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Abstract

As multiprocessors are scaledbeyondsingle bus systems,there
is renewedinterest in directory-basedcachecoherenceschemes.
Theseschemesrely on a directory to keeptrack of all processors
cachingamemoryblock. Whena write to thatblockoccurs,point-
to-point invalidation messagesare sentto keepthe cachescoher-
ent. A straightforwardwayof recordingtheidentitiesof processors
cachinga memoryblock is to usea bit vectorper memoryblock,
with onebit per processor. Unfortunately, whenthe main memory
growslinearly with the numberof processors,the total sizeof the
directorymemorygrowsasthesquareof thenumberof processors,
which is prohibitive for large machines.To remedythis problem
several schemesthatusea limited numberof pointersperdirectory
entry havebeensuggested. Theseschemesoften causeexcessive
invalidationtraffic.

In this paper, we proposetwo simple techniquesthat signifi-
cantly reduceinvalidation traffic and directory memory require-
ments.First, we presentthecoarsevectorasa novelway of keep-
ing directorystateinformation. This schemeusesaslittle memory
as other limited pointer schemes, but causessignificantly lessin-
validation traffic. Second,we proposesparsedirectories, where
one directory entry is associatedwith severalmemoryblocks, as
a technique for greatly reducingdirectory memory requirements.
Thepaperpresentsanevaluationof theproposedtechniquesin the
context of the StanfordDASH multiprocessorarchitecture. Re-
sults indicate that sparsedirectoriescoupledwith coarsevectors
can saveone to two ordersof magnitudein storage,with only a
slight degradationin performance.

1 Introduction

A critical designissuefor shared-memorymultiprocessorsis the
cachecoherencescheme. In contrast to snoopy schemes[2],
directory-basedschemesprovidean attractivealternativefor scal-
ablehigh-performancemultiprocessors.In theseschemesa direc-
tory keepstrackof which processorshavecacheda givenmemory
block. When a processorwishesto write into that block, the di-
rectory sendspoint-to-point messagesto processors with a copy,
thus invalidatingall cachedcopies. As the numberof processors
is increased, the amountof statekept in the directory increases
accordingly. With a large numberof processors,the memoryre-
quirementsfor keepinga full recordof all processorscachingeach
memoryblockbecomeprohibitive. Earlierstudies[15] suggest that
most memoryblocksare sharedby only a few processorsat any
given time, andthat the numberof blockssharedby a large num-
ber of processorsis very small. Theseobservationspoint towards
directoryorganizationsthat areoptimizedto keepa small number
of pointersper directoryentry, but arealsoableto accommodatea
few blockswith very manypointers.

We proposetwo methodsfor lowering invalidation traffic and
directory memoryrequirements.The first is the coarsevectordi-
rectoryscheme.In the mostcommoncaseof a block beingshared
betweena small numberof processors,the directoryis kept in the
form of severalpointers. Eachpoints to a processorwhich has
a cachedcopy. When the numberof processorssharinga block
exceedsthe numberof pointersavailable,the directory switches
to a different representation.The samememorythat wasusedto
storethe pointersis now treatedasa coarsebit vector, whereeach
bit of the stateindicatesa groupof processors.We term this new
directoryschemeDir � CV � , wherei is thenumberof pointersandr
is thesizeof theregionthateachbit in thecoarsevectorrepresents.
With all bits set, the equivalentof a broadcastis achieved. While
usingthesameamountof memory, theproposedschemeis at least
as good as the limited pointer schemewith broadcast—presented
asDir � B in [1].

The secondmethodwe proposereducesdirectory memoryre-
quirementsby organizingthedirectoryasacache,insteadof having
onedirectoryentrypermemoryblock. Sincethe total sizeof main
memoryin machinesis muchlarger thanthat of all cachememory,
at anygiventime mostmemoryblocksarenot cachedby anypro-
cessorandthecorrespondingdirectoryentriesareempty. The idea
of a sparsedirectory that only containsthe active entriesis thus
appealing.Furthermore,thereis no needto havea backingstore
for thedirectorycache.Thestateof ablockcansafelybediscarded
after invalidationmessages havebeensentto all processorcaches
with a copyof that block. Our schemeof sparsedirectoriesbrings
down the storagerequirementsof main-memory-baseddirectories
closeto that of cache-basedlinked list directory schemessuchas
the SCI scheme[8]. However, we avoid the longer latenciesand
morecomplicatedprotocolassociatedwith cache-baseddirectories.

Note that our two proposalsare orthogonal. Sparsedirectories
applyequallywell to otherdirectoryentry formatsasto thecoarse
vectorscheme.

In this paperwe comparethefull bit vectorschemeandexisting
limited pointer schemeswith our coarsevector scheme.We also
evaluatethe performanceof sparsedirectories. The performance
resultswereobtainedusingmultiprocessorsimulationsof four par-
allel applications. The multiprocessorsimulator is basedon the
StanfordDASH architecture[11]. Our resultsshowthat thecoarse
vector schemealways doesat least as well as all other limited-
pointer schemesandis muchmorerobustin responseto different
applications.While someapplicationscauseoneor theotherdirec-
tory schemeto degradebadly, coarsevectorperformanceis always
closeto that of the full bit vectorscheme.Usingsparsedirectories
addslessthan17% to the traffic while reducingdirectorymemory
overheadby oneto two ordersof magnitude.

The next sectionbriefly introducesthe DASH multiprocessor
architecturecurrentlybeingdevelopedat Stanford.It will be used
as a basearchitecturefor our studiesthroughoutthe paper. The
DASH architecturesectionis followed by backgroundinformation
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Figure1: DASH architecture.

on directory-basedcachecoherenceschemes, with emphasison the
memoryrequirementsof eachscheme. Section4 introducesthe
directoryschemesproposedin this paper. Section5 describesthe
experimentalenvironmentandtheparallelapplicationsusedfor our
performanceevaluationstudies. Section6 presentsthe resultsof
thesestudies.Sections7 and8 containa discussionof the results,
future work, andconclusions.

2 The DASH Architecture

The performanceanalysisof the different directory schemesde-
pendson the implementationdetailsof a given multiprocessorar-
chitecture. In this paperwe havemadeour schemesconcreteby
evaluatingthem in the contextof the DASH multiprocessorcur-
rently beingbuilt at Stanford.This sectiongivesa brief overview
of DASH [11].

TheDASH architectureconsistsof severalprocessingnodes(re-
ferredto asclusters), interconnectedby a meshnetwork (seeFig-
ure1). Eachprocessingnodecontainsseveralprocessorswith their
caches, a portion of the global memoryandthe correspondingdi-
rectorymemoryandcontroller. Cacheswithin theclustersarekept
consistentusingabus-basedsnoopyscheme[13]. Inter-clustercon-
sistencyis assuredwith a directory-basedcachecoherencescheme
[10]. The DASH prototypecurrently beingbuilt will havea total
of 64 processors,arrangedin 16 clustersof 4. The prototypeim-
plementationusesa full bit vector for eachdirectory entry. With
one statebit per clusterand a single dirty bit, the corresponding
directory memoryoverheadis 17 bits per 16 byte main memory
block, i.e., 13.3%.

Whatfollows is a brief descriptionof theprotocolmessagessent
for typical readand write operations.This information is useful
for understanding the messagetraffic resultspresentedin Section
6. For a read, the cluster from which the readis initiated (local
cluster)sendsamessageto theclusterwhichcontainstheportionof
main memorythat holdsthe block (homecluster). If the directory
determinesthe block to be cleanor shared,it sendsthe response
to the local cluster. If the block is dirty, the requestis sentto the
owningcluster, which repliesdirectly to theoriginal requestor. For
a write, thelocal clusteragainsendsa messageto thehomecluster.
A directory look-up occursand the appropriateinvalidationsare

sentto clustershavingcachedcopies(remoteclusters).At thesame
time, anownershipreply is returnedto the local cluster. This reply
alsocontainsthe countof invalidationssentout, which equalsthe
numberof acknowledgement messagesto expect. As eachof the
invalidationsreachesits destination,invalidationacknowledgement
messagesaresentto the local cluster. Whenall acknowledgements
arereceivedby the local cluster, the write is complete.

3 Directory Schemes for Cache Coher-
ence

Existing cachecoherentmultiprocessorsarebuilt usingbus-based
snoopy coherenceprotocols [12, 7]. Snoopy cachecoherence
schemesrely on the bus as a broadcastmedium and the caches
snoopon the busto keepthemselvescoherent.Unfortunately, the
buscanonly accommodatea smallnumberof processorsandsuch
machinesare not scalable. For scalablemultiprocessorswe re-
quire a generalinterconnectionnetwork with scalablebandwidth,
which makes snoopingimpossible. Directory-based cacheco-
herenceschemes[4, 14] offer an attractivealternative. In these
schemes,a directory keepstrack of the processorscachingeach
memoryblock in the system.This information is thenusedto se-
lectively sendinvalidations/updateswhena memoryblock is writ-
ten.

For directory schemesto be successful for scalablemultipro-
cessors,they must satisfy two requirements.The first is that the
bandwidthto accessdirectoryinformationmustscalelinearly with
thenumberof processors.This canbeachievedby distributingthe
physicalmemoryandthe correspondingdirectorymemoryamong
the processingnodesandby usinga scalableinterconnectionnet-
work [11]. The secondrequirementis that the hardwareoverhead
of using a directory schememust scalelinearly with the number
of processors. Thecritical componentof the hardwareoverheadis
the amountof memoryneededto storethe directory information.
It is this secondaspectof directory schemesthat we focuson in
this paper.

Variousdirectoryschemesthat havebeenproposedfall into the
following threebroadclasses:(i) thefull bit vectorscheme;(ii) lim-
ited pointerschemes; and(iii) cache-based linked-list schemes.We
now examinedirectoryschemesin eachof thesethreeclassesand
qualitatively discusstheir scalability and performanceadvantages
and disadvantages. Quantitativecomparisonresultsare presented
in Section6.

3.1 Full Bit Vector Scheme (Dir � )

This schemeassociatesa completebit vector, onebit perprocessor,
with eachblock of main memory. The directory also containsa
dirty-bit for eachmemoryblock to indicateif someprocessor has
beengivenexclusiveaccessto modify thatblock in its cache.Each
bit indicateswhetherthat memory block is being cachedby the
correspondingprocessor, andthusthedirectoryhasfull knowledge
of the processorscachinga given block. When a block has to
be invalidated,messages are sent to all processorswhosecaches
havea copy. In termsof messagetraffic neededto keepthecaches
coherent,this is thebestthataninvalidation-baseddirectoryscheme
cando.

Unfortunately, for a multiprocessorwith
�

processors,
	

bytes
of main memoryper processor and a block size of


bytes,the

directory memoryrequirementsare
� 2 � 	��� bits, which grows

as the squareof the numberof processors. This fact makesfull
bit vector schemesunacceptable for machineswith a very large
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numberof processors.

Althoughtheasymptoticmemoryrequirementslook formidable,
full bit vectordirectoriescanbequiteattractivefor machineswith a
moderatenumberof processors.For example,the prototypeof the
StanfordDASH multiprocessor[11] will consistof 64 processors
organized as 16 clustersof 4 processorseach. While a snoopy
scheme is usedfor intra-clustercachecoherence,a full bit vector
directory schemeis usedfor inter-cluster cachecoherence.The
blocksizeis 16bytesandweneeda 16-bit vectorperblock to keep
track of all the clusters. Thus the overheadof directory memory
as a fraction of the total main memory is 13.3%, which is quite
tolerablefor the DASH multiprocessor.

We observethat oneway of reducingthe overheadof directory
memoryis to increasethecacheblocksize. Beyonda certainpoint,
this is not a very practicalapproachbecauseincreasingthe cache
block size can haveother undesirableside effects. For example,
increasingtheblock sizeincreasesthe chances of false-sharing[6]
andmaysignificantlyincreasethecoherencetraffic anddegradethe
performanceof the machine.

3.2 Limited Pointer Schemes

Our study of parallel applicationshasshownthat for most kinds
of dataobjectsthe correspondingmemorylocationsarecachedby
only a small numberof processorsat any given time [15]. One
can exploit this knowledgeto reducedirectory memoryoverhead
by restrictingeachdirectoryentryto a smallfixednumberof point-
ers,eachpointing to a processor cachingthat memoryblock. An
importantimplicationof limited pointerschemesis that theremust
exist somemechanismto handleblocks that are cachedby more
processorsthanthe numberof pointersin thedirectoryentry. Sev-
eralalternativesexistto dealwith thispointeroverflow, andwewill
discuss threeof thembelow. Dependingon the alternativechosen,
the coherenceanddatatraffic generatedmay vary greatly.

In the limited pointerschemeswe needlog2

�
bits per pointer,

while only one bit sufficed to point to a processorin the full bit
vector scheme. Thus the full bit vector schememakesmore ef-
fective useof eachof the bits. If we ignore the single dirty bit,
the directory memoryrequiredfor a limited pointer schemewith�

pointersis � ��� log2

����� � ���
	����� , which growsas � � log2

���
with thenumberof processors.

3.2.1 Limited Pointers with Broadcast Scheme (Dir � B)

The Dir � B scheme[1] solves the pointer overflow problem by
adding a broadcast bit to the state information for each block.
When pointer overflow occurs, the broadcastbit is set. A sub-
sequent write to this block will causeinvalidationsto bebroadcast
to all caches.Someof theseinvalidationmessageswill go to pro-
cessorsthatdonot haveacopyof theblockandthusreduceoverall
performanceby delayingthe completionof writes andby wasting
communication bandwidth.

TheDir � B schemeis expectedto dopoorly if thetypical number
of processors sharinga block is just larger than the numberof
pointersi. In thatcasenumerousinvalidationbroadcastswill result,
with mostinvalidationsgoingto cachesthat do not havea copyof
the block.

3.2.2 Limited Pointers without Broadcast Scheme
(Dir � NB)

Oneway to avoidbroadcasts is to disallow pointeroverflowsalto-
gether. In theDir � NB scheme[1], we makeroomfor anadditional

requestorby invalidating one of the cachesalready sharing the
block. In this mannera block canneverbe presentin more than
i cachesat any one time, and thus a write can nevercausemore
than i invalidations.

The most seriousdegradationin performancewith this scheme
occurswhenthe applicationhasread-onlyor mostly-readdataob-
jectsthatareactivelysharedby a largenumberof processors.Even
if the datais read-only, a continuousstreamof invalidationswill
result as the objectsareshuttledfrom onecacheto anotherin an
attemptto sharethembetweenmorethani caches.Without special
provisionsto handlesuchwidely shareddata,performancecanbe
severelydegraded(Section6 presentsanexample).

3.2.3 Superset Scheme (Dir� X)

Yet anotherway of dealingwith pointeroverflowis thesuperset or
Dir � X scheme(our terminology)suggestedin [1]. In this scheme,
two pointersare kept per entry. Oncethe pointersare exhausted,
thesamememoryis usedto keepa singlecompositepointer. Each
bit of this compositepointer can assumethree states: 0, 1, and
X—where X denotesboth. Whenan entry is to be added,its bit
patternis comparedwith that of the existingpointer. For eachbit
that the patternsdisagree,the pointerbit is flipped to the X state.

Whena write occursandinvalidationshaveto besentout, each
X in the compositepointer is expandedto both the 0 and1 states.
A setof pointersto processorcachesresult,which is a supersetof
the cacheswhich actuallyhavecopiesof the block. Unfortunately
the compositepointer representationproducesa lot of extraneous
invalidations.In Section4.1we will showthatthesupersetscheme
is only marginally better than the broadcast schemeat accurately
capturingthe identitiesof processorscachingcopiesof the block.

3.3 Cache-Based Linked List Schemes

A differentway of addressingthescalabilityproblemof full vector
directory schemesis to keepthe list of pointersin the processors
cachesinsteadof a directory next to memory [9, 16]. One such
schemeis currentlybeingformalizedasthe ScalableCoherentIn-
terface[8]. Eachdirectory entry is madeup of a doubly-linked
list. Theheadandtail pointerto the list arekept in memory. Each
cachewith a copyof theblockis oneitem of thelist with a forward
andbackpointerto the remainderof the list. Whena cachewants
to reada shareditem, it simply addsitself to theheadof thelinked
list. Shoulda write to a sharedblock occur, the list is unraveled
oneby oneasall thecopiesin thecachesareinvalidatedoneafter
another.

Theadvantageof this schemeis that it scalesnaturallywith the
numberof processors.As more processorsare added,the total
cachespaceincreasesandso doesthe spacein which to keepthe
directory information. Unfortunately, there are severaldisadvan-
tages.For onething, theprotocolrequiredto maintaina linked list
for eachdirectoryentry is morecomplicatedthantheprotocolfor a
memory-baseddirectoryscheme,becausedirectoryupdatescannot
be performedatomically. Secondly, eachwrite producesa serial
string of invalidationsin the linked list scheme,causedby having
to walk throughthe list, cache-by-cache. In contrast,the memory-
baseddirectory schemecansendinvalidation messages as fast as
thenetworkcanacceptthem. Thirdly, while amemory-baseddirec-
tory canoperateat main memoryspeedsandcanthusbe madeof
cheapanddenseDRAM, the linked list needsto be maintainedin
expensivehigh-speedcachememory. The explorationof tradeoffs
betweenmemory-basedandcache-based directoriesis currentlyan
activeareaof research.In this paper, however, we only focuson
memory-baseddirectoriesasusedin DASH-like architectures.
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Figure2: Averageinvalidation messagessentasa functionof the numberof sharers.

4 New Proposals

We proposetwo techniquesto reducememoryrequirementsof di-
rectory schemeswithout significantly compromisingperformance
and communication requirements.The first is the coarsevector
scheme, which combinesthe best featuresof the limited pointer
and full bit vector schemes.The secondtechniqueis the sparse
directory, which usesa cachewithout a backingstore.

4.1 Coarse Vector Scheme (Dir � CV � )

To overcomethedisadvantagesof thelimited pointerscheme,with-
out losingtheadvantageof reducedmemoryrequirements,we pro-
posethecoarsevectorscheme(Dir � CV � ). In this notation,i is the
numberof pointersandr is thesizeof theregionthateachbit in the
coarsevectorrepresents.Dir � CV � is identical to the otherlimited
pointerschemeswhenthereareno morethan i processorssharing
a block. Eachof the i pointersstoresthe identity of a processor
that is cachinga copy of the block. However, whenpointerover-
flow occurs, the semanticsareswitched,so that the memoryused
for storing the pointersis now usedto storea coarsebit vector.
Eachbit of this bit vectorstandsfor a groupof r processors.The
region size r is determinedby the numberof directory memory
bits available.While someaccuracyis lost over the full bit vector
representation,we are neither forced to throw out entries (as in
Dir � NB) nor to go to broadcastimmediately(asin Dir � B).

Figure 2 makesthe different behaviourof the broadcastand
coarsevectorschemesapparent.In the graph,we assumethat the
limited pointerschemeseachhavethreepointers.Thegraphshows
theaveragenumberof invalidationssentout on a write to a shared
block as the numberof processors sharing that block is varied.
For eachinvalidationevent,thesharerswererandomlychosenand
the numberof invalidationsrequiredwas recorded. After a very
large numberof events,theseinvalidation figureswere averaged
andplotted.

In the ideal caseof the full bit vector(stipple line) the number
of invalidationsis identicalto thenumberof sharers.For theother
schemes,we do not havefull knowledgeof who the sharersare,
and extraneous invalidationsneedto be sent. The areasbetween
the stipple line of the full bit vector schemeandthe lines of the
otherschemesrepresentthenumberof extraneousinvalidationsfor
that scheme. For theDir3B scheme,we go to broadcastassoonas
the threepointersareexhausted.This resultsin manyextraneous

invalidations. The Dir3X schemeusesa compositepointer once
pointer overflow occurs,and the graph showsthat its behaviour
is almostasbad as that of the broadcastscheme.The composite
vector sooncontainsmostly Xs and is thus close to a broadcast
bit. The coarsevectorscheme,on the otherhand,retainsa rough
idea of which processors havecachedcopies. It is thus able to
sendinvalidationsto the regions of processorscontainingcached
copies,without havingto resortto broadcast.Hencethenumberof
extraneousinvalidationsis muchsmaller.

Thecoarsevectorschemealsohasadvantagesin multiprogram-
ming environments,wherea large machinemight be divided be-
tweenseveralusers.Eachuserwill havea setof processorregions
assignedto his application. Writes in one user’s processor space
will nevercauseinvalidationmessagesto besentto cachesof other
users.Evenin singleapplicationenvironmentswe cantakeadvan-
tageof datalocality by placingprocessors that sharea given data
set into the sameprocessorregion.

4.2 Sparse Directories

Typically the total amountof cachememoryin a multiprocessoris
muchlessthanthe total amountof main memory. If the directory
stateis kept in its entirety, we haveone entry for eachmemory
block. Most blocks will not be cachedanywhereand the corre-
spondingdirectory entrieswill thus be empty. To reducesucha
wasteof memory, we proposethe sparse directory. This is a di-
rectorycache, but it needsno back-upstorebecausewe cansafely
replacean entry of the sparsedirectory after invalidating all pro-
cessorcacheswhich that entry pointsto.

As anexample,if agivenmachinehas16MBytesof mainmem-
ory perprocessor and256KBytesof cachememoryperprocessor,
no more than 1/64 or about1.5% of all directory entrieswill be
usedat any onetime. By usinga directorycacheof suitablesize,
we areableto drasticallyreducethedirectorymemory. Thuseither
the machinecost is lowered,or the designercanchooseto spend
the savedmemoryby making eachentry wider. For example,if
theDir � CV � schemewereusedwith a sparsedirectory, morepoint-
ers i andsmallerregionsr would result. The directorycachesize
should be chosento be at least as large as the total numberof
cacheblocks. An additionalfactorof 2 or 4 will reducetheproba-
bility of contentionover sparsedirectoryentriesif memoryaccess
patternsare skewedto load one directory more heavily than the
others.This contentionoccurswhenseveralmemoryblocksmap-
ping to thesamedirectoryentry exist in processorcachesandthus
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Table1: Samplemachineconfigurations.

numberof numberof total main total processor block directory directory
clusters processors memoryspace cachespace size scheme overhead

(MBytes) (MBytes) (Bytes)
16 64 1024 16 16 Dir16 13.3%
64 256 4096 64 16 sparseDir64 13.1%
256 1024 16384 256 16 sparseDir8CV4 13.3%

keepknockingeachotherout of the sparsedirectory. Similar rea-
soningalsoprovidesa motivation for making the sparsedirectory
set-associative. Sincesparsedirectoriescontaina large fraction of
main memoryblocks, tagsneedonly be a few bits wide. Sparse
directoriesareexpectedto do particularlywell with a DASH-style
architecture.In DASH, no directoryentriesareusedif datafrom a
givenmemorymoduleis cachedonly by processorsin thatcluster.
Sincewe expectprocessesto allocatetheir non-shareddatafrom
memoryon the samecluster, no directoryentrieswill be usedfor
suchdata.Furthermorewith increasinglocality in programs,fewer
dataitemswill be remotelyallocatedandthusfewer directoryen-
tries will be needed.

Theratio of mainmemoryblocksto directoryentriesis calledthe
sparsity of thedirectory. Thusif thedirectoryonly contains1/16as
manyentriesastherearemain memoryblocks,it hassparsity16.
Table1 showssomepossibledirectoryconfigurationsfor machines
of differentsizes.For thesemachines,16MBytesof mainmemory
and256KBytesof cachewereallocatedperprocessor. A directory
memory overheadof around13% has beenallowed throughout.
Processorshavebeenclusteredinto processingnodesof 4—similar
to DASH. Thefirst line of thetableis closeto theDASH prototype
configuration. Thereare 64 processorsarrangedas16 clustersof
4 processors. For this machine,the full bit vectorschemeDir 16 is
easilyfeasible.As themachineis scaledto 256processors,wekeep
the directorymemoryoverheadat the samelevel by switching to
sparsedirectories.The sparsedirectoriescontainentriesfor 1/4 of
themainmemoryblocks(sparsity4). As we shallseein Section6,
evenmuchsparserdirectoriesstill performverywell. For the1024
processor machine,thedirectorymemoryoverheadis keptconstant
and the entry size is kept manageable by using a coarsevector
scheme (Dir8CV4) in additionto usinga directorywith sparsity4.
Notethatthis is achievedwithout havingto resortto a largercache
block size.

5 Evaluation Methodology

We evaluatedthe directoryschemesdiscussedin the previoussec-
tionsusinganevent-drivensimulatorof theStanfordDASH archi-
tecture. Besidesstudyingoverall executiontime of variousappli-
cations,we alsolookedat the amountandtype of messagetraffic
produced by the differentdirectoryschemes.

Our simulationsutilized Tango[5] to generatemultiprocessor
references. Tangoallows a parallel applicationto be executedon
a uniprocessor while keepingthe correctglobal eventinterleaving
intact. Globaleventsarereferencesto shareddataandsynchroniza-
tion eventssuchas lock andunlock requests.Tangocanbe used
to generatemultiprocessorreferencetraces,or it can be coupled
with a memorysystemsimulatorto yield accuratemultiprocessor
simulations. In the latter casethe memory systemsimulator re-
turnstiming informationto thereferencegenerator, thuspreserving
a valid interleavingof references.We usedthis secondmethodfor
our simulations.

Our study usesfour benchmarkapplicationsderivedfrom four
different applicationdomains. LU comesfrom the numericaldo-
main and computesthe L-U factorizationof a matrix. DWF is
from the medicaldomainand is a string matchingprogramused
to searchgenedatabases. MP3D comesfrom aeronautics.It is a
3-dimensionalparticlesimulatorusedto studyairflow in the upper
atmosphere.Finally, LocusRoute is a commercialquality standard
cell routing tool from the VLSI-CAD domain.

Table2: Generalapplicationcharacteristics.

shared shared shared sync shared
refs reads writes ops space

Application (mill) (mill) (mill) (thou) (MBytes)
LU 8.9 6.0 2.9 13 0.65

DWF 17.5 16.2 1.0 277 3.89
MP3D 13.5 8.8 4.7 1 3.46

LocusRoute 21.3 20.2 1.1 24 0.72

Table 2 presentssomegeneraldataabout the applications. It
showsthe total numberof sharedreferencesin the applicationrun
and the breakdowninto readsand writes. Sharedreferencesare
definedas referencesto the globally shareddata sectionsin the
applications.Thenumberof sharedreferencesvariedslightly from
run to run for the non-deterministicapplications(LocusRouteand
MP3D). We showthe valuesfor the full cache,non-sparse,full bit
vectorruns. Thetablealsogivestheamountof shareddatatouched
during execution,which is an estimateof the dataset size of the
program.

All runsweredonewith 32 processorsanda cacheblock sizeof
16 bytes. We did not usemore processorsbecause currently few
of our applicationsachievegood speedupbeyond32 processors.
For our evaluationstudies,we assumedthat a directory memory
overheadaround13% was tolerable,which allowed us about17
bits of directorymemoryperentry. Thisrestrictsthelimited pointer
schemesto threepointersandthe coarsevectorschemeto regions
of sizetwo. Theschemesexaminedin this studyarethusDir 3CV2,
Dir3B andDir3NB. We alsousedDir32, the full bit vectorscheme,
for comparisonpurposes.Oncesparsedirectoriesare introduced,
the overheadnaturally dropsdramatically—byone to two orders
of magnitude,dependingon sparsity. For example,a full bit vector
directory with sparsity64 requires32 bits to keep track of the
processorcaches,1 dirty bit, and6 bits of tag. Insteadof 33 bits
per 16-byte block we now have 39 bits for every 64 blocks, a
savingsfactor of 54.

The DASH simulator is configuredwith parametersthat corre-
spondto thoseof the DASH prototypehardware.The processors
have64 KByte primary and 256 KByte secondary caches. Local
bus requeststake on the order of 23 processorcycles. Remote
requestsinvolving two clusterstake about60 cyclesand remote
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Figure3: Invalidationdistribution, LocusRoute,Dir 32.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Invalidations

 P
er

ce
n

ta
g

e 
o

f 
In

va
lid

at
io

n
 E

ve
n

ts

26

61

12

.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

Number of invalidation events:		0.42 million
Average invalidations per event:		0.88

Figure4: Invalidationdistribution, LocusRoute,Dir 3NB.

requestswith threeclustershavea latencyof about80 processor
cycles. In thesimulator, main memoryis evenlydistributedacross
all clustersandallocatedto theclustersusingaround-robinscheme.

Thefollowing messages classesareusedby the simulator:

� Request messages are sentby the cachesto requestdataor
ownership.

� Replymessagesaresentby thedirectoriesto grantownership
and/orsenddata.

� Invalidationmessagesaresentby thedirectoriesto invalidate
a block.

� Acknowledgement messages are sentby cachesin response
to invalidations.

The simulator also collectsstatisticson the distribution of the
numberof invalidationsthathaveto besentfor eachwrite request.
The invalidation distribution helps explain the behaviour of the
differentdirectoryschemes.

6 Simulation Results

The resultspresentedin this section are subdividedas follows.
The first subsection gives invalidation distributionsfor the differ-
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Figure5: Invalidation distribution, LocusRoute,Dir 3B.
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Figure6: Invalidationdistribution, LocusRoute,Dir 3CV2.

ent directoryschemes.Theseimpart an intuitive feel for how the
different schemesbehaveand discusses their advantagesand dis-
advantages. The next two subsectionspresentthe resultsof our
main study. The first onecontraststhe performanceof our coarse
vectorschemewith thatof otherlimited-pointerschemes. Thesec-
ondsubsection presentsresultsregardingtheeffectivenessof sparse
directories.

6.1 Invalidation Distributions

Figures3-6 give the invalidation distributionsof shareddata for
the LocusRouteapplication. We do not presentresultsfor other
applicationsfor spacereasons.Also, the LocusRoutedistributions
illustrate the trendsof the differentschemeswell. In Figure3 we
seethe distribution for the full bit vectorscheme(Dir32) which is
the intrinsic invalidation distribution and is the best that can be
achieved. In the caseof the Dir 32 scheme,only writes that miss
or hit a cleanblock are invalidation events. We note that most
writes causevery few invalidations,but that thereare also some
writes that causea large numberof invalidations. The numberof
invalidationeventsis 0.26million andeacheventonaveragecauses
0.98 invalidationsfor a total of 0.25million invalidations.

Figure 4 showsthe invalidation distribution for Dir3NB. Since
no broadcastsareallowed,no more thanthreecachescansharea
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Figure7: Performancefor LU.
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Figure8: Performancefor DWF.

given block at any one time. This also meansthat we neversee
more than three invalidationsper write. Unfortunately, there are
alsomanynew singleinvalidations,causedby replacementswhen
a blockwantsto besharedby morethanthreecaches.For Dir 3NB
it is possible for readsto causeinvalidations,and this is why the
numberof invalidation eventsis so much larger. Although the
averagenumberof invalidationsper eventhasdecreased to 0.88,
the total numberof invalidationshasincreasedto 0.37million.

The distribution for Dir3B is shownin Figure 5. We seethat
thenumberof smallerinvalidationsgoesbackto the level seenfor
the full vectorscheme.However, anywrites thatcausedmorethan
threeinvalidationsin thefull vectorschemenow haveto broadcast
invalidations. For most broadcasts,30 clustershaveto be invali-
dated,sincethe homeclusterand the new owning clusterdo not
requirean invalidation. This servesto drive the averageinvalida-
tionspereventup to 3.9 andthetotal to 1.01million invalidations.

In the Dir3CV2 scheme,shownin Figure 6, we are able to re-
spondto thelargerinvalidationswithout resortingto broadcast.The
peaksat odd numbersof invalidationsarecausedby the granular-
ity of the bit vector. Also note the absenceof the large peakof
invalidationsat the right edgethat was presentfor the broadcast
scheme. Therearean averageof 1.41 invalidationsper eventand
0.36million total invalidations.

In conclusion,we see that the both the broadcastand non-
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Figure9: Performancefor MP3D.
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Figure10: Performancefor LocusRoute.

broadcastschemescan causeinvalidation traffic to increase. In
the caseof the broadcastschemethis increaseis dueto the broad-
castinvalidations,whichcanberelativelyfrequentif thereareonly
a small numberof pointers.For thenon-broadcast scheme,theex-
tra invalidationsarecausedby replacingentrieswhenmorecaches
are sharinga block than thereare pointersavailable. The coarse
vector schemestrikes a good balanceby avoiding both of these
drawbacksand is thus able to achieveperformancecloser to the
full bit vectorscheme.

6.2 Performance of Different Directory
Schemes

Figures7-10 show the performanceachievedand data/coherence
messagesproducedby the different directoryschemesfor eachof
the four applications. All runs use32 processors,64 KByte pri-
mary and 256 KByte secondarycaches,and a cacheblock size
of 16 bytes. The total number of messagesis broken down
into requests(which include writebacks), replies, and invalida-
tion+acknowledgement messages.

Observethat thenumberof requestandreply messages is about
the samefor the first threeschemes(Dir � , Dir � CV � and Dir � B)
for a given application. This is expectedsinceall threeschemes
havesimilar requestandreply behaviour. Dir � CV � andDir � B oc-
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casionally sendout extraneousinvalidations,but that is the only
differencecomparedto the full bit vectorscheme.For Dir � NB, on
the otherhand,invalidationssometimeshaveto be sentevenfor
read requests,whenpointer overflow occurs. Theseinvalidations
canlater causeadditionalreadmisseswith the associatedincrease
in request andreply messages.

Let us now look at eachof the applicationsindividually and
discuss the results. LU exhibitsthe problemdiscussedin the pre-
viousparagraph.In Figure7, we seea greatlyincreasednumberof
requestandreply messagesaswell asa very large numberof in-
validationandacknowledgement messagesfor theDir � NB scheme.
In LU eachmatrix column is readby all processors just after the
pivot step. This datais actively sharedbetweenmany processors
andDir � NB doesvery poorly.

Read-shareddata is also the causeof the poorer performance
of Dir � NB for DWF. The patternandlibrary arraysareconstantly
readby all the processesduring the run. The other schemesare
virtually indistinguishable.

In MP3D (Figure 9) most of the data is sharedbetweenjust
one or two processors at any given time. This sharing pattern
causesaninvalidationdistributionthatall schemescanhandlewell.
Thecoarsevectorandbroadcast schemesshowalmostno increase
in execution time or messagetraffic, and eventhe non-broadcast
scheme takesonly 0.4%longerto run.

LocusRoute(Figure10) is interestingin that it is theonly appli-
cationin which theDir � NB schemeoutperformsDir � B. Thecentral
datastructureof LocusRouteis sharedamongstseveralprocessors
working on the samegeographicalregion. Wheneverthe number
of sharers exceeds the numberof pointersin Dir � B, a broadcast
resultson a write. The Dir � NB schemedoesbetterwith this kind
of object,becausethe invalidationsdueto pointer overflow often
do not causere-reads.

Throughout this section the messagetraffic numbersdiverge
morethan the executiontimes for the variousschemes.Sincewe
simulatea 32 cluster multiprocessorwith 32 processors,there is
only oneprocessorpercluster. The local clusterbusis thusunder-
utilized. In a real DASH system,with four processorsto a cluster,
the clusterbuswill be muchbusier. We consequently expectthe
performancedegradationdueto an increasednumberof messages
to be larger thanshownhere.

Comparing theperformanceof thedifferentschemesfor thevar-
ious applications,we seethat the Dir � NB doesmuch worsethan
theotherschemesfor mostapplications.Only in LocusRoute does
it perform better thanone of the other schemes. Secondly, while
we expect the Dir � CV � schemeto alwaysperform as well as the
broadcastscheme,weseethat it candosignificantlybetterfor some
applications. Finally, we note that the coarsebit vector scheme
sendsvery few extraneousmessages. For the worst caseapplica-
tion (LocusRoute)Dir � CV � only sendsabout12% moremessages
thanthe ideal full bit vectorscheme.

6.3 Performance of Sparse Directories

Themethodusedfor evaluatingsparsedirectorieswasvery similar
to thatusedto evaluatethedifferentdirectoryschemes.Therewere
two key differences.Firstly, thesimulatorwasconfiguredto usea
sparsedirectoryinsteadof keepinga completedirectory. Secondly,
we usedscaledprocessorcachesto achievea more realistic size
relationshipof the sparsedirectoriesand processorcaches. The
slowspeedof thesimulatorlimited usto relativelysmallapplication
datasets. As a result, if we hadusedthe regular256 KBytes of
cacheper processor, the whole data set would have fit into the
caches. In sucha casewe would havebeenunableto experiment

with sparsedirectorieslarger thantheprocessorcachesbut smaller
than the total memoryblocks in the system. Instead,the caches
were scaledto keepthe ratio of datasetsize to cachesizeof our
runssimilar to that of dataset size to cachesize for a full blown
applicationproblemon a real DASH multiprocessor. For example,
for DWF a full blown problemon a 64-processorDASH would
occupyall of the 1 Gbyte of main memory (seeTable 1). This
is 64 times the total cachespace. In our simulation, the dataset
size was 3.9 MBytes. So to preservethe dataset to cacheratio,
the total cachespacefor our 32-processorsimulationwasreduced
to 64 KBytes,which is 2 KBytes per processor. We experimented
with sparsedirectoriesthat haveentriesfrom oneto four timesthe
total numberof cachelines in the system(shownassize factor 1
to 4 in the graphs).

Whenan entry needsto be allocatedin the sparsedirectory, we
first look to seewhetherthe slot it mapsto is empty. If so, it is
filled. Otherwisewehaveto replaceanexistingentry. Invalidations
aresentout andthe now emptyslot is filled. Empty slotsarealso
createdwhen a processorcachereplacesand writes back a dirty
line.

6.3.1 Effect of Sparsity

Figures11-12showtheeffectof directorysparsityon performance.
We choseto presentresultsfor LU andDWF only. Theresultsfor
MP3D were very similar to thoseof DWF, so for lack of space
we omit them here. For LocusRoute, evenfor full-scale runs the
dataset is expectedto besmall enoughthat sparsedirectorieswill
perform as well as non-sparsedirectories. So againwe omit the
resultsin this subsection.

In Figures11 and12 we showexecutiontimesfor LU andDWF
as the directory sparsityis varied. We considerthe caseswhere
the numberof directory entriesin the systemis a factor of 1, 2,
or 4 times the total numberof cacheblocks in the system. For
theseruns we usedsparsedirectoriesof associativity4 andusea
randomreplacementpolicy (seebelow). The resultssuggest that
evendirectorieswith thesamesizeastheprocessorcachesperform
well. Theworstcaseapplication(LU) showsonly a10.4%increase
in executiontime when going from a non-sparse,full bit vector
directoryto a sparsedirectoryequalin sizeto theprocessorcaches.
Whenthedirectorysizeis increasedto 2 or 4 timesthecachesize,
the performancedegradationof sparsedirectoriesis very small.
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Figure11: Sparsedirectoryperformancefor LU.

For thesizefactor1 directoryin LU we seea largeperformance
differencebetweenthe coarsevector and the broadcast schemes.
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In LU, the pivot column is sharedbetweenall processors.When
directory replacementsare more frequent,as is the casefor very
sparsedirectories,only someof the processesmay get a chance
to accessthis databetweenreplacements.When the replacement
doesoccur, enoughsharersexist to causea broadcastfor theDir � B
scheme while the Dir � CV � only needsto senda few invalidations.

For DWF the performanceis fairly flat acrossschemesandsize
factors. The performancedoesnot vary much from schemeto
scheme becausethe invalidation behaviourof DWF is handled
equallywell by all schemes.The performanceis flat acrosssize
factorsbecauseDWF is awave-frontalgorithmthathasarelatively
small working setat any momentin time. This ensuresthat even
very sparsedirectoriesdo not suffer from excessive replacements.

6.3.2 Effect of Associativity and Replacement Policy

Sincea sparsedirectory hasfewer entriesthanmain memoryhas
blocks,it is possiblefor severalactiveblocksto mapto the same
directoryentry. While a set-associativesparsedirectorycanhandle
this situation, entries in a direct mappedsparsedirectory would
keep bumping eachother out, leading to poor directory perfor-
mance.
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Figure13: Effect of associativityin sparsedirectory(LU).

WeusedLU asa sampleapplicationto studytheeffect of sparse

directory associativityandreplacementpolicy. The full bit vector
schemewasusedin thesestudies.Figure13 showsmessagetraffic
numbersfor associativitiesof 1, 2 and4 with directorysizefactors
1, 2 and4. We showtraffic numbersbecausetheyshowthe trends
betterthantheexecutiontime results.For eachof the sizefactors,
associativity4 is equal to or slightly better than associativity2,
which in turn is betterthandirect-mappedby a largermargin. The
benefitsfrom set-associativityseemto be small, but we do expect
associativityto make sparsedirectoriesmore robust to different
applicationbehaviours.
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Figure14: Effect of replacementpoliciesin sparsedirectory
(LU).

For set-associative directories,thereis a choiceof replacement
policies. Weexploredrandom,least-recently-used(LRU) andleast-
recently-allocated(LRA) schemes.LRU keepsthedifferentsetsin
eachentryorderedby time of accessandreplacestheleastrecently
usedone. LRA only keepstrack of the allocation time of each
set in the entry andreplacesthe onethat wasallocatedfirst. The
resultsfor anLU run usinga sparsedirectorywith set-associativity
4 and a full bit vector schemeare shownin Figure 14. LRU is
the mostdifficult to implement,andalsoperformsthe best. Even
thoughrandomis the easiestto implementin hardware,it actually
doesbetterthanLRA. With LRA thepossibilityof replacingentries
that wereallocatedearly, yet areusedfrequentlyexists.This soon
leadsto more replacementswhen the frequentlyusedentriesare
accessed again.

7 Discussion

The questionariseswhether our proposalsintroduce additional
complexitiesinto the architecture.The answeris very few. The
coarsevectorschemedoesnot requireanymodificationto the pro-
tocol usedfor thefull bit vectorscheme.It merelyendsup sending
someextraneousinvalidations.For sparsedirectories,on the other
hand,someprotocol modification is required. When an entry is
being replacedin the sparsedirectory, and is thus effectively re-
moved from the system,we haveto invalidateall copiesof the
correspondingmemory block cachedin processorcaches. Some
entity has to keep track of when all the acknowledgements for
theseinvalidationshave beenreceived. Suchan entity must al-
readyexist in systemsthat implementweakconsistency, in order
to keeptrack of outstandinginvalidations.In DASH, we havethe
RemoteAccessCache(RAC). Whena block is to be replacedin
the sparsedirectory, the RAC allocatesan entry for that block and
invalidationsaresentout to all cachedcopies.The RAC receives
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the acknowledgement messagessentin responseto theseinvalida-
tions. Theoperationis completewhenall acknowledgements have
beenreceived.

Another hardwareissueconcernssynchronization. In DASH,
the directorybit vectorsarealsousedto keeptrack of processors
queuedfor a lock. In the caseof the full bit vector we have
enough spaceto keeptrack of all nodes. Consequently, when a
lock is released,it is grantedto exactlyoneof the waiting nodes.
Oncewe switch to a coarsevector scheme,that is no longer the
case. We are only able to keeptrack of which processorregions
arequeued for a lock. Whenthe lock is released,andwe wish to
grant it to anothernode,we haveto releaseall processors in that
regionand let themtry to regainthe lock. While this mechanism
is slightly lessefficient, it still avoidshavingto releaseall waiting
processors andcausinga hot spotwhenthey all try to obtain the
lock.

Therearemanyothertechniquesthat canbeusedto reducethe
memoryrequirementsof directory-basedcachecoherenceschemes.
For example,assuggestedin [3], we canassociatesmall directory
entrieswith eachmemoryblock andallow theseto overflowinto a
smallcacheof muchwiderentries.Similarly, wecanmakemultiple
memoryblocksshareonewide entry. We planto evaluatesomeof
thesealternativeschemesin the future.

8 Conclusions

We have presentedtwo techniquesfor reducing the memory
overhead and data/coherencetraffic of directory cachecoherence
schemes—thecoarsevector schemeand sparsedirectory scheme.
The performanceof the new schemeswasanalysedandcompared
to existingdirectory schemes. Our resultsshow that the savings
achieved in memory overheadand the traffic reductionare sig-
nificant. Dependingon the application,the coarsevector scheme
produces up to 8% lessmemorymessagetraffic thanthe nextbest
limited pointerschemeandseveralfactorslessthanthe worst lim-
ited pointerscheme.Thecoarsevectorschemeis alsomorerobust
thantheother limited pointerschemes—its performanceis always
closest to the full bit vectorscheme.While sparsedirectoriesadd
up to 17% to the memorycoherencetraffic, they cansignificantly
reducethe directory memoryoverhead—byone to two ordersof
magnitude,dependingon sparsity. We believethat a combination
of thetwo techniquespresentedwill allow machinesto bescaledto
hundreds of processorswhile keepingthe directorymemoryover-
headreasonable.
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