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Abstract

This paper proposes a new neocognitron that accepts incremental learning, without giving a severe damage to old memories or reducing

learning speed. The new neocognitron uses a competitive learning, and the learning of all stages of the hierarchical network progresses

simultaneously.

To increase the learning speed, conventional neocognitrons of recent versions sacrificed the ability of incremental learning, and used a

technique of sequential construction of layers, by which the learning of a layer started after the learning of the preceding layers had

completely finished. If the learning speed is simply set high for the conventional neocognitron, simultaneous construction of layers produces

many garbage cells, which become always silent after having finished the learning. The proposed neocognitron with a new learning method

can prevent the generation of such garbage cells even with a high learning speed, allowing incremental learning.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The author previously proposed a neural network

model neocognitron for robust visual pattern recognition

(Fukushima, 1980; Fukushima & Miyake, 1982). It has a

hierarchical multilayered architecture similar to the

classical hypothesis of Hubel and Wiesel. It acquires the

ability to recognize robustly visual patterns through

learning.

To increase the learning speed, the neocognitrons of

recent versions have sacrificed the ability of incremental

learning. This paper proposes a neocognitron that is capable

of incremental learning without reducing the learning speed.

The new neocognitron has a modified network architecture

and uses a new learning method. The new learning method

allows the simultaneous construction of all stages of the

network with a fast learning speed, and still accepts an

incremental learning. The old memories made by an earlier

learning will not be seriously destroyed by subsequent

learning.

2. Conventional neocognitron

2.1. Simultaneous or sequential construction

The neocognitron consists of layers of S-cells, which

resemble simple cells in the primary visual cortex, and

layers of C-cells, which resemble complex cells. These

layers of S-cells and C-cells are arranged alternately in a

hierarchical manner.

S-cells are feature-extracting cells, whose input connec-

tions are variable and are modified through learning.

C-cells, whose input connections are fixed and unmodified,

exhibit an approximate invariance to the position of the

stimuli presented within their receptive fields. The C-cells in

the highest stage work as recognition cells, which indicate

the result of the pattern recognition.

When a training stimulus is presented during the

learning, each S-cell competes with other cells in its

vicinity and has its input connections modified only when

it wins the competition. The connections are modified so

that the cell responds more strongly to the training

stimulus to which the cell becomes a winner. If all S-cells

in a competition area are silent, a new S-cell, and

consequently a cell-plane is generated and learns the

training stimulus.
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As for the sequence order of modifying connections of

different layers, two alternative methods have been

proposed. We will call these methods simultaneous

construction and sequential construction. In the simul-

taneous construction, which is used in the original versions

of the neocognitron (Fukushima, 1980; Fukushima &

Miyake, 1982), learning of all layers in the network

progresses simultaneously. In the sequential construction,

which is used in most of the recent versions (Fukushima,

2003), learning starts from the lowest stage and progresses

sequentially to higher stages: after the learning of a lower

stage has been completely finished, the learning of the

succeeding stage begins.

Both simultaneous and sequential constructions have

merits and demerits for the conventional neocognitron. The

simultaneous construction requires a slow learning speed

but can accept incremental learning. On the other hand, the

sequential construction can finish learning very fast, but

does not accept incremental learning.

The proposed neocognitron allows the simultaneous

construction of all stages of the network with a fast learning

speed, and still accepts an incremental learning.

2.2. Conventional learning methods

We will first consider the case of simultaneous

construction. Let USl be the layer of S-cells in the lth

stage of the network. The response of layer USl21 of the

preceding stage works as a training stimulus for layer USl:
1

The number of cell-planes in USl21 gradually increases with

the progress of learning. An increase in the number of cell-

planes in USl21 means that the training stimulus given to USl

changes, even if the same training pattern is presented to the

input layer U0: If we express this in a multi-dimensional

vector space, the dimension of learning vectors for USl

gradually increases with the progress of the learning of

USl21:

If the learning speed of USl21 is high, change in the

response of USl21; which is caused by the increased number

of cell-planes, occurs very fast. Because of the sudden

change of signals from presynaptic cells, a cell of USl often

fails to respond to the training pattern, to which the cell used

to become a seed cell. This situation is shown in Fig. 1(b).

Since the cell cannot become a seed cell, the input

connections to the cell-plane cannot be modified. The

cell-plane fails to adapt to the fast change of layer USl21 and

stops responding for ever. Another cell-planes shall be

generated now in USl instead of the silent cell-plane. The

silent cell-plane becomes garbage in the network and just

consumes a large amount of computation time and memory

when the network is installed in a computer.

The generation of silent garbage cell-planes can be

avoided, if the learning speed of the network is very slow.

Because of a mechanism of shunting inhibition, the output

of an S-cell is small when the connections to it are weak

(See Eqs. (3), (5), (9) and (10), below). Hence the response

of a cell-plane will stay small for a while after its generation,

if the learning speed is slow. The response builds up

gradually after that. In other words, the response of USl21

to a training pattern, which becomes the training stimulus

for USl; does not make a rapid change even after the increase

in the number of cell-planes in USl21: Therefore, each cell-

plane of USl can adapt to the increase in dimension of the

training vector by shifting its reference vector gradually to

the direction of the new training vector of an increased

dimension. Although the generation of garbage cells can

thus be avoided by a very slow learning speed, a large

number of repeated presentations of the same leaning

patterns are required before the learning finishes, because of

slow building up of responses of the cells.

To increase the learning speed without generating

garbage in the network, sequential construction is often

used for the learning of the neocognitron of recent versions.

Since the learning of USl starts after the learning of USl21

has completely finished, garbage cells will not be generated

in USl independent of the learning speed of USl21:

The sequential construction, however, does not accept

incremental learning. Suppose an additional set of training

patterns be supplied, after a network has already finished

learning a certain set of training patterns. If a layer, which

has learned the first training set, additionally learns the

second training set, new cell-planes will usually be

generated in the layer. Hence the layer comes to show

different responses even to the patterns of the first training

set. This is the same situation as in the case of simultaneous

construction with a fast learning speed. Some of the cell-

planes of the succeeding layer fail to respond even to the

patterns to which they used to respond, and shall become

garbage.

3. Basic idea of the learning

3.1. Response of an S-cell

To show the essence of the learning algorithm, we will

extract only the circuit converging to a single S-cell (see

Fig. 1(a) and analyze its behavior. Let ai be the strength of

the excitatory variable connection to an S-cell from the ith

C-cell, whose output is xi; and b be the inhibitory variable

connection from the V-cell, whose output is v: Also let ciwi

be the strength of the excitatory connection to the inhibitory

V-cell from the ith C-cell. The variable wi; which will be

discussed later in Section 3.2, is a kind of weight newly

introduced in the proposed neocognitron, and is used to

compensate the difference in the number of training among

1 To be more strict, the response of C-cell layer UCl21; which is a blurred

version of the response of USl21; works as the training stimulus for USl. To

simplify the expression in this section, however, we write as though USl21;

instead of UCl21; is the training stimulus.
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ai: Incidentally, we had wi ¼ 1:0 for the conventional

neocognitron.

We also use vector notation x to represent the response of

the presynaptic C-cells {xi}: Similarly, vector a is used to

represent connections {ai}:

The output of the S-cell is given by

u ¼
u

1 2 u
w

1 þ
X

i

aixi

1 þ ubv
2 1

2
664

3
775 ð1Þ

where w½ � is a function defined by w½x� ¼ maxðx; 0Þ: u is a

constant ð0 , u , 1Þ determining the threshold of the S-

cell. The output of the V-cell is given by

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiX
i

ciwix
2
i

s
ð2Þ

If bv – 0 holds, Eq. (1) can also be written as follows:

u ¼ a
w½s 2 u�

1 2 u
ð3Þ

where

s ¼

P
iaixi

bv
ð4Þ

and

a ¼
ubv

1 þ ubv
ð5Þ

Variable s represent a kind of similarity between the test

vector x and the reference vector, which is expressed by a.

Variable a can be considered as a constant ð< 1Þ after some

progress of learning, in which the inhibitory connection b

has become large enough to satisfy ubv q 1: If the input to

the S-cell is completely zero, however, we have v ¼ 0 and

a ¼ 0:

During the learning, each S-cell competes with other

cells in its vicinity, and the winners of the competition

become seed cells and learn the training pattern. Although a

large number of training patterns are presented to the

neocognitron, only a portion of them makes this particular

S-cell a winner (or a seed cell). The vector x that makes this

S-cell a winner becomes a training vector for this S-cell, and

the tth training vector for this S-cell is represented by xðtÞ:

To simplify the discussion, we assume here, without loosing

generality, that the same S-cell is always selected as the seed

cell from the cell-plane.

In an intermediate stage of the network, the number of

presynaptic C-cells, namely, the dimension of the training

vector xðtÞ; gradually increases with the progress of learning,

because of simultaneous construction of all stages of the

hierarchical network. A training vector presented earlier

usually has a smaller dimension.

Every time when the S-cell becomes a winner, the

excitatory connection ai is strengthened by an amount

proportional to the response of the presynaptic C-cells. If the

C-cell has not been generated yet, ai does not change.

Namely

Dai ¼
qcix

ðtÞ
i if t $ Ti

0 if t , Ti

8<
: ð6Þ

where Ti is the time when the ith presynaptic C-cell is

generated. Parameter q is a positive constant determining

the learning speed. Since ai < 0 in the initial state, ai after

Fig. 1. Behavior of an S-cell during incremental learning. Comparison between the conventional and the proposed network.
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finishing T times of learning is

ai ¼ qci

XT
t¼Ti

xðtÞi ð7Þ

This means that vector components of missing dimensions

are treated as zero, when a training vector of a smaller

dimension is summed up to a.

The inhibitory connection b is determined directly from

the values of the excitatory connections ai and weight wi:

That is

b ¼

ffiffiffiffiffiffiffiffiffiffiX
i

a2
i

ciwi

vuut ð8Þ

3.2. Hypothetical case

Since the learning of all layers of the network progresses

simultaneously, the response of a presynaptic C-cell is not

always the same during the learning, even though the same

training pattern is presented to the input layer of the

network. The weight wi is used to compensate this effect.

We will now consider a very simple hypothetical case

as a first approximation, and discuss how to determine

weight wi:

We hypothesize as follows. The S-cell be selected as a

seed only when the same training pattern is presented to the

input layer U0 of the network. Let xðtÞi be the response of the

ith presynaptic C-cell when this same training pattern is

presented at the tth time. Let ji be the response of this C-cell

after finishing enough times of learning of the preceding

stages of the network. We also use vector notation j to

represent the vector whose ith component is ji:

In an early period of the learning, the response xðtÞi is

reduced from ji by a factor of at; which is a kind of gain of

the C-cell, where t represents the elapsed time since the cell

has been generated. That is

x
ðTiþt21Þ
i ¼

atji if t $ 1

0 if t # 0

(
ð9Þ

Gain at increases asymptotically to 1.0 with the progress of

the learning of the preceding stages. We assume here that

at ¼
t

tþ s
ð10Þ

Eqs. (9) and (10) are obtained approximately under an

assumption that the responses of presynaptic C-cells, which

relay the outputs of S-cells, also follow equations like (3)

and (5). In other words, ji corresponds to w½s 2 u�=ð1 2 uÞ;

and at to a; in Eq. (3).

If the above hypothesis holds, we have from Eqs. (7), (9)

and (10)

ai ¼ qciji

XT2Tiþ1

t¼1

at ¼ qcijiWðmiÞ ð11Þ

where WðmÞ is a function defined by

WðmÞ ¼
Xm
m¼1

am ¼
Xm
m¼1

m

mþ s
ð12Þ

and mi represents how many times the output of the ith

presynaptic C-cell has been used for the training of this S-

cell. Namely

mi ¼ T 2 Ti þ 1 ð13Þ

This situation is shown in Fig. 2. In this example, the first

and the second presynaptic C-cells have been generated

since the beginning of the learning, and their outputs are

summed up three times to a. Since the third C-cell has not

been generated yet at t ¼ 1; its response is treated as zero

when the vectors xð1Þ is summed up to a. The fourth C-cell,

which is generated only at t ¼ 3; is summed only once. The

test vector x, which will be presented later, might have more

components corresponding to C-cells generated afterward.

Substituting Eqs. (2), (8) and (11) in Eq. (4), we have s

for an arbitrary test vector x.

s ¼

P
iciWðmiÞjixiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ici

{WðmiÞji}
2

wi

s ffiffiffiffiffiffiffiffiffiffiffiP
iciwix

2
i

q ð14Þ

If we adjust the value of weight wi to

wi ¼ WðmiÞ ð15Þ

Eq. (14) reduces to

s ¼

P
iciwijixiffiffiffiffiffiffiffiffiffiffiffiP

iciwij
2
i

q ffiffiffiffiffiffiffiffiffiffiffiP
iciwix

2
i

q ð16Þ

Eq. (15) means that a heavier weight wi is assigned to the

signal from a C-cell that have been used more frequently for

the training.

Fig. 2. Relation between connection a and the test vector x.
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Here we define a weighted inner product of two vectors x

and y by ðx; yÞ ¼
P

i ciwixiyi; where the strength of the

connections converging to the inhibitory V-cell, ciwi; is

used as the weight. We also define the norm of a vector x by

kxk ¼
ffiffiffiffiffiffiffi
ðx; xÞ

p
: Using this weighted inner product, Eq. (16)

can be represented by

s ¼
ðj; xÞ

kjk·kxk
ð17Þ

We can interpret that s represents a kind of similarity

between the training vector j and the test vector x. It takes

the maximum value of 1.0 when x ¼ j: As can be seen from

Eq. (3), the S-cell yields a non-zero output for s . u: In the

vector space of x, the conical area determined by s . u

around the training vector j becomes the tolerance area of

the S-cell. The S-cell responds if and only if the test vector x

falls in the tolerance area.

4. Network architecture

Based on the discussions in the previous section, we

propose a new neocognitron. As shown in Fig. 3, the

proposed neocognitron has almost the same network

architecture as the neocognitron of a recent version, which

is designed for handwritten digit recognition (Fukushima,

2003). Only the difference between them resides in V-cell-

planes (namely, cell-planes of V-cells). In the conventional

neocognitron, each layer of S-cells has only one V-cell-

plane, which is used in common for all S-cell-planes of the

layer. In the proposed neocognitron, each S-cell-plane has

its own V-cell-plane. In other words, each S-cell has its own

V-cell.

The stimulus pattern is presented to the input layer U0:

A layer of contrast-extracting cells ðUGÞ; which corre-

spond to retinal ganglion cells or lateral geniculate

nucleus cells, follows layer U0: Layer UG consists of

two cell-planes: a cell-plane consisting of cells with

concentric on-center receptive fields, and a cell-plane

consisting of cells with off-center receptive fields. The

former cells extract positive contrast in brightness,

whereas the latter extract negative contrast from the

images presented to the input layer.

The output of layer UG is sent to the S-cell layer of

the first stage (US1). The S-cells of layer US1 correspond

to simple cells in the primary visual cortex.

They have been trained using supervised learning to

extract oriented edge components from the input image

(Fukushima, 2003).

The present model has four stages of S- and C-cell layers.

The output of layer USl (S-cell layer of the lth stage) is fed to

layer UCl; where a blurred version of the response of layer

USl is generated. An inhibitory surround is introduced

around the excitatory connections of the input connections

to each C-cell (Fukushima, 2003). The density of the cells in

each cell-plane is reduced between layers USl and UCl:

Layer UC4; which is in the highest stage of the network, is

the recognition layer, whose response shows the final result

of pattern recognition by the network.

The S-cells of layers US2; US3 and US4 are self-organized

using the proposed method.

Since main difference from the conventional neocogni-

tron (Fukushima, 2003) resides in S-layers, we will show

mathematical expressions of the response of a layer of S-

cells only.

Let uSlðn; kÞ; vlðn; kÞ and uClðn; kÞ be the output of S-, V-

and C-cells of the kth cell-plane of the lth stage,

respectively, where n represents the location of the

receptive field center of the cells, and k is the sequence

number of the cell-plane. The outputs of S-cells are given by

uSlðn;kÞ¼
ul

12ul

·w

1þ
XKCl21

k¼1

X
lnl,ASl

aSlðn;k;kÞ·uCl21ðnþn;kÞ

1þul·bSlðkÞ·vlðn;kÞ
21

2
666664

3
777775

ð18Þ

where w½� is a function defined by w½x�¼maxðx;0Þ:

Parameter aSlðn;k;kÞ ð$0Þ is the strength of variable

excitatory connection coming from C-cell uCl21ðnþn;kÞ
of the preceding stage. For l¼1; however, uCl21ðn;kÞ stands

for uGðn;kÞ; and we have KCl21¼2: It should be noted here

that all cells in a cell-plane share the same set of input

connections, hence a
slðn;k;kÞ is independent of n: ASl

denotes the radius of summation range of n; that is, the size

of spatial spread of input connections to a particular S-cell.

Parameter blðkÞ ð$0Þ is the strength of variable inhibitory

connection coming from the V-cell. The positive constant ul

is the threshold of the S-cell and determines the selectivity

in extracting features. Incidentally, if we replace vlðn;kÞ

with vlðnÞ; Eq. (18) becomes the same as that for the

conventional neocognitron.Fig. 3. The architecture of the proposed neocognitron.
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On the other hand, the outputs of V-cells are given by

vlðn;kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXKCl21

k¼1

X
lnl,ASl

cSlðnÞ·wlðk;kÞ·{uCl21ðnþn;kÞ}2

vuuut ð19Þ

The excitatory input connection from the kth C-cell-plane

consists of two components: a variable weight wlðk;kÞ;

and a fixed constant cSlðnÞ; which is a monotonically

decreasing function of lnl:
In an intermediate stage of the network, KCl21; the

number of presynaptic C-cell-planes, does not stay constant,

but increases, during the learning, because simultaneous

construction progresses for all stages of the hierarchical

network. As was discussed in Section 3, excitatory

connections aSlðn;k; kÞ from layer UCl21 are increased by

an amount proportional to the response of C-cells

presynaptic to the seed cell, and a cell-plane that was

created earlier (say, the cell-plane with k ¼ 1) has a larger

contribution to strengthening the connections than a newly

created cell-plane, because it has been presented more

frequently to the seed cell. The difference in contribution to

the excitatory connections is reflected to the connections

to the inhibitory V-cell through weight wlðk; kÞ; which is

also modified by the learning.

5. Learning method

We adopt simultaneous construction, by which learning

of all layers progresses simultaneously in the network.

5.1. Intermediate stages

The S-cells of intermediate stages ðUS2 and US3Þ are self-

organized using unsupervised competitive learning similar

to the method used in the conventional neocognitron

(Fukushima, 2003).

During the learning, each S-cell competes with other

cells in its vicinity, and the winners of the competition

become seed cells. Once the seed cells are determined,

variable connections a
slðn;k; kÞ and b

slðkÞ are strengthened

depending on the responses of the C-cells presynaptic to the

seed cells.

Let cell uSlðn̂; k̂Þ be selected as a seed cell at a certain

time. Variable connections a
slðn;k; k̂Þ to this seed cell, and

consequently to all S-cells in the same cell-plane as the seed

cell, are increased by the following amount:

DaSlðn;k; k̂Þ

¼
ql·cSlðnÞ·uCl21ðn̂ þ n;kÞ if 1 # k # KCl21

0 if k . KCl21

(
ð20Þ

It should be noted here that the number of the presynaptic

C-cell-planes, KCl21; is not constant but increases with

the progress of learning. Eq. (20) means that aSlðn;k; k̂Þ does

not change if the presynaptic cell uCl21ðn̂ þ n;kÞ has not

been generated yet. Positive constant ql determines the

learning speed.

Weight wlðk; k̂Þ is determined by the following equations

wlðk; k̂Þ ¼ Wðmlðk; k̂ÞÞ ð21Þ

where WðmÞ is a function defined by

WðmÞ ¼
Xm
m¼1

m

mþ s
ð22Þ

and mlðk; k̂Þ represents how many times the kth C-cell-plane

has been used for the training of the k̂th S-cell-plane.

Namely, mlðk; k̂Þ is increased by one every time when the S-

cell is selected as a seed, if the kth C-cell-plane has already

been generated at that moment:

Dmlðk; k̂Þ ¼
1 if 1 # k # KCl21

0 if k . KCl21

(
ð23Þ

The inhibitory connection b
slðk̂Þ is determined directly

from the values of the excitatory connections a
slðn; k; k̂Þ and

the corresponding weights wlðk; k̂Þ:

bSlðk̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXKCl21

k¼1

X
lnl,ASl

{aSlðn;k; k̂Þ}
2

cSlðnÞ·wlðk; kÞ

vuuut ð24Þ

For other cell-planes from which no seed cell is selected

ðk – k̂Þ; all of these values, namely, aSlðn;k; kÞ; wlðk; kÞ and

bSlðkÞ; do not changed at this moment.

The method of dual threshold (Fukushima & Tanigawa,

1996) is also used for the learning: Competition among S-

cells is based on the responses with a high threshold value

uL
l ; and signals that are sent to the succeeding stage are

calculated with a lower threshold value uR
l :

To be more specific, outputs of S-cells are calculated

by equation Eq. (18) using threshold value of ul ¼ uL
l :

Competition among S-cells is based on these outputs.

Once seed cells are selected from USl and the connec-

tions have been strengthened by Eqs. (20), (23) and (24),

the outputs of S-cells are calculated again using the

updated connections and the lower threshold uR
l : The

latter outputs of S-cells are then sent to the succeeding

stage. Incidentally, during the recognition phase after

having finished learning, the lower threshold uR
l is always

used.

5.2. The highest stage

S-cells of the highest stage (US4) are trained using a

supervised competitive learning (Fukushima, 2003). The

learning rule resembles the competitive learning used for

training US2 and US3; but the class names of the training

K. Fukushima / Neural Networks 17 (2004) 37–4642



patterns are also utilized for the learning. When the

network learns varieties of deformed training patterns

through competitive learning, more than one cell-plane for

one class is usually generated in US4: Therefore, when

each cell-plane first learns a training pattern, the class

name of the training pattern is assigned to the cell-plane.

Thus, each cell-plane of US4 has a label indicating one of

the 10 digits.

Every time a training pattern is presented, competition

occurs among all S-cells in the layer. If the winner of

the competition has the same label as the training

pattern, the winner becomes the seed cell and learns the

training pattern in the same way as the seed cells of

the lower stages. If the winner has a wrong label (or if

all S-cells are silent), however, a new cell-plane is

generated and is put a label of the class name of the

training pattern.

Competition among S-cells occurs also in the recog-

nition phase, and the label of the maximum-output S-cell

of US4 determines the final result of recognition. We can

also express this process of recognition as follows.

Recognition layer UC4 has 10 C-cells corresponding to

the 10 digits to be recognized. Every time when a new

cell-plane is generated in layer US4 during the learning,

excitatory connections are created from all S-cells of the

cell-plane to the C-cell of that class name. Only one

maximum output S-cell within the whole layer US4 can

transmit its output to UC4:

In the conventional neocognitron, the threshold of the

highest stage for the learning phase was chosen as low as

that for the recognition phase, namely, uL
4 ¼ uR

4 (Fukush-

ima, 2003). In the present system, however, a higher

threshold value is used for the learning phase because of

the following reason. A low threshold produces a large

tolerance area around each reference vector. If we use a

low threshold, the border between two arbitrary classes is

adjusted step by step by generating new cell-planes for

erroneously recognized training patterns, and finally

stabilizes by a power balance of the two classes. In

experiment B, which will be discussed in Section 6.2

below, for example, any of the training patterns for

classes ‘0’–‘4’ are never presented during the second

phase of the learning, in which the network learns

training patterns for classes ‘5’–‘9’. Since no training

pattern from a class is presented in the second phase of

the learning, its class border might be invaded by other

classes. If the threshold is high, however, each cell-plane

has a small tolerance area around its reference vector,

and does not invade deep into the territories of other

classes. We chose this high threshold to protect old

memories from destruction by incremental learning.

The threshold, however, should not be so high as uL
4 < 1:

If we have uL
4 < 1; each training pattern generates its own

cell-plane, and layer US4 behaves like a nearest-neighbor

classifier.

6. Computer simulation

6.1. Scale of the network

We tested the behavior of the proposed network by

computer simulation using handwritten digits (free

writing) randomly sampled from the ETL1 database.2

Incidentally, the ETL1 is a database of segmented

handwritten characters. The network has the same scale

and parameters as the one reported by Fukushima (2003),

except the number of V-cell-planes. That is, the total

number of cells (not counting inhibitory V-cells) in each

layer is: U0 : 65 £ 65; UG : 71 £ 71 £ 2; US1 : 68 £ 68 £

16; UC1 : 37 £ 37 £ 16; US2 : 38 £ 38 £ KS2; UC2 : 21 £

21 £ KC2; US3 : 22 £ 22 £ KS3; UC3 : 13 £ 13 £ KC3; US4 :

5 £ 5 £ KS4; UC4 : 1 £ 1 £ 10: Although the number of

cells in each cell-plane has been pre-determined for all

layers, the number of cell-planes in an S-cell layer (KSl)

is determined automatically during the learning depend-

ing on the training set. In each stage except the highest

one, the number of cell-planes of the C-cell layer (KCl) is

the same as KSl: The recognition layer UC4 has KC4 ¼ 10

cell-planes corresponding to ten digits, and each cell-

plane contains only one C-cell. The thresholds of S-cells

were chosen as follows. For the edge-extracting layer

US1; we chose u1 ¼ 0:55: For the higher layers US2; US3

and US4; the thresholds for the recognition (namely,

thresholds for calculating responses of S-cells) were uR
2 ¼

0:51; uR
3 ¼ 0:58 and uR

4 ¼ 0:30: Those for the learning

(namely, thresholds used for the competition) were: uL
2 ¼

0:66; uL
3 ¼ 0:67: As for the highest stage, however, we

used uL
4 ¼ 0:72; instead of uL

4 ¼ 0:30 that was used for

the previous network (Fukushima, 2003). Parameter s in

Eq. (22) (or Eq. (12) was adjusted to 0.5.

6.2. Recognition rate

To demonstrate that the network accepts incremental

learning, we will show how the recognition rate changes

depending on two different ways of pattern presentation in

the learning.

Experiment A. The network learns a single training set

consisting of patterns of all classes, namely, handwritten

digits from ‘0’ to ‘9’. The training set has the same number

of patterns from each class. The patterns are randomly

sampled from the ETL1 database. To test how the

recognition rate changes depending on the total number of

patterns in the training set, we prepared training sets

consisting of 500, 1000, 2000 and 3000 patterns. The

training set of 500 patterns is a subset of 1000, which in tern

is a subset of 2000, and so on. The patterns in a training set

are presented in the order of ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’,

‘7’, ‘8’, ‘9’, ‘0’, ‘1’,… The training set is presented three

times to the network.

2 ETL1 database: http://www.etl.go.jp/~etlcdb/index.htm.
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After having finished the learning, the recognition rate of

the network is measured using a blind test set. The blind test

set consists of 3000 digits (300 patterns from each class),

which are also randomly sampled from the ETL1 database,

but there is no overlapping of patterns between the training

and the test sets.

Experiment B. The training set used for experiment A is

divided into two: one containing digits from ‘0’ to ‘4’, and

the other from ‘5’ to ‘9’. The network initially learns the

first training set. The patterns are presented in the order of

‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘0’, ‘1’, ‘2’,… After having finished

learning the first training set, the network learns the second

training set. After having finished the first and the second

half of the learning, the recognition rate of the network was

measured using the blind test set. It should be noted here

that no more additional learning for the first training set is

made after starting the second learning.

Table 1 summarizes the recognition rates under these

various conditions. The numbers in the parentheses are the

recognition rates for the training sets. The recognition rates

Table 1

Recognition rates of the network for experiments A and B using training sets of different sizes

Network Method of

constructing

layers

Training patterns Recognition rate (%) for test set

(for training set)

Scale of the

network

Method of presentation Number of patterns After ‘0’–‘4’ ‘5’–‘9’ ‘0’–‘9’ KS2 KS3 KS4

New Simultaneous Together (experiment A) 500 96.2 (100) 97.0 (100) 96.6 (100) 28 86 74

1000 96.5 (99.8) 98.2 (100) 97.3 (99.9) 36 104 103

2000 98.2 (99.9) 98.5 (100) 98.3 (100) 43 128 146

3000 98.1 (100) 98.5 (99.9) 98.3 (100) 45 140 179

Incremental (experiment B) 500 1/2 98.3 (100) – – 24 64 27

2/2 94.1 (97.6) 96.5 (100) 95.3 (98.8) 28 78 58

1000 1/2 98.4 (100) – – 26 72 33

2/2 95.0 (99.0) 97.5 (100) 96.3 (99.5) 32 85 76

2000 1/2 99.1 (100) – – 32 82 46

2/2 97.5 (99.3) 98.6 (100) 98.0 (99.7) 42 108 110

3000 1/2 99.3 (100) – – 35 91 57

2/2 98.1 (99.1) 98.7 (99.9) 98.4 (99.5) 48 129 126

Old Sequential Together (experiment A) 3000 98.3 (100) 98.9 (100) 98.6 (100) 39 110 103

Simultaneous 3000 98.4 (100) 98.2 (99.7) 98.3 (99.9) 45 241 325

Fig. 4. An example of the response of the neocognitron. It has learned a training set consisting of ‘0’–‘4’ first, then a set of ‘5’–‘9’. The input pattern is

recognized correctly as ‘5’.
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for ‘0’–‘4’ and ‘5’–‘9’ have been separately counted, as

well as for all ‘0’–‘9’ patterns, in the table. The numbers of

cell-planes generated when the learning has finished are also

listed. As for experiment B, recognition rates when the first

phase of the learning has just finished are also listed in the

table.

As can be seen from the table, the recognition rates

produced by experiments A and B are almost the same. They

are sometimes slightly better for experiment A, and some-

times better for experiment B, depending on the number of

training patterns. When we used 3000 training patterns, for

example, recognition rates for experiment A and B were 98.3

and 98.4%, respectively. It is interesting to note that the

numbers of cell-planes are smaller for experiment B. These

results show that the memory of the first learning is not

seriously destroyed by the second learning. In other words,

the proposed neocognitron accepts incremental learning

without giving a serious damage to old memories.

For your information, the second line from the bottom of

Table 1 shows the results for the conventional neocognitron,

in which the learning progresses sequentially from lower to

higher stages (Fukushima, 2003). Comparing with these

results, we can see that the new neocognitron produces a

comparably high recognition rate without increasing the

numbers of cell-planes so much, even if simultaneous

construction is adopted, or even if incremental learning is

used.

Incidentally, if simultaneous construction was applied to

the conventional network with the same parameters,

extremely large number of cell-planes were generated as

shown at the bottom line of Table 1. Such a large number of

cell-planes would not be practically acceptable. Probably

many garbage cells were generated in the network. The

recognition rate, however, was 98.3% and was almost the

same as that for the proposed network.

Fig. 4 shows a response of the network that has finished

the learning by experiment B using the training set of 3000

patterns. The responses of layers U0; UG; UC1; UC2; UC3 and

UC4 are displayed in series from left to right. The rightmost

layer, UC4; is the recognition layer, whose response shows

the final result of recognition.

7. Discussion

This paper has proposed a new neocognitron that accepts

incremental learning, without giving a severe damage to old

memories or reducing learning speed. The new neocogni-

tron uses a competitive learning, and the learning of all

stages of the hierarchical network progresses simul-

taneously with a fast learning speed. Cells in higher stages

adapt to the change of the preceding stages of the network,

and the generation of garbage cells, which are always silent

after having finished the learning, can be prevented.

Various systems for incremental learning have been

proposed so far (Carpenter, Grossberg, & Reynolds, 1995;

Hoya & Chambers, 2001; Molina & Niranjan, 1996; Platt,

1991; Polikar, Udpa, Udpa, & Honavar, 2001; Williamson,

1996; Yamauchi, 2001; Yamauchi, Yamaguchi, & Ishii,

1999; Yingwei, Sundararajan, & Saratchandran, 1997).

Most of them combines various methods to protect old

memories from destruction by the incremental learning or

restore the damaged memories.

Some of them try to remove garbage cells that have been

generated during the learning. Another group of methods try

to retrain the garbage cells for other purposes. It is difficult,

however, to judge if a cell is garbage or not, once the cell has

been generated in the network. We cannot use firing

probability or response strength of the cells as a criterion for

finding out garbage cells. Under experiment B discussed in

Section 6.2, for example, any of the training patterns for

classes ‘0’–‘4’ are never presented during the second phase

of the learning, in which the network learns training patterns

for classes ‘5’–‘9’. Since training patterns for classes ‘0’–

‘4’ are never presented during the second phase of the

learning, the cells that are indispensable for the recognition

of ‘0’–‘4’ might not respond at all. We should not remove

cells simply because they are silent during the second phase

of the learning.

Some methods use decay or forgetting factor in the

variable connections to adapt to the changing probability of

occurrence of the training patterns. These methods,

however, might not work well for a situation like

experiment B. Memories for ‘0’–‘4’ might fade out while

learning ‘5’–‘9’.

In contrast to these conventional learning methods, our

learning method suppresses the generation of garbage cells,

rather than removing them after having been generated.

Cells in higher stages adapt to the change of the preceding

stages of the hierarchical network, so as to continue

executing their mission. Since cells can change their input

connections only when they become winners, old memories

stored in the connections are not destroyed even if the cells

are silent for a long time.

Some other conventional methods propose to store

typical examples of old training patterns and relearn them

to restore old memories damaged by the incremental

learning. Our learning method does not require such storage,

either.

In Section 3.2, we assumed that at can be approximated

by Eq. (10) and put WðmÞ ¼
Pm

m¼1 m=ðmþ sÞ: Thinking of a

possibility of simplifying the learning rule, we tried another

approximation for at; that is, at ¼ 1; by which we can have

WðmÞ ¼ m: Computer simulation showed, however, that the

recognition rate under this simpler approximation was a

little worse than that for Eq. (10).
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