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Résumé
Brzozowski’s minimization algorithm is based on two successive deter-

minization operations. There is a paradox between its (worst case) exponen-
tial complexity and its exceptionally good performance in practice. Our aim
is to analyze the way the twofold determinization performs the minimization
of a deterministic automaton. We give a characterization ofthe equivalence
classes of

�
w.r.t. the set of states of the automaton computed by the first

determinization. The second determinization is expected to compute these
equivalence classes. We show that it can be replaced by a specific procedure
based on the classes characterization, which leads to a moreefficient variant
of Brzozowski’s algorithm.

Keywords : Finite automata, DFA minimization, Brzozowski’s algorithm.

1 Introduction

It is well known that given a regular language� over an alphabet� there exists
a canonical deterministic automaton which recognizes� , namely the minimal (de-
terministic) automaton of� , whose states are the left quotients of� w.r.t. the words
of ��. This automaton, denoted by�� , is unique (up to an isomorphism) and it has
a minimal number of states [13]. Moreover, it can be computedfrom any determi-
nistic automaton recognizing� by merging states which have identical right lan-
guages. There exist numerous algorithms to minimize a deterministic automaton.
Watson published a taxonomy on this topic [18].
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Among the various possible constructions, Brzozowski’s minimization algo-
rithm [3] is of a specific interest, regarding to several criteria which are discussed
below. Let us first recall how it works. Let� be a (non necessarily deterministic)
automaton,� �� � be the subset automaton of� and� �� � be the reverse automaton
of � . Brzozowski’s algorithm is based on the following theorem :

�� � � �� �� �� �� ����

This is a deep result since it relates DFA minimization to a basic operation, the
determinization one. Let us mention that it has been generalized by Mohri to the
case of bideterminizable transducers defined on the tropical semiring [12]. Brzo-
zowski’s theorem is also a fundamental tool for the computation of the nondetermi-
nistic minimal automata of a regular language. Let us cite the implementation [6]
of the canonical automaton�� defined by Carrez [4, 1] and the construction of the
fundamental automaton� � by Matz and Potthoff [11].

We are here especially interested by algorithmic and complexity features. Wat-
son used the fact that Brzozowski’s algorithm can take a nondeterministic auto-
maton as input to design an algorithm which directly constructs a minimal deter-
ministic automaton from a regular expression [19]. Since our aim is to study the
way Brzozowski’s algorithm performs a minimization, we will essentially consider
the case when the initial automaton is a deterministic one. The paradox is the fol-
lowing : since Brzozowski’s algorithm performs two determinizations, its (worst
case) complexity is exponential w.r.t. the number of statesof the initial automaton ;
nevertheless, as reported by Watson [18], Brzozowski’s algorithm has proved to
be exceptionally good in practice, usually out-performingHopcroft’s algorithm [7]
significantly. Let us add that the average complexity of the algorithm has been pro-
ved to be exponential for group automata, although they likely are a favourable
case since they are both deterministic and codeterministic[14].

Our contribution is the following. Let� be a deterministic automaton. We give
a characterization of the equivalence classes of� w.r.t. the set of states of�� �� �,
that is after the first determinization. The second determinization is expected to
compute these equivalence classes. We show it can be replaced by a specific proce-
dure based on the classes characterization, which leads to amore efficient variant
of Brzozowski’s algorithm.

Next section recalls some useful notations and definitions of automata theory.
Section 3 is especially devoted to determinization and minimization operations.
Section 4 presents Brzozowski’s minimization algorithm and its proof. Section 5
provides an original analysis of the algorithm and the variant it leads to.
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2 Preliminaries

Let us first review basic notions and terminology concerningfinite automata
and regular languages. For further details, classical books [2, 8] or handbooks [20]
are excellent references.

Let � be a non-empty finite set ofsymbols, called thealphabet. Symbols are
denoted by� � � � � � � � � � �� . A word � over � is a finite sequence�� � � �� � ���� �� �
of symbols, usually written� ��� ����� . The lengthof a word�, denoted�� � is the
number of symbols in�. Theempty worddenoted by� has a zero length. If� �� ��� ����� and	 � 
 �
� ���
� are two words over�, theirconcatenation� �	 , usually
written�	 , is the word� ��� ����� 
 �
� ���
� . The set of all thewordsover� is denoted
��. A languageover� is a subset of��. The operations of union, concatenation
and star over the subsets of�� are calledregular operations. Theregular languages
over � are the languages obtained from the finite subsets of�� by using a finite
number of regular operations.

A (finite) automaton is a 5-tuple � �� � � � � � � � � � where� is a (finite) set
of states,� is a finite alphabet,� � � is the set of initial states,� � � is the set of
final states, and� is the transition function. The automaton is deterministic(
is a DFA) if and only if �� � � � and� is a mapping from� �� to � . Otherwise
is aNFAand� is a mapping from� �� to �� . The automaton is completeif and
only if � is a full mapping. Apathof  is a sequence��� � �� � ��� � �, � � �� � � � � � , of
consecutive edges. Itslabel is the word� � � ��� � � � �� . A word � � � ��� � � � ��
is recognizedby the automaton if there is a path with label� such that� � � �
and��� � � � . The language� � � recognizedby the automaton is the set of
words which it recognizes. Two automata and � areequivalentif and only if
they recognize the same language. A state isaccessible(resp.coaccessible) if and
only if there is a path from an initial state to this state (resp. from this state to a
final state). An automaton istrim if and only if all its states are both accessible and
coaccessible.

Kleene’s theorem [10] states that a language is regular if and only if it is reco-
gnized by a finite automaton.

Let � be a state of� � �� � � � � � � � � �. Theright languageof � is the language
� ! �� � (written � ! �� � if not ambiguous) recognized by the automaton� ! �� � �
�� � � � � � � � � � obtained from� by making� the unique initial state. Theleft lan-
guageof � is the language� " �� � (written � " �� � if not ambiguous) recognized by
the automaton� " �� � � �� � � � � � � � � � obtained from� by making� the unique
final state. We will use the following proposition :

Proposition 1 An automaton is deterministic if and only if the left languages of its
states are pairwise disjoint.
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The reverse� �� � of the word� is defined as follows :� �� � � � and, if � �
� �� � ����� , then � �� � � 	 �	� ���	� , with 	� � �� ��� �, for all � from � to � . The
reverse of the language� is the language� �� � � �� � � �� � � � �. The reverse
of the automaton� � �� � � � � � � � � � is the automaton� �� � � �� � � � � �� � � � � � �,
obtained from� by swapping the role of initial and final states and by reversing
the transitions.

We will use the following propositions, where� is a trim automaton :

Proposition 2 If � recognizes the language� then� �� � recognizes the language
� �� �.
Proposition 3 If the left (resp. right) language of the state� in � is � " �� � (resp.
� ! �� �), then its left (resp. right) language in� �� � is � ! �� � (resp.� " �� �).

3 Determinization and minimization operations

3.1 Determinization

Definition 1 Let� � �� � � � � � � � � � be a NFA. The subset-automaton of� is the
automaton� �� � � ��� � � � � � � ��� � � � � � defined as follows [8, 20] :

– Set of states : A deterministic state is a set of nondeterministic states ; for all
� � in ��, we have� � � � .

– Initial state : The initial state in� �� � is the set� of initial states in� .
– Set of transitions : Let� � be a deterministic state and� be a symbol in�. If

the transition from� � on symbol� is defined, then, by construction, its target
is the state� � �� � � � � such that :

� � �� � � � � � ����� � �� � � � � (1)

– Set of final states : A deterministic state is final if and onlyif it contains at
least one final nondeterministic state :� � � � � � � � 	 � 
� �.

We will use the following proposition :

Proposition 4 The right language of a state� � of � �� � is equal to the union of the
right languages of the states� of � belonging to the subset� �.

Let � (resp. n’) be the number of states in� (resp. in� �� �). As stated by Rabin
and Scott [16], the upper bound�� � ��  � can be reached. Moreover, the auto-
maton� �� � can be computed with the following complexity [15, 5] :� ������ �
when using lists, and� �� � ���� � ��� � when using balanced search trees.
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3.2 Minimization

The (left) quotient of a regular language� w.r.t. a word� of �� is the language
�� �� � �	 � � � � �	 � � �. The minimal automaton�� of a regular language�
is defined as follows :

– the set of states is the set of quotients of� ,
– the initial state is� ,
– the final states are the quotients which contain the empty word,
– the transition function is such that� ��� �� � � � � ��� �� ��.

The automaton�� is unique up to an isomorphism and it has a minimal number
of states [13]. We will use the following proposition :

Proposition 5 A (deterministic, complete, accessible) automaton is minimal if and
only if the right languages of its states are all different.

The automaton�� can be computed from any deterministic automaton reco-
gnizing� by merging states which are equivalent w.r.t. Nerode equivalence :

� � � � �� � � � � � � � � � � , �� � �� �
Computing Nerode equivalence can be realized with a� �� � � complexity [13].

Using the notion of coarsest partition leads to a complexityof � �� ��	 �� �� [7].

4 Brzozowski’s minimization algorithm

Let � be an automaton. Let� �� � (resp.� �� �) be the subset automaton (resp.
the reverse automaton) of� . We will write �� �� � for � �� �� ��, ��� �� � for � �� �� �� ���
and���� �� � for � �� �� �� �� ����.

Brzozowski’s algorithm is based on the following theorem [3] :

Theorem 1 (Brzozowski, 1962) Given a (non necessarily deterministic) automa-
ton� recognizing a regular language� , the minimal deterministic automaton��
of � can be computed by the formula :

�� � ���� �� �
Proof. The proof is based on Propositions (1)–(5). By construction, the automa-
ton ���� �� � is deterministic, complete and accessible. From Proposition (2) it
recognizes the language� . Let us show that the right languages of���� �� � are
all distinct. From Proposition (1) the left languages of�� �� � are pairwise dis-
joint. From Proposition (3) the right languages of��� �� � are the left languages of
�� �� �. Therefore they are pairwise disjoint. From Proposition (4) a right language
of ���� �� � is a union of right languages of��� �� �. Since the right languages of
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��� �� � are pairwise disjoint, the right languages of���� �� � are all distinct. Thus,
by Proposition (5) the automaton���� �� � is minimal.

5 Analysis of Brzozowski’s algorithm

5.1 Split and join for minimizing

Let � be an automaton which recognizes a regular language� . We study the
transformation of the sequence�! � �� ! �� ��� �� of the right languages of the
states of� , when the twofold determinization is performed :

�! ��!� � �! � !�!� � �!
Notice that since the languages of�

�! are pairwise disjoint and the languages of�
�!

are all distinct,�
�! and�

�! are sets. Let us remind that the right language of a state is
a (left) quotient of� if � is deterministic and a subset of the intersection of some
(left) quotients of� if � is nondeterministic. The first determinization splits the
right languages of� into disjoint pieces, whereas the second one joins the pieces
in order to recombine the set of (left) quotients of� . The effect of the twofold de-
terminization is illustrated by the Example 1. This exampleis intentionally simple :
the initial automaton is deterministic and even minimal.

Example 1
Let � � and �� be two states of� . We suppose that there exist three distinct

words, �, 	 and � such that :� ! �� �� � �� � 	 �, � ! ��� � � �	 � � �, �� � � �
� ! �� �� � �� ��, �� � � � � ! �� �� � ��� � and �� � 	 � � ! �� �� � �� � � �� �.
We suppose that there exist two distinct words,� and � such that :� " �� �� � ���,
� " ��� � � ���, �� � � � � " �� �� � �� �� and �� � � � � " �� �� � ��� �.

The determinization of� �� � produces the three states� ��, � �� and � �� of �� �� �
such that :� �� � �� ��, � �� � ��� � and � �� � �� � � �� �. The right languages of� ��,
� �� and � �� in ��� �� � are pairwise disjoint (they are respectively equal to�� �, �� �
and �	 �).

The effect of the first determinizationis that the two right languages�� � 	 �
and �	 � � � of � have been split into three right languages in��� �� � : �� �, �� �
and �	 �.

Notice that the left languages of� ��, � �� and� �� in ��� �� � are respectively equal
to ���, ��� and �� � �� and thus all distinct. This is due to the fact that� is deter-
ministic (see Proposition (6)).
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The determinization of��� �� � produces the two states� ��� and � ��� of ���� �� �
such that :� ��� � �� �� � � �� � and � ��� � �� �� � � �� �. The right languages of� ��� and � ��� in
���� �� � are distinct (they are respectively equal to�� � 	 � and �	 � � �).

The effect of the second determinizationis that the three right languages�� �,�� � and �	 � of ��� �� � have been joined into two right languages in���� �� � :�� � 	 � and �	 � � �.
5.2 The deterministic case

Brzozowski’s algorithm can be applied to a nondeterministic automaton. Here
we focus on the case when� is deterministic. Proposition (6) is due to Brzo-
zowski [3]. Proposition (8) and Corollary (1) are very likely not original. These
propositions are gathered in this section for sake of completeness.

Proposition 6 If � is deterministic, then�� �� � is the minimal automaton of� �� �.
Proof. Since� is deterministic, its left languages are pairwise disjoint, and so are
the right languages of� �� �. The right languages of�� �� �, which are unions of
right languages of� �� �, are therefore all distinct.

Proposition 7 If � is deterministic, then a state of��� �� � is a union of Nerode
equivalence classes of the automaton� .

Proof. The transition function of� �� � is denoted by�� . Let � � and�� be two states
of � � �� � � � � � � � � �. We have :

� � � �� � �� ! �� �� � � ! ��� � � �
� � �" �� � � � �

� � �" ��� ��
Let � � be a state of�� �� �. By construction, there exists a word� of �� such that

� � � �� �� � � �. We have :� � �� �� � � � � � � �
� � �" �� �. Therefore,� � and�� are

equivalent if and only if they are such that :� � � �� �� � � � � �� � �� �� � � �. Thus,
a state of��� �� � is a union of equivalence classes of states in� .

Corollary 1 Let� be a deterministic automaton recognizing a regular language
�. Let� be the number of states of� . Let � be the number of (left) quotients of�.
Then the deterministic complexity of� �� � is �� � �� .

The following proposition leads to a characterization of the equivalence classes
of � . It says that two states� and� of � are equivalent if and only if they belong
to the same states of�� �� �. This property can be seen as a corollary of Proposi-
tion (8).
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Proposition 8 Let� and � be two states of� . It holds :

� � � � �� � � � � � � , �� � �!� � � �

Proof. We have :� � � � �� � � ! �� � � � � � ! �� �, �� � �� �. Moreover
� ! �� � � �� �� � �� " �� ��, with � � �!� � �. Hence the result.

6 A variant of Brzozowski’s minimization algorithm

We still assume that� is deterministic. We show that the Proposition (8) leads
to an original computation of the equivalence classes of thestates of� after the
determinization of� �� � is achieved. On the one hand this result allows us to have
a better understanding of how Brzozowski’s algorithm performs the minimization :
the second determinization actually is a state-equivalence-based procedure. On the
other hand it yields a variant of Brzozowski’s minimizationalgorithm, where the
second determinization is replaced by a more efficient computation of the equiva-
lence classes.

The Algorithm 1 computes the equivalence classes of� . The partition of�
initially contains two sets :�  � and � . At each step of the algorithm, a set�

of the current partition contains possibly equivalent states, in the sense that so
far they belong to the same states of�� �� �. Every time a new state� of �� �� �
is processed, it is checked w.r.t. every set of the partitionin order to detect sets
containing non-equivalent states of� .
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1. Begin
2. � �� ������ � ��  � � � �
3.

� �����	 � �� �
4. While

� �����	 
� � do begin
5. � � � �� �� �� �����	 �
6.

� �����	 � � �����	  �� �
7. � �������� � � �������� � �� �
8. for all � � � do begin
9. � � �� �� � � � ; if � 
� � �������� then

� �����	 � � �����	 � �
10. end
11. for all

� � � �� ������ do begin
12. � � � 	 �
13. if � 
� � then � �� ������ � � �� ������ � �
14. if � 
� �

then � �� ������ � � �� ������ � ��

� �

15. if
� 
� � then � �� ������ � � �� ������ � ��


� �

16. end
17. end
18. end

Algorithm 1: Algorithm to extract equivalence classes of� .

The complexity of the Algorithm 1 is exponential since it contains the determi-
nization of� �� �. However it is likely more efficient to extract equivalence classes
on the fly than performing a second determinization.

7 Conclusion

Brzozowski’s minimization algorithm is both simple and mysterious. It is based
on two basic and easily understandable operations. Howeverthe behaviour of the
algorithm is not so obvious. Its average complexity and experimental performance
are still unknown or unexplained. This short analysis is intended to contribute to
a better understanding of how this algorithm performs the minimization. In par-
ticular it shows that the place of Brzozowski’s algorithm, in a taxonomy such as
Watson’s one, is among minimization algorithms based on thecomputation of a
state equivalence.
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