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Abstract

Traditionally, state assignment algorithms follow the
two-step strategy of first constraint generation and secondly
constraint-guided encoding. There are well known
drawbacks in both currently used models for constraint
generation. Approaches following the input model generate
face constraints without taking into account the sharing of
logic among next state lines. Approaches following the
input-output model generate face constraints for a priori
determined set of dominance/disjunctive relations among
the codes of the states which may not hold in final encoding.
To overcome these limitations, we propose a dynamic input
model which implements both above cited steps
concurrently. The dynamic constraints are of the face type
but they are generated during the encoding process and so
take advantage of actual relations among partial codes. A
general algorithm based on this model and which can target
two-level as well as multiple-level implementations is
described. Results obtained with the algorithm on the
IWLS’93 machines are shown and they compare favorably
with standard tools .

1.- Introduction

Frequently, when synthesizing logic integrated cir-
cuits, there are symbolic variables in the specification of a
design. The binary encoding of such symbols should be
chosen to optimize the final implementation. This task is
known as the encoding problem. In particular, if the sym-
bolic variables are input (output) variables of the function
being synthesized, it is called an input (output) encoding
problem. A very interesting encoding example is the state
assignment of finite state machines which arises during the
design of sequential circuits. Classically, this problem is
formulated as that of obtaining a binary code for each state
of the FSM so that given design criteria are optimized.
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Most of the state assignment algorithms aim to minimize
the area of an implementation of the combinational compo-
nent assuming a predetermined design style (two level, mul-
tilevel). This is, codes should be given such that the
combinational minimizer produces good results. The difficul-
ty resides in the prediction of the subsequent combinational
step [1]. In general, based on this prediction on combinational
synthesis effects, a set of constraints on the relationship be-
tween codes for different states are derived. Then, symbols
are encoded such that constraints are satisfied.

 Many algorithms approach the state assignment as an
input encoding problem. This is, present states are consid-
ered as symbolic input variables while next states are given
a 1-hot code during the generation of constraints. Other al-
gorithms treat state assignment as a combined input-output
problem as symbolic states appear in both the present state
field and the next state field.

In this paper we investigate the limitations of the input
and the input-output models and propose a new one for the
state assignment problem. The new model can be described
as a dynamic input model because only present states are
considered symbolic, being the constraints modified con-
currently with the encoding step. Information on partial
codes generated so far is used to take into account the effect
of the next state field. The rest of the paper is organized as
follows. Section 2 reviews concepts and notation. Section 3
describes both previous models and their limitations. Sec-
tion 4 introduces the new model. Section 5 describes the al-
gorithm developed. Section 6 summarizes experimental
results. Finally some conclusions are given in Section 7.

2.- Definitions

In this section we review some basic concepts in en-
coding theory and introduce the notation we will use.

Definition 1.- Binary encoding: given a set of symbols
S={ S1, S2, ...,Sn} and an integer k, a binary encoding of S
is a one-to-one mappingS

We can think of the encoding as a code matrix
C where theith row represents the code as-
signed to symbolSi, and the jth column represents bitj of
the encoding.

0 1{ , }→ k

0 1{ , }∈ nxk



Definition 2.-Face constraint: a group constraint gc
on a set of symbolsS = { S1, S2, ..., Sn} is a subsetS’ of
symbols fromS which must be assigned such that the min-
imum boolean cube containing their codes does not inter-
sect the codes of the symbols absent fromS’.

Definition 3.- (seed) Dichotomy: a dichotomyd is a
disjoint two block partition, (B1:B2), associated with a
group constraintgc1, such that the blockB1 contains all
symbols that belongs togc1 andB2 contains exactly one of
the symbols that does not belong togc1. A dichotomy con-
straint requires that subsetB1 of d be distinguished from
subsetB2 of d by at least one encoding bit.

Definition 4.-Dominance relation: the code of a sym-
bol S1, enc(S1) dominates the code of symbolS2, enc(S1) >
enc(S2), if for each bit position inenc(S2)  that contains a 1,
the corresponding bit position inenc(S1) also contains a 1.

Definition 5.-Disjunctive relation: the code of sym-
bol S1, enc(S1), is the disjuntion of the codes of the symbols
S2, S3 ... andSk, enc(S1) = enc (S2) | enc(S3) | ..|enc(Sk), if
the codeof S1 is the bitwise OR of the codes ofS2, S3, .,Sk.

3.- Models and Limitations

3.1 State assignment as an input encoding problem

Fundamental developments in the input encoding
problem targeting two level implementations were the
work in [2] where a tabular representation of the function
with symbolic inputs is symbolically minimized and the
use of two-level multiple-valued minimization for this task
[3]. This minimization step generates face constraints on
the relationship between codes for different symbols. In a
following step, symbols are encoded such that constraints
are satisfied. Satisfaction of the constraints guarantees that
the optimization at the symbolic level will be preserved in
the boolean domain: a two level implementation with as
many product terms as in the minimal symbolic cover can
be obtained. Later, this strategy was extended to multi-lev-
el implementations with the development of multi-level
multiple-valued optimization algorithms [4]. When model-
ing the state assignment as an input encoding problem a 1-
hot code is used for the next states. Symbols appear now
only in the input field and so the above input techniques can
be applied. Better area results (average reduction of 20%)
have been obtained with minimum-length algorithms as
compared to others that attempt to satisfy all constraints at
the expense of an increased number of state variables for
two-level implementations [5]. Thus, practical algorithms
maximize constraint satisfaction for a given (user-specified
or minimum) encoding length. Examples of algorithms fol-
lowing this input model are ihybrid_code and
igreedy_code in NOVA [6], or ENCORE [7].

Approximating state assignment in this way neglects

the effect of the next state field. The number of product
terms in the symbolic minimized cover is only an upper
bound for the size of the boolean cover when using an en-
coding which satisfies the complete set of constraints be-
cause next states have disjoint ON-sets in the symbolic
cover while in the boolean cover several states can have a
1 on the same position [1].

3.2 State assignment as an input-output problem

When dealing with symbolic outputs, two types of
constraints are more widely used. They are the dominance
and the disjunctive relationship between the codes assigned
to different output symbols. Heuristic [8] as well as exact
[9] techniques that generate constraints which when satis-
fied result in maximal (maximum) sharing during the com-
binational minimization step have been reported. Both
input (face) constraints and output (disjunction and/or
dominance) constraints arise in input-output problems. An
important difference with the input model is that it is not
possible to state the unconditional existence of an encoding
that satisfies both a set of face relations and a set of domi-
nance and disjunctive relations [1]. Concerning state as-
signment, algorithms which are extensions to output
encoding strategies above referenced have been proposed.
In [9] a method that guarantees a two level boolean cover
with a minimum number of product terms is reported.
However, heuristic approaches are more interesting from a
practical point of view. In optionio_hybrid in NOVA [6] a
symbolic minimization loop based on [8] is used to build
up a set of face and dominance constraints. During the con-
straint satisfaction step, and using a minimum length en-
coding, it attempts to maximally satisfy the set of
constraints. However, there are face constraints which are
meaningful only if given dominance relations hold and cur-
rent techniques do not take into account these interferences
between both types of constraints.

4.- Dynamic Input Encoding Problem

To overcome limitations of the input model, next state
must be taken into account but the relationship between face
constraints and dominance and disjunctive relations should
be efficiently handled. We propose a new dynamic input
model in which only present states are considered symbolic,
being the constraints modified concurrently with the encod-
ing step. Information on partial codes generated so far is
used to take into account the effect of the next state field.

Next, we report experiments conducted for the
IWLS’93 FSM benchmark set [10]. The same encoding al-
gorithm was applied to two different sets of constraints for
each machine. Those obtained with 1-hot next states (con-
ventional face constraints) and those without the next state
field (output-field face constraints). Results are summa-



rized in Table I. Machinesdonfile ands1a have been elim-
inated because they have equal outputs for every input-
present state combination specified. In total, the cost of im-
plementing the benchmark is similar. However, individual
results are quite different. In 8 of the 18 machines tp’s
counts obtained with each approach differ equal or more
than 25%. Each one wins in half the cases. The two strate-
gies can be considered as opposite as while the cardinality
of minimized symbolic cover with 1-hot next states is an
upper bound for the cardinality of the encoded cover, the
other one represents a lower bound.

These results suggest that it is worth exploring an inter-
mediate approach which takes into account the implementa-
tion of the next state lines but allows the sharing of logic
among them. We propose to modify the set of face con-
straints dealing with during the encoding step by employing
a column based assignment algorithm. Thus, before the
building of each column, symbolic minimization of the
original description substituting next state field with col-
umns generated so far is performed. This aims at deriving
new face constraints (dynamic face constraints) which are
added to the current set or allow to modify existing ones.

5.- New Algorithm Description

5.1 The dynamic approach

Figure 1 shows the pseudo-C description of the pro-
posed algorithm for state assignment. The core of the algo-
rithm is the functionAssigns_column which generates a
column of the encoding matrix, CODES. Note that it works
with a different set of constraints, derived by function
Generates_constraints, at each iteration. After having
produced one encoding column, functionSelects_phase
chooses between it and its complement. Next, we explain
with more detail each function.

Let us start by functionAssigns_column and suppose
the j-th column of the encoding is to be generated. Initially
all its bits are assigned to 1. The algorithm assigns bits to 0

until the resulting column together with thej -1 previously
built columns forms a valid partial encoding. This is, it is
possible to distinguish every state with the columns still not
generated. The key of the procedure is the selection of
which bit to assign to 0 each time. This task is accom-
plished by functionSelects_Symbol_to_assign_0. It eval-
uates a cost for each bit (symbol) which can be fixed to 0
without avoiding the generation of a valid partial encoding.
Then the bit which maximizes this cost is selected and as-
signed to 0. We propose to use as cost function a weighted
sum of the satisfied seed dichotomies. The weight of each
seed dichotomy is related to the fraction of associated seed
dichotomies from same face constraints satisfied by previ-
ously generated columns. This aims at favoring the satis-
faction of dichotomies leading to the fulfillment of group
constraints.

FunctionGenerates_constraints produces the set of
constraints that will guide the generation of thej-th column
using thej-1 columns already generated. In the original
symbolic description the next state field is substituted by
the partial encoding. TheDynamic_constraints obtained
are added to current constraints,Constraint_matrix. Note
that conventional face constraints are also included in
Constraint_matrix at the beginning of the algorithm.

Function Selects_phase takes advantage of the fact
that a valid partial encoding is preserved under comple-
mentation of columns. The column produced by
Assigns_column or its complement will be used for the fi-
nal encoding depending on which one results in a smaller
minimized symbolic cover.

The above algorithm description fits both two level
and multi-level implementations: depending on the target
style a two-level multiple-valued minimizer or a multi-lev-
el multiple-valued one will be used.

Table I: conventional / output-field constraints.

FSM conv.
tp

output-
field tp FSM conv.

tp
output
field tp

s208 25 20 pma 45 57

s420 25 20 styr 94 86

dk16 59 77 tbk 154 59

ex1 48 46 s820 76 81

ex2 29 40 s832 72 73

keyb 48 115 planet 91 98

s1 80 64 s1494 139 139

sand 101 110 s1488 133 132

tma 33 35 scf 148 159

Face_constraints = symbolic_minimization;
/* (description with 1-hot coded next states)*/
Constraint_matrix = Face_constraints;
for(j= 1; j <= number of variables; j++)
{ Constraint_matrix=+ Generates_constraints();
Assigns_column(j, Constraint_matrix);
Selects_phase();
}
Assigns_column(j, Constraint_matrix)
{ while(column is invalid)
i = Selects_Symbol_to_assign_0(CODES, Constraint_matrix);
CODES[j][ i] = 0;
}
Generates_constraints(j)
{ Dynamic_constraints = symbolic_minimization;
/* ( substituying next states by j -1 columns generated));
adds Dynamic_constraints to Constraint_matrix;
}
Figure 1. - Description of the algorithm.



5.2 Reshaping the conventional face constraints

The algorithm above described compares favorably
with standard state assignment tools as will be shown in next
Section. However, simply adding the constraints generated
at each iteration is not the only way in which information on
partial codes can be exploited. Next, we illustrate that from
the minimized covers which dynamic constraints are ob-
tained from, it can be concluded that a given conventional
constraint does not require to be satisfied, or that any con-
straint from a given set can be satisfied instead. This is, in-
formation on partial codes can be used so that not only new
face constraints are added before the next encoding column
is generated, but conventional constraints are modified in or-
der to ease its satisfaction. Let us consider machinebbara
from IWLS’93 benchmark set. Part of The minimal symbol-
ic cover is shown in Figure 2a with the conventional con-
straints in bold. Now assume that the strategy described in
Section 5.1 is adopted. So, let us suppose that the encoding
column in Figure 2b has been obtained by any algorithm.
Before generating second encoding column multiple-valued
minimization is applied incorporating the encoding column
in Figure 2b and, producing the cover in Figure 2c. Note that
a constraint consisting of all the states, which always holds,
has appeared. Also note that the symbolic implicant in
which it is contained (in bold in Figure 2c) covers symbolic
implicant with an asterik in Figure 2a. This is, the input field
of symbolic implicant in Figure 2c contains the input field of
symbolic implicant from Figure 2a, the present state field
contains the present state field, the output field dominates
the output field and there is a 1 in the next state field of sym-
bolic implicant in Figure 2c, and the state in the next state
field in Figure 2a,st1, has a 1 in the encoding column we are
using (Figure 2b). If the code ofst1 is completed with zeros,
the symbolic implicant with the asterik in Fig. 2a can be im-
plemented with only one product term in the boolean do-
main even if its associated face constraint is violated
because certain relations hold among the codes of the states.
Thus, such constraint does not need to be satisfied.

In general, minimization incorporating information on
partial codes does not lead to the elimination of any conven-
tional constraint but it can simplify its satisfaction. This situ-
ation arises when a covering relation holds between a
symbolic implicant from an intermediate minimization and
one from the conventional, but the present state field of the
first does not contain the whole set of states. In this case the
conventional constraint can be reshaped. The modification
involves the addition of inspecifications. Let us callD the dy-
namic constraint andG the conventional one. Those states in
D but not inG are taken as inspecifications in the newG. So,
it does not matter whether their codes intersect the minimum
cube containing the symbols originally inG. So, satisfaction
of G has been simplified. Inclusion of inspecifications can
make satisfiable a constraintG which is not.

6.- Experimental Results

This Section shows the results obtained with DISA, a
C implementation of the algorithm described in Section
5.1. Table II summarizes the results obtained with different
state assignment algorithms for a subset of the FSM bench-
mark and two level implementations. The algorithms in-
cluded are: 1) NOVAi-hybrid, 2) NOVA io-hybrid, 3)
ENCORE (results taken from [7]), 4) COL, a column based
on functionAssigns_Columm working with the conven-
tional input constraints at every iteration, and 5) DISA, the
dynamic approach described in Section 5.1. Note that
NOVA ihybrid, ENCORE and COL handle the same set of
face constraints. DISA updates these constraints during the
encoding step but uses same column generation algorithm
than COL. Finally, NOVAio-hybrid deals with both face
and dominance constraints. The five algorithms generate
minimum length codes. The number of product terms in the
combinational component for the encodings obtained with
each program after logic minimization is shown in Table II.
Times are given in seconds in a SparcStation 10.

First we compare NOVAi-hybrid, an standard tool,
and COL in order to validate the cost function used in the
generation of the encoding columns. COL outperforms
NOVA in 9 of the 20 machines while NOVA obtains better
results than COL also in 9 machines. Implementation of the
20 examples is a 7% more expensive with NOVA. Com-
paring thei-hybrid and theio-hybrid options slightly better
total results are produced with theio-hybrid approach.
DISA obtains better results than COL in 13 of the 20 ma-
chines. Only in two cases worse results were produced by
DISA. In global, implementation of benchmark set is
around 20% more expensive with an standard tool like
NOVA than with the proposed dynamic approach DISA. A
version of DISA incorporating the arguments stated in Sec-
tion 5.2 is currently being developed.

7.- Conclusions

This papers presents a novel algorithm for the state as-
signment of sequential circuits. Limitation of commonly
used approaches which follow a two step encoding para-
digm are overcome by the new approach by modifying the
constraints during the encoding phase. Modifications are
made on the basis of actual relations among the codes of the
states. We have shown that the preliminary version of the
new algorithm compares favorably to standard state assign-
ment tools. The ideas supporting a more elaborate version
currently being developed have been sketched. We think
the work presented in this papers paves the way for a new
treatment of input-output encoding problems.
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Table II: Comparison of state assignment algorithms.
 total: summ tp’s counts all machines; total$ summ tp’s count machines with ENCORE results available

FSM tp
 ihybrid

time
ihybrid

tp
 iohybrid

time
iohybrid

tp
ENCORE

tp
COL

tp
DISA

time
DISA

s208 25 8.9 24 62.3 * 26 23 3.2

s420 25 8.7 24 62.9 * 26 23 4.1

dk16 59 69.3 62 385.4 58 63 70 8.2

donfile 35 138.2 47 455.4 18 23 18 5.7

ex1 48 14.6 52 227.6 45 46 42 14.3

ex2 29 1.3 44 74.0 32 32 32 4.1

keyb 48 9.0 102 93.4 51 85 48 18.8

s1 80 2.3 75 239.1 86 87 76 11.0

s1a 76 1.9 73 213.1 73 76 62 3.3

sand 101 15.0 99 585.9 100 98 98 150.5

tma 33 15.8 35 82.3 * 34 34 19.0

pma 45 45.0 51 140.3 * 45 50 24.4

styr 94 27.4 106 762.6 * 93 87 38.1

tbk 154 339.0 94 2993.2 129 52 52 84.7

s820 76 6.7 66 364.8 * 63 58 10.1

s832 72 6.1 64 388.0 * 66 62 10.0

planet 91 21.9 99 1657.6 90 89 89 151.7

s1494 139 150.4 120 2064.3 * 126 104 69.9

s1488 133 154.9 119 1985.1 * 137 101 68.3

scf 148 214.7 143 12242.1 140 151 136 751.2

total 1511 1499 1418 1265

total $ 822 802 723

. mv 6 4 10 12

.p 34
1011 0000100000 0000010000 00
1011 0000010000 0000001000 00

..
..
0011 0000010000 0000100000 00
0011 0001001000  0000000100 00
0011 1100100001  1000000000 00
-111 0100000000 0010000000 00
-111 0010000000 0001000000 00
1011 1111000111  0000100000 00
10-- 0000001000 0000001000 01
-111 1000111111  0100000000 00 *

...
a)

.mv 6 4 10 3
10-- 0000001000 0 01
-1-- 0001000000 0 10
---0 0000001000 0 01
--0- 0000001000 0 01
---0 0001000000 1 10
--0- 0001000000 1 10
0-11 1111101111 1 00
-111 1111111111 1 00
---0 1110000111 1 00
--0- 1110000111 1 00

st0
st1
st2
st3
st4
st5
st6
st7
st8
st9

b)

Figure 2.- a) conventional minimized symbolic cover; b) encoding column; c) intermediate min-
imized symbolic cover.
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