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Abstract
For some gray-level images, the boundary between the foreground and the background is 
perceived in correspondence with the locally maximal changes in gray-level through the 
image. In this framework, this paper proposes a method to extract the objects of interest 
from an image and, hence, to distinguish the foreground from the background, starting 
from a partition of the image obtained by means of watershed transformation. The regions 
that  are assigned to the foreground are also hierarchically ranked,  depending on their 
perceptual relevance, so that different representations of the image are possible.
Keywords: Gray-level Images, Segmentation, Binarization.

1. Introduction
Image segmentation is a key step in many applications in pattern recognition, computer vision 
and image understanding to allow further image content exploitation in an efficient way. The 
result of segmentation is a partition of a gray-level image into a number of regions, which are 
homogeneous according to some criteria and belong to either the foreground or the background. 
The automatic computation of the partition is a relatively easy task. It can be achieved by using 
techniques largely discussed in the literature, such as the watershed transformation [1]. In turn, 
the automatic distinction between foreground and background is a complex task, especially when 
it is based only on the analysis of gray-level information, without involving other features, such 
as the shape expected to characterize the foreground components. In fact, human observers often 
classify sets  of pixels with the same gray-level in different manners,  i.e.,  as belonging to the 
foreground, if located in certain parts of the image, and to the background, if located in other 
parts, depending on the local context.

For images that  are perceived as naturally binary, e.g.,  written documents,  the process to 
distinguish  between  foreground  and  background  is  called  binarization,  since  it  refers  to  the 
conversion of a gray-level image into a binary image. We will use the term binarization also in 
this paper, even if we treat images where the gray-levels characterizing the pixels belonging to 
the foreground are not converted to a unique value, since they play a crucial  role for object 
recognition and classification. The term binarization can be used anyway, since by distinguishing 
the foreground and the background, a dichotomy of the gray-level image is produced.

In simple cases, binarization can be achieved by thresholding the image [2], i.e., by assigning 
all  the  pixels  with  gray-level  lower  than  a  given  threshold  to  either  the  background  or  the 
foreground,  and all  the remaining pixels  to  the other set.  However,  often more sophisticated 
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processes are necessary. This is the case when regions with noticeably different gray-levels are 
all regarded as of interest, or when regions with the same gray-level can be regarded as belonging 
to the foreground or to the background, depending on the local context.

Typical examples are biological images, e.g., those including sets of cells or neurons, where 
foreground  pixels  are  characterized  by  a  variety  of  gray-levels,  depending  on  their  intrinsic 
nature, their position within the specimen, the illumination, and so on, and the background is not 
uniform.  To  obtain  a  partition  of  these  images,  it  is  convenient  to  resort  to  the  watershed 
transformation.  The  basic  idea  of  this  transformation  is  to  detect  in  the  gray-level  image  a 
suitable set of seeds from which to perform a growing process.

If mainly gray-level distribution is taken into account, the seeds are detected as the sets of 
pixels with locally minimal gray-level. The growing process associates to each seed all pixels 
that are closer to that seed more than to any other seed, provided that a certain homogeneity in 
gray-level is satisfied. Seed selection is a crucial step. In fact, if all sets of pixels with locally 
minimal gray-level  are  accepted as  seeds,  the obtained partition results  in  a large number of 
regions, not all perceptually significant. Thus, either the sets of pixels with locally minimal gray-
level  should  be  processed  to  filter  out  irrelevant  seeds,  or  a  region  merging step  should  be 
considered to reduce the number of partition regions. In any case, once the watershed partition 
into  a  reasonable  number  of  regions  is  available,  the  assignment  of  these  regions  to  the 
foreground or the background has to be accomplished.

In this paper, we propose a binarization method to distinguish foreground and background 
components  for  watershed  partitioned  images.  Any  identified  connected  component  of  the 
foreground will consist of regions representing individual objects of interest, and for each region 
a  relevance  parameter  will  be  given,  which  weights  that  region  with  respect  to  the  most 
significant part of the same foreground component.

The binarization procedure is based on the integration of the result obtained by a method of 
watershed  segmentation  [3],  which  produces  a  partition  of  a  gray-level  image  into  regions 
characterized by quasi-uniform gray-level distribution, and the analysis of the locally maximal 
changes in gray-level between pairs of adjacent regions.

The  analysis  is  accomplished  in  three  steps,  aimed  at  the  identification  of  foreground 
components  with decreasing perceptual  relevance.  The  first  two steps  perform a  preliminary 
binarization,  while  the  third  step  newly examines  some regions,  temporarily  assigned  to  the 
background  during  the  second  step  and,  possibly,  changes  their  status.  The  obtained 
representation  is  hierarchical,  not  only  due  to  the  relevance  parameter  assigned  to  each 

foreground region, but also due to the articulation of the process 
into three steps. Thus, different representations of the same image 
are  available  for  the  user,  depending  on  the  desired  detail  of 
information.

The  proposed  binarization  is  an  improvement  of  a  method, 
introduced in [4], from which it differs mainly in the completely 
new strategy adopted  during the  second step.  The  new method 
produces a more reliable characterization of the regions in terms 
of their perceptual relevance, by taking into account the position 
of the regions with respect to the parts of the image where locally 
strong differences in gray-level occur.

As a running example, we will use part of a gray-level image 
taken from a specific area, the area TE, in the Rhesus monkey, 
showing mostly layer II and layer III. In the running example, see 
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Fig. 1: Running example. Cells of 
the  cerebral  cortex  of 
mammalians.
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Fig.  1,  the  foreground  is  perceived  as  locally  darker  with  respect  to  the  background.  Some 
regions that the experts classify as belonging to the foreground are lighter than most of the other 
regions assigned by them to the foreground and their gray-levels do not remarkably differ from 
the  gray-levels  in  portions  of  the  image  that  the  same  experts  classify  as  belonging  to  the 
background.

The paper is organized as follows. A preliminary discussion as well as the definitions used 
throughout  the paper are given in Section 2. The method is illustrated in detail  in Section 3. 
There, a running example is used to show the performance of the three steps of the algorithm, 
and a few more examples, showing the results of the binarization algorithm on different images, 
are given. Finally, a brief conclusion is given in Section 4.

2. Preliminary Discussion and Definitions
In the running example, gray-levels are in the range [0, 255] and the foreground is perceived as 
locally darker with respect to the background. Thus, the foreground consists of the pixels having 
locally lower gray-level, according to the generally followed criterion for which the highest gray-
level 255 corresponds to white, while the smallest possible value 0 corresponds to black.

The proposed binarization method starts  from a partition of the  input  image into regions 
characterized by a common property. This property is a function of the context  in which the 
image is used and can be related to the almost homogeneous gray-level distribution within the 
region, or to specific geometrical and/or morphological features. 

Standard watershed transformation [5,6] can be used to obtain a partition of the input gray-
level image. In general, however, these methods produce an excessive number of regions and the 
literature includes a number of papers dealing with the oversegmentation problem, see e.g., [7-9]. 
In this paper, to limit oversegmentation, the watershed partition method described in [3] is used, 
which separates significant regions from non-significant regions according to specific criteria. In 
[2], the non-significant regions are merged with suitably selected 8-adjacent regions in such a 
way to produce a perceptually significant image partition. A peculiarity of this method is that 
significant  regions  are  distinguished  from  non-significant  regions,  by  using  only  gray-level 
information.  The  obtained  watershed  partition  is,  hence,  suited  to  provide  the  input  to  the 
proposed binarization method, which is devoted to the class of images where only gray-level 
information is taken into account.

The  watershed  partition  of  the  running  example  obtained  by  standard  watershed 
transformation is  shown in  Fig. 2(a),  while the partition produced by the algorithm in [3]  is 
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Fig.  2: Watershed lines for the running example: standard watershed partition (a), and 
partition originated by the algorithm [3] (b).
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shown in Fig. 2(b). The number of regions identified by the standard partition method is 2377. 
This number is reduced to only 371 significant regions by the method used in this paper.

An  identity  label  is  associated  with  each  region  of  the  partition  by  the  watershed 
transformation,  to  individually  treat  the  various  components  and  to  count  them.  The  image 
partitioned into N regions is represented by a graph with N  nodes. Each node Ri , i=1,2, , N  
corresponds to a region and the arcs linking the nodes describe the adjacency relations among 
regions. In the following, the terms node and region will be used interchangeably.

A parameter,  r i , is assigned to each node  Ri . This parameter identifies a  representative  
gray-level  value for  the region  Ri .  The value  r i  will  be used,  in the proposed binarization 
method,  to  assign  the  regions  of  the  partition  to  one  of  the  two  categories  foreground  and 
background. To compute r i , we take into account that any region of the partition includes pixels 
with different gray-levels. In particular, the following two criteria to compute r i  are combined:

• r i  is the most frequent gray-level in the region, or – if more gray-levels have the same 
maximal occurrence in the region, is the average of these gray-levels

• r i  is the average of all the gray-levels in the region

It has  been experimentally  found that  it  is  convenient  to  use the  first  criterion  when the 
computed maximal occurrence is at least 30% of the total number of pixels in the region, and the 
second criterion  otherwise.  Naturally,  two adjacent  nodes  may be characterized  by the  same 
value of r i . When this is the case, the two nodes are merged to form a single node. The gray-
levels in the original image are replaced by the ri values representing the regions, so obtaining a 
smoothed image.

A useful  interpretation  of  the  smoothed  partitioned  image  is  given  by  its  3D landscape 
representation,  where  each  region  Ri  of  the  partition  is  seen  as  a  plateau  at  altitude  r i . 
According  to  this  interpretation,  locally  higher  representative  gray-levels  correspond  in  the 
landscape to mountains and hills, while locally lower representative gray-levels correspond to 
valleys, see Fig. 3(a), where a vertical section of the 3D landscape is shown.

A sequence R1 , R2 ,…, R f  of distinct nodes of the partitioned image is a path from R1  to 
R f ,  if  Ri  is  adjacent  to  R i−1  for  i=2, , f .  A  path  from  R1  to  R f  is  said  to  be 

monotonically increasing (decreasing) if r i−1r i  ( r i−1r i ), for i=2, , f .
A node R f  is said to belong to the lower-district (upper-district) of a node R1  if there exists 

a path from  R1  to  R f , constituted only by nodes whose representative gray-value is smaller 
(greater) than or equal to r1 . The set of nodes belonging to the lower-district and upper-district 
of R1  defines the district of R1 , see Fig. 3(b).
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Fig. 3: (a) Section of the landscape representation of a partitioned image. Plateaux identify regions, (b) the thick 
black and gray lines represent regions belonging to upper-district and lower-district of Ri, respectively, (c) the 
thick black and gray lines represent regions belonging to upper-slope and lower-slope of Ri, respectively.
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A node  R f  is  said  to  belong  to  the  lower-slope (upper-slope)  of  R1  if  there  exists  a 
monotonically decreasing (increasing) path R1  to R f . The set of nodes belonging to the lower-
slope and upper-slope of R1  defines the slope of R1 , see Fig. 3(c).

Besides  r i ,  a  second  parameter,  si ,  called  the  relevance  parameter,  will  be  used  to 
hierarchically  rank regions,  depending on their  perceptual  relevance.  More details  on  si  are 
given in Section 3. In principle, ranking can be done for regions of both the foreground and the 
background. In this paper the description is limited to ranking foreground regions only. For any 
such a region,  the parameter  si  will  assume values 1,2,3,...  ,  where 1 indicates the maximal 
relevance.

3. The 3-step Binarization Procedure
As already indicated, gray-level images are considered where one of the two sets, the foreground 
for the running example, is perceived as characterized by locally lower intensity, consistently 
throughout the image. The proposed binarization method is inspired by visual perception. It starts 
from a watershed partition, where the regions forming the mosaic image are distinguished from 
each other, but have not yet been assigned to either the foreground or the background.

The  process  requires  three  steps.  The  first  step  assigns  to  the  foreground  and  to  the 
background regions that without any doubt belong to these categories. These regions are those 
representing  valleys  and  peaks  in  the  landscape.  The  second  step  provides  a  temporary 
assignment of  the  not  yet  assigned regions  to  one of the  two categories.  Since the  boundary 
separating  the  foreground  from  the  background  is  perceived  in  correspondence  with  strong 
differences in gray-level, we base the second step on the computation of the difference between 
the representative gray-level values of all pairs of adjacent regions. In particular, if two adjacent 
nodes Ri  and R j  are such that the difference ij=∣r i−r j∣  is the largest possible one, the two 
nodes are likely to belong one to the foreground and the other to the background. The second 
step terminates when all regions have been assigned. The third step newly examines some of the 
regions temporarily assigned to the background during the second step and possibly changes the 
status of a few of them provided that specific conditions are satisfied.

3.1 Step 1 of Binarization
The first  step of the process regards the assignment to the foreground and the background of 
regions  respectively  representing  valleys  and  peaks  in  the  landscape.  These  regions  are 
respectively characterized  by locally  minimal  and locally  maximal  representative  gray-levels. 
These nodes are globally identified in the graph, independently of the evaluation of how large the 
difference  in  gray-level  is  with  respect  to  the  adjacent  nodes.  However,  if  the  difference  in 
altitude between a valley (peak) and the peaks (valleys) including it is not sufficiently large to 
perceive the valley (peak) as standing out against the surrounding peaks (valleys), assignment of 
such a valley (peak) to the foreground (background) should not be accomplished. To this aim, 
once  valleys  and  peaks  have  been  detected,  a  smoothing  process  is  applied  to  remove  non 
significant peaks. In detail, each peak node which is adjacent to a valley node and whose altitude 
differs less than an a priori fixed threshold from the altitude of the adjacent valley is changed its 
representative gray-level value, to that of the adjacent valley. Whenever a peak is lowered, its 
adjacent valley node is newly checked to verify if it is still a valley. The threshold value is set 
depending  on  image  domain.  Only  valleys  and  peaks  surviving  the  smoothing  process  are 
respectively assigned to foreground and background.

The  regions  assigned  to  the  foreground  do  not  necessarily  have  the  same  perceptual 
relevance, as this depends on the comparison between their altitude and the altitude of the peaks. 
In particular,  it  may happen that  some valley nodes are characterized by representative gray-
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levels higher than the representative gray-levels 
characterizing some peak nodes. This happens, 
for example, in correspondence with parts of the 
specimen that are slightly out of focus. 

For  illustrative  purpose,  see  Fig.  4,  where 
the  profile  of  a  section  of  a  landscape  image 
representation  is  shown.  The  dashed  line 
identifies the altitude of the shortest peak (i.e., 
the smallest gray-level characterizing a regional 
maximum); thick gray and black lines are used 
to color the plateaux respectively denoting peak 
nodes  and  valley  nodes.  Any  valley  in  the 

landscape is worth to belong to the foreground. However, if its representative gray-level is higher 
than the gray-level characterizing a peak, which is obviously assigned to the background, the 
perceptual  relevance  of  that  valley  is  smaller  than  the  perceptual  relevance  pertaining  other 
valleys with representative gray-level lower than the gray-level of every peak.

Two possible values are ascribed to the relevance parameter si . For each detected valley Ri  
si  set to 1 if the altitude r i  is smaller than the minimum altitude 

of all detected peaks, while si  is set to 2 otherwise.
In Fig. 5, the regions of the partition of the running example 

that are ascribed to the foreground at the end of Step 1 are shown 
in two dark gray-tones. The darker gray-tone is used for regions 
with si=1 , while the lighter gray-tone is for regions with si=2 .

3.2 Step 2 of Binarization
The second step regards the assignment to the foreground and the 
temporary assignment to the  background of unassigned regions 
placed along slopes in the landscape. The process is iterated as 
long as unassigned regions exist.

For  each  node  Ri  assigned  to  the  foreground  during each 
iteration, the relevance parameter  si  is set to  nijs j1 , where 
n ij  is the minimum number of foreground regions separating Ri  

from a region, say R j , assigned to the same foreground component during a previous iteration of 
Step 2 or during Step 1, and s j  is the perceptual relevance of R j .

At each iteration, only pairs of adjacent nodes R i , R j   with at least one unassigned node are 
considered. For any such a pair, let us assume that  r jri , and compute the value  ji=r j−ri . 
Let =max{ ji}  be the maximal difference in gray-level for all these pairs. Since the boundary 
between the foreground and the background is perceived as placed wherever strong differences 
in  gray-level  occur,  a  transition  from  foreground  to  background  is  likely  to  exist  in 
correspondence with the nodes of any pair R i , R j   for which  ji= .

Let T  be the set of pairs of nodes with  ji= . The node Ri  ( R j ) of any pair R i , R j   of 
T  will be termed bottom (top) node of  T . Let  maxbottom  and  mintop  be the greatest and the 

smallest representative gray-level values associated to the bottom nodes and to the top nodes of 
the  pairs  in  the  set  T ,  respectively.  These  values  are  used  to  decide  the  process  to  be 
accomplished for the assignment to the foreground and the background of the regions placed 
along slopes in the landscape. At each iteration, two cases are possible.

Case 1: maxbottommin top
Every bottom node of T  (including the bottom node with the highest representative gray-level 
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Fig.  4: Peaks and valleys in a section of the landscape 
representation.  The  dashed  line  passes  through  the 
smallest gray-level identifying a peak.
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maxbottom ) corresponds to a region that, in the landscape, has altitude smaller than the altitude of 
each  region  corresponding  to  a  top  node  of  T  (including  the  top  node  with  the  smallest 
representative gray-level  mintop ). An example of such a configuration is shown by the section 
profile in Fig. 6(a). Three pairs of adjacent nodes are characterized by the maximal difference in 
gray-level  ; the dashed lines pass through the top node and through the bottom node, which, in 
these three pairs, have the smallest and the highest gray-level, respectively. 

In  this  case,  foreground  and  background  assignments  can  be  done  without  any  further 
checking. We ascribe to the foreground (background) every bottom (top) node R s  ( Rk ) of T ; 
moreover, we assign to the foreground (background) every unassigned node Rh  belonging to the 
lower-district (upper-district) of R s  ( Rk ). With reference to Fig. 6(a), at the end of the current 
iteration the three bottom (top) nodes of T  result to be assigned to the foreground (background) 
together with the relative lower-districts (upper-districts). See Fig. 6(b). Some nodes still result 
as not yet assigned. These are the nodes that do not belong to the lower-districts or the upper-
districts of the nodes of the pairs of  T . Step 2 is, then, iterated:    is newly computed and a 
new set T  is identified. Obviously, the value of   computed at this iteration is smaller than the 
value computed at any previous iteration. This guarantees that Step 2 will terminate in a finite 
number of iterations.

Case 2: maxbottommin top
At least one bottom node R s  of  T  corresponds to a region which has altitude greater than or 
equal to the altitude of at least one region represented by a top node Rk  of T . We note that R s  
and Rk  may be placed along the same slope and, in this case have different representative gray-
levels; in turn, R s  and Rk  may be placed along different slopes, and, in this case, they can have 
different  representative  gray-levels,  but  can  also be  characterized by the  same representative 
gray-level.

An example is shown by the section profile in Fig. 7(a), where T  includes three pairs. Two 
pairs are along the same slope, while the third pair is placed along a different slope. For one of 
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Fig. 6: Case 1. A section profile before (a), and after (b), an iteration of Step 2.
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the two pairs of T  placed along the 
same  slope,  the  bottom  node  has 
higher gray-level with respect to the 
top node in the pair placed along the 
same slope; for the third pair of  T , 
located  alone  along  another  slope, 
the  top  node  has  lower  gray-level 
with  respect  to  one  of  the  bottom 
nodes in the other two pairs of T .

In this  case,  assignment  cannot 
be  accomplished  by  the  same 
procedure  used  for  Case  1,  since 
some nodes in the pairs of T  can be 
equivalently assigned to foreground 
or  to  background.  This  is  the  case 
for bottom (top) nodes characterized 
by  gray-level  larger  than  mintop  
(smaller  than  maxbottom ). Any such 
a  node  can  be  interpreted  as 
belonging to the  foreground and to 
the background at the same time. In 
fact,  such  a  bottom  (top)  node 
should be assigned to the foreground 
(background), by taking into account 
that its gray-level is smaller (larger) 
than  the  gray-level  of  the  top 
(bottom)  node  in  the  pair.  At  the 
same  time,  that  bottom (top)  node 
should  be  assigned  to  the 
background (foreground),  by taking 
into  account  that  its  gray-level  is 
larger  than  mintop  (smaller  than 
maxbottom ).

Among the pairs in  T , we first 
assign the nodes for which decision 
can  be  taken  in  a  unique  way.  To 

this purpose, the minimum value is computed,  minbottom , among the gray-levels of all  bottom 
nodes in T , and the maximum value, maxtop , among the gray-levels of all top nodes in T . Any 
bottom (top) node R s  ( Rk ) with r s=min bottom  ( r k=max top ) can be assigned without any doubt 
to the foreground (background).  For any such a bottom (top) node  R s  ( Rk ) assigned to the 
foreground (background), we also assign to the foreground (background) every unassigned node 
belonging to the lower-district (upper-district) of R s  ( Rk ), exactly as done in Case 1. See Fig.
7(b), where the bottom (top) node with gray-level minbottom  ( maxtop ) as well as its entire lower-
district (upper-district) has been assigned to the foreground (background).

After this “safe” assignment, the bottom nodes of  T  are examined in decreasing order of 
their representative gray-level value. Only pairs  R i , R j   of nodes in  T , out of which at least 
one node is still unassigned, are taken into account. Let R s  be the bottom node such that r s  is 
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Fig. 7: Case 2. A section profile before an iteration of Step 2 (a), “safe” 
assignment, done during the iteration after the computation of maxtop 
and minbottom (b), final assignment accomplished during the iteration 
(c).
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the maximum among the gray-levels of all  bottom nodes of  T  
and let Rs , R t   be the pair of T  including R s . We ascribe R s  
(if still unassigned) to the foreground and Rt  (if still unassigned) 
to  the  background;  moreover,  we  assign  to  the  foreground 
(background) any unassigned node  Rk  belonging to the lower-
slope (upper-slope) of R s  ( Rt ). Note that differently from Case 
1, only the lower-slope (upper-slope) is considered, instead of the 
lower-district (upper-district).

With reference to Fig. 7, we note that the pair R s , R t   that is 
analysed first  is the pair where the top node  Rt  has gray-level 
maxtop , and has already been assigned to the background by the 

“safe” assignment. After R s  is assigned to the foreground, all the 
unassigned nodes with non increasing gray-level, i.e. placed along 
the lower-slope, are also assigned to the foreground. Since only 
the lower-slope of  R s  is  considered,  assignment to  the foreground will  not  include also the 
unassigned nodes with gray-level smaller than or equal to  r s , that are placed along the slope 
climbing towards the third, isolated, pair of T . In fact, these nodes belong to the lower-district 
of  R s ,  but  not  to  its  lower-slope  and  will  be  assigned  when  the  third  pair  of  T  will  be 
examined. The upper-slope of Rt  does not include unassigned nodes. Thus, the next pair of T  
is examined, in decreasing order of the gray-level of the bottom nodes. This pair is the third pair 
of T , placed alone along a slope. In fact, the second pair of T , along the slope of the pair just 
processed, has both nodes already assigned.

Once all the pairs of nodes in T , out of which at least one node is still unassigned have been 
processed, the current iteration terminates. The result at the end of the current iteration can be 
seen in Fig. 7(c).

As it has been already pointed out, Step 2 is iterated until all nodes are assigned to either the 
foreground or the background. Our local process favours the assignment of most of the slope to 
the  foreground;  however,  we point  out  that  the  nodes  belonging to  lower-districts/slopes  are 
assigned  higher  and  higher  relevance  parameter  and  are,  hence,  regarded  as  less  and  less 
significant. The result at the end of Step 2 for the running example is shown in  Fig. 8, where 
different gray-tones account for different values of the relevance parameter. Lighter tones denote 
less significant regions.

We point out that also in [4] Case 1 and Case 2 were taken into account, but the procedures 
adopted to treat the two cases were different. In particular, after a bottom (top) node R s  ( Rk ) of 
T  was assigned to the foreground (background) in Case 1, a global assignment to the foreground 

(background) was also performed for all the nodes of the graph corresponding to the regions with 
altitude smaller (greater) than or equal to r s  ( r k ). This assignment was accomplished without 
checking whether such nodes were actually placed along the districts of  R s  ( Rk ). Obviously, 
the computational cost of that  process is smaller than the cost associated to the new process, 
where the districts associated with a given node have to be identified. On the other hand, the new 
method outperforms the method presented in [4].

Another example is shown in  Fig. 9. In this case, the input image represents a pyramidal 
neuron of bovine cerebral cortex, stained with Golgi method. The perceived foreground includes 
a main blob-shaped body as well as a number of protruding thin elongated regions.

3.3 Step 3 of Binarization
At the end of Step 2 all nodes result to be assigned, at least temporarily, to either the foreground 
or the background. During Step 3, the status of some nodes assigned to the background in Step 2 
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Fig.  8: Foreground  components 
after Step 2.
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is changed. Any background node that we consider as candidate to change its status is, at least 
partially, adjacent to some foreground components and is characterized by a representative gray-
level  that  is  the  minimum among  the  representative  gray-levels  pertaining  its  neighbouring 
background nodes. Of course, the gray-level of the candidate node is larger than the gray-level of 
the foreground nodes it is adjacent to.

There are two options that the user selects depending on his/her needs. In case of images like 
the running example, where the shape and the size of the individual object components is roughly 
similar, the status of a candidate node is changed only if the change does not cause a topology 
change in the image (Option 1). In fact, status modification is done, in this case, with the purpose 
of favouring region growing without merging individual foreground regions into clusters. In turn, 
when the shape and size of the object components largely differ, as it is the case for the example 
shown in Fig. 9, a candidate node is assigned to the foreground only if this assignment causes a 
topology change (Option 2). 

The perceptual relevance parameter si  of a node reassigned during Step 3 is set by the same 
procedure already described for Step 2.

The results obtained at the end of Step 3 are illustrated in  Fig. 10. In particular,  Fig. 10(a) 
shows the result obtained for the running example with Option 1. In turn, in Fig. 10(b), the result 
by  using  Option  2  for  the  image  in  Fig.  9(a)  is  shown.  Only  two  gray-tones  are  used  for 
simplicity. The light gray-tone denotes regions assigned to the foreground during Step 3, while 
the dark gray-tone denotes regions assigned during Steps 1 and 2.
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Fig. 9: Pyramidal neuron of bovine cerebral cortex (a), watershed lines (b), result after 
Step 1 (c), and Step 2 (d).

(a)

(d)(c)

(b)
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A few more examples showing the performance of our method can be seen in Fig. 11.
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Fig.  10:  Results after Step 3. Option 1 (a), and Option 2 (b), have been respectively 
used for the running example and for the image in Fig. 9(a).

(a) (b)

Fig. 11: Set of biological input images (left column) and the corresponding binarizations (right column). From top 
to  bottom,  pyramidal  neurons  of  bovine  cerebral  cortex,  pyramidal  neurons  of  rabbit  cerebral  cortex,  Hydra 
vulgaris.
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Most of the images that we have used to test our process belong to a set of biological images 
with average size of 512x512. The proposed binarization method has been also applied to images 
belonging to different classes to check its validity. For example, it was applied to face images 
with the aim of identifying the most relevant face parts (eyes and lips) in the framework of face 
recognition.

4. Conclusion
A method to identify foreground components in a partition of a gray-level image, obtained by 
watershed  segmentation  has  been  discussed.  Both  global  and  local  assignment  processes  are 
taken into account. A global process is done only during Step 1. In fact, this step is based on the 
computation  of  valleys  and  peaks,  which  be  done  with  high  degree  of  confidence.  Local 
processes are used within Step 2, during which regions placed on the slopes of the landscape are 
assigned. During Step 2, the pairs of adjacent nodes having maximal difference in gray-level are 
identified. These nodes are assigned together with the nodes placed along their lower and upper-
districts/slopes. A local process is also accomplished during Step 3. Notwithstanding the method 
mostly requires local processes, the whole computational cost is limited to a few seconds, since 
all  computations  are accomplished on a graph whose nodes  correspond to the regions  of  the 
partitioned image. 

An  interesting  feature  of  the  proposed  method  is  the  fact  that  foreground  regions  are 
hierarchically ranked by means of the parameter  si . Two different kinds of hierarchy can be 
seen. The first hierarchy ranks the regions of the foreground components in three main levels, 
since  three  are  the  steps  of  the  process.  Foreground regions  detected  at  Step 1 are  the  most 
perceptually relevant, as they correspond in the landscape representation to significant valleys; 
regions detected during Step 2 have smaller relevance, since they correspond to nodes placed 
along the  slopes  of  mountains  and hills;  finally,  regions  detected  during Step  3 are  the  less 
significant ones, as they were actually assigned to the background during Step 2. The second 
hierarchy is determined within each step. It is based on gray-levels within Step 1, and on the 
distance, expressed in terms of the number of nodes along the slope, within Steps 2 and 3.

Acknowledgements
We gratefully  acknowledge  Dr.  Daniel  L.  Roe  (Department  of  Anatomy and  Neurobiology, 
Boston University School of Medicine, Boston, MA ,USA), Dr. Douglas L. Rosene (Department 
of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA,USA, and 
Yerkes National Primate Research Center, Emory University, Atlanta,GA,USA) and Dr. Vittorio 
Guglielmotti (Neuroanatomy Research Group, Institute of Cybernetics, CNR, Pozzuoli, Naples, 
Italy)  and  Dr.  Carlo  Musio  (Neurosystems  Research  Group,  Institute  of  Cybernetics,  CNR, 
Pozzuoli,  Naples,  Italy)  for  kindly  providing  the  images  that  we  used  as  input  to  test  the 
presented binarization procedure.

References
[1] P. Soille, Morphological image analysis – principles and applications. Springer, Berlin, 2003.
[2] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance 

evaluation,” Journal of Electronic Imaging, 13-1, 146-165, 2004.
[3] M.  Frucci,  “Oversegmentation  reduction  by  flooding  regions  and  digging  watershed  lines,” 

International Journal of Pattern Recognition and Artificial Intelligence, 20-1, 15-38, 2006.
[4] M. Frucci, C. Arcelli, and G. Sanniti di Baja, “On the hierarchical assignment to the foreground of 

gray-level image subsets,” Int. Journal of Pattern Recognition and Artificial Intelligence, 20-6, 897-
912, 2006.

12



FROM SEGMENTATION TO BINARIZATION OF GRAY-LEVEL IMAGES

[5] S. Beucher and C. Lantuejoul,  “Use of watersheds in contour detection,”  Proc. Int.  Workshop on 
Image Processing, Real-Time Edge and Motion Detection/Estimation, Rennes, France, 1979.

[6] S.  Beucher  and  F.  Meyer,  “The  morphological  approach  of  segmentation:  the  watershed 
transformation,”  In  Dougherty E.  (Ed.),  Mathematical  Morphology  in  Image  Processing,  Marcel 
Dekker, New York, 433-481, 1993.

[7] L. Najman and M. Schmitt, “Geodesic saliency of watershed contours and hierarchical segmentation,” 
IEEE Trans. Pattern Anal. Mach. Intell., 18-12, 1163-1173, 1996.

[8] P.  De  Smet  and  R.  Pires,  “Implementation  and  analysis  of  an  optimized  rainfalling  watershed 
algorithm,”  SPIE's  12th  Annual  Symposium  Electronic  Imaging  2000:  Science  and  Technology,  
Conference: Image and Video Communications and Processing (ei26),  San Jose, California USA, 
2000.

[9] J.  Weickert,  ”Efficient  image segmentation  using partial  differential  equations  and  morphology,” 
Pattern Recognition, 34, 1813-1824, 2001.

13


