
solution found after 1000 iterations: 426, a=p=0.1.

Figure 4. Trail behavior of ACS. Problem: Eil51. Trail
behavior when the system performance is bad. Best solution
found after 1000 iterations. 465, a=p=0.9.

V. Experiments

In this sectionwe presentsACS resultsin the solution of
differentinstanceof TSPand ATSP proposedn the “First
International Contest on Evolutionary Optimization”

In the following experimentsve setACS parametersn
the following way: q,=0.9, B=2, p=0=0.1, m=10, and
1=(n-Lhn). For each problem we performadotal number

of evaluation$ (generatedtours) given by the following
formula:

evdudions=100* prodem_dze* prodens_type

where problems_type=100for TSPand problems_type=200
for ATSP problems. For TSP problems att532, rat783,
fl1577 we performed 1,000,000 evaluations.

In Table 1 and Table 2 we report the results obtainedfor

TSP an ATSP problems.In the first columnwe report the
problemname,the numberof cities (in parenthesesgndthe
total number of evaluations(in square bracket}. In the
second column we repdfte bestesultobtainedby ACS out
of 15 trials: we give the integerlength of the shortesttour,

andthe numberof evaluationgequiredto find it (in square
brackets). Irthethird columnwe reportACS averageon 15

trials and its standarddeviationin squarebrackets. In the
fourth column we report the optimal result (for fl1577 we

give, in squarebracketsthe knownlower andupperbounds,
given that the optimal solution is not known). In the last
column we give the error percentagea measureof the

quality of the best result found by ACS:

100*((ACS_Best_Result - Optimal_Result)/Optimal_Result).

Table 1. ACS performance for TSP problems.

Problem(cities) ACS ACS Best Known % Error
[#evaluations]| Best Result| Average Result
eil51 (51) 426 428.06 426 0.0 %
[510,000] [1,080] [2.48]
kroa100 (100) 21,282 21,420 21,282 0.0 %
[1,000,000] [36,610] [141.72]
d198(198) 15,888 16,054 15,780 0.68 %
[1,980000] [585000] [71.19
att532 (532) 28,147 28,522.80 27,686 1.67%
[1,000,000 [830,658 [275.37
rat778(778) 9,015 9,066 8,806 2.37%
[1,000,000] [991,276] [28.29
fl1577 (1577) 22,977 23,163 [22,137 - 3.27+
[1,000,000] | [942,00Q [116.55] 22,249] 3.79 %

4 |ncaseof m agents ACS is executedgi@l uation/m iterations.



Table 2. ACS performance for ATSP problems.

Problem(cities), ACS ACS Best Known % Error
[#evaluations] Best Result| Average Result
p43 (43) 2,810 2,811.95 2,810 0.0 %
[860,000] [16,850] [1.61]
ry48p (48) 14,422 14,565.45 14,422 0.0%
[960,000] [233,140] | [115.23]
ft70 (71) 38,781 | 39,099.05 38,673 0.28%
[1,400,000 [996,02Q | [170.32]
kroal24p (100] 36,241 | 36,857.00 36,230 0.03%
[2,000,000 [536,17¢ | [521.19
ftv170 (170) 2,774 2,826.47 2,755 0.69%
[3,400,000] | [939,100] | [33.84

In these runsve implemented slightly modified version
of ACS which incorporatesa more advanceddatastructure
known as candidate list, a data structure normally used
when trying to solve big TSP problen$§,[11]. A candidate
list is alist of preferredcitiesto bevisited; it is a staticdata
structurewhich contains,for a given city i, the cl closest
cities, wherecl is a parameterthat we setto cl =20in our
experiments.In practice,an antin ACS with candidatdist
first chooseghe city to moveto amongthosebelongingto
the candidatdist. Only if noneof thecitiesin the candidate
list canbe visited (failure) thenit considersthe rest of the
cities.

In Table3 we reportthe resultsrelatedto the application
of different candidatdist sizeto €il51 problems.In the first
column we report theizeof the candidatdist. In the second
columnwe report the averageresult of ACS over 15 trials
for 500 iterationswith 10 agents.In the third column we
reportthe bestintegerresultover the samels trials. In the
fourth column we report the averagetime for each trial,
performedon a SunUltraSparclandin thefifth columnwe
reportthe averagenumberof failuresfor eachagentsduring
tour construction. It is interesting to note that, the
performanceof the systemis at bestboth in term of average
time per trial and in term of the quality of the generated
tours whercl=10.

Table 3. Comparison between candidate list size.

Candidate ACS ACS Average Time| Number of

list size Average Best (sec) failures
0 433.87 428 35.33 50.00
10 431.00 426 13.93 0.73
20 431.27 427 23.93 0.48
30 435.27 429 33.93 0.36
40 433.47 426 44.26 0.11
50 433.87 429 55.06 0.01

V. Discussion and Conclusions

In this paper we presentedACS a novel approachto
combinatorialoptimizationbasedon the cooperatiorof a set
of agents. The researchwasfirst inspiredby a study of ant
coloniesbehavior[4] which gaverisefirst to the Ant System
[7], then to Ant-Q [8], an hybridization of AS with Q-
learning. ACS is an extension of Ant-Q where we
experimentedh differentlocal trial updatingpolicy in order
to improve the performanceof the systemin term of speed
and qualityof results(see[6] for a comparisorbetweenAnt-
Q and ACS).

Although the results presentedin this paper are very
encouragingve intendto studya specializedsersionof ACS
for the solutionof TSPand ATSP problems In Figure5 we
report the typical behaviorof ACS during the experiments
presentedin this paper. Usually, the length of the best
solution is improvedvery fastin the initial phaseof the
algorithm (10% of the total numberof iterations).Later on,
(until the 50% of the total numberof iterations)new good
solutionsare discoveredbut phenomenaf local stagnation
startsto appear.In the last phasesof the computationnew
improved solutiongre discoverednorerarely andsituations
of local minima appears more frequently.

Best Tour Length

0%

10% 20%  30%  40%, 50% _ 60% 70%  80% = 90%
Iterations

100%

Figure 5. Typical behavior of the ACSalgorithm.

We believedthat, in orderto escapdrom local minima, and
to increasdhe speedof the searchpne possibleextensionof
ACS is the introduction of local optimization heuristics
during agent’s computation. Our idea is to add to the
artificial ant colony some new ant explicitly dedicatedto
local optimization. They will try to improve the best path
applyingtheir local optimizationheuristics.In the casethey
find a solution that decreasti®e lengthof the tour, they will
apply formula (4) changing the trial on their new best tour.

An other possible improvement is related to the
organization of the colony of agents. Until now, the
populationof agentsthat perform the searchin parallel, is
composedof identical individuals (they all have the same
parameters)This limitation requiressometimesparameter
recalibration in order to avoid local stagnationand to
improve the speed of the search.



Our ideais to take inspiration from the observationof City, CA, A. Prieditisand S. Russell(Eds.), Morgan
natural phenomena(and in some way from Genetic Kaufmann, 252-260.
Algorithms) and to define a population of agents with [9] JohnsonD.S. and L.A. McGeoch, in press. The

different structural parametersThen,a new mechanisms Travelling SalesmarProblem: A CaseStudyin Local
will be introducedin ACS that will allow agentswhich Optimization. In Local Search in Combinatorial

perform bgtter than oth_ers to survive and reproduce. Optimization, E.H.L. Aarts and J.K. Lenstra (Eds.),
Analysis will be also carried out to understahdrole of the Wiley, New York.

parametersn order to identify when and how new agents 2 i )

must be introduced into the system. [10] ManiezzoV., A.Colorni andM.Dorigo, 1994.The Ant

SystemApplied to the QuadraticAssignmentProblem.
Tech. Rep. IRIDIA/94-28, Université Libre de
Bruxelles, Belgium, EU.
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