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Abstract: Since modern programmable devices contain embedded memory blocks, there 
exists a possibility to implement Finite State Machines (FSM) using such blocks. The size 
of the memory available in programmable devices is limited, though. The paper presents a 
general method for the synthesis of sequential circuits using embedded memory blocks. The 
method is based on the serial decomposition concept and relies on decomposing the 
memory block into two blocks: a combinational address modifier and a smaller memory 
block. An appropriately chosen decomposition strategy may allow reducing the required 
memory size at the cost of additional logic cells for address modifier implementation. This 
makes possible implementation of FSMs that exceed available memory by using embedded 
memory blocks and additional programmable logic. 
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1. INTRODUCTION 
 
Decomposition has become an important tool in the 
analysis and design of digital systems. It is 
fundamental to many fields in modern engineering 
and science (Brzozowski and Luba 1997; Hartmanis 
and Stearns 1966; Luba 1994; Zupan and Bohenec 
1966a, b; Ross, et al., 1991). Functional 
decomposition relies on breaking down a complex 
system into a network of smaller and relatively 
independent co-operating sub-systems, in such a way 
that the original system’s behavior is preserved. A 
system is decomposed into a set of smaller 
subsystems, such that each of them is easier to 
analyze, understand and synthesize. 
 
By taking advantage of the opportunities the modern 
microelectronic technology provides us with, we are 
in a position to build very complex digital circuits 
and systems at relatively low cost. There is a large 
variety of logic building blocks that can be exploited. 
The library of elements contains various types of 
gates; a lot of complex gates can be generated in 
(semi-)custom CMOS design; and the field 
programmable logic families include different types 
of (C)PLDs and FPGAs. However, the opportunities 
created by modern microelectronic technology are 
not fully exploited because of weaknesses in 
traditional logic design methods. 
 
Recently, new methods of logic synthesis based on 
functional decomposition have been developed 
(Luba, et al., 1995; Chang, et al., 1996; Burns, et al., 
1998; Jozwiak and Chojnacki 1999; Qiao, et al., 
2000). Unfortunately decomposition-based methods 
are considered as methods suitable mainly for 
implementation of combinational functions.  
 
Modern FPGA architectures contain embedded 
memory blocks. In many cases, designers do not 
need to use these resources. However, such memory 
blocks allow implementation of sequential machines 
in a way that requires less logic cells than the 
traditional flip-flop based implementation. This may 
be used to implement “non-vital” sequential parts of 
the design, saving logic cell resources for more 
important sections. However such an implementation 
may require more memory than available in a device. 
To reduce memory usage in ROM-based sequential 
machine implementations, decomposition-based 
methods can be successfully used (Luba, et al., 
1992). 
 
In this paper, basic information is introduced first. 
Secondly, application of decomposition in the 
implementation of sequential machines is presented. 
Subsequently, some experimental results, obtained 
with a prototype tool that implements functional 
decomposition, are discussed. 

The experimental results demonstrate that 
decomposition is capable of constructing solutions 
(utilizing embedded memory blocks) of comparable 
or even better quality than the methods implemented 
in commercial systems. 
 
 

2. BASIC NOTIONS 
 
2.1 Functional decomposition 
 
Let A and B be two subsets of X such that A ∪  B = X. 
Assume that the variables x1,...,xn have been relabeled 
in such way that: 

A = {x1,...,xr} and  
B = {xn–s+1,...,xn}. 

Consequently, for an n-tuple x, the first r components 
are denoted by xA and the last s components by xB. 
 
Let F be a Boolean function, with n > 0 inputs and 
m > 0 outputs. Let (A, B) be as defined above. 
Assume that F is specified by a set F of the 
function’s cubes. Let G be a function with s inputs 
and p outputs; let H be a function with r + p inputs 
and m outputs. The pair (G, H) represents a serial 
decomposition of F with respect to (A, B), if for 
every minterm b relevant to F, G(bB) is defined, 
G(bB) ∈  {0, 1}p., and F(b) = H(bA, G(bB)). G and H 
are called blocks of the decomposition. 
 
Partition-based representation of Boolean functions 
can be used to describe functional decomposition 
algorithms (Brzozowski and Luba 1997; Luba and 
Selvaraj 1995; Luba 1994; Luba, et al., 1996; 
Rawski, et al., 1997). 
 
If there exists a r-partition ΠG on F such that 
P(B) ≤ ΠG, and P(A) •  ΠG ≤ PF, then F has a serial 
decomposition with respect to (A, B). 
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Fig. 1. Schematic representation of the serial 
decomposition 

 
The serial decomposition process consists of the 
following steps: an input support selection (the most 
time-consuming part of the process), calculation of 
partitions P(A), P(B) and PF, construction of partition 
ΠG, and creation of functions H and G (Luba and 
Selvaraj 1995). 



 
 
2.2. Finite state machine 
 
Let A = 〈V, S, δ〉 be an FSM (completely or 
incompletely specified) with no outputs (outputs are 
omitted as they have insignificant impact on the 
method), where: 

V – set of input symbols, 
S – set of internal states, 
δ – state transition function, 

and m = log2 |V|, n = log2 |S| denote the number of 
input and state variables respectively. 
 
To describe logic dependencies in such an FSM 
special partition description (Brzozowski and Luba 
1997) and special partition algebra (Hartmanis and 
Stearns 1966) are employed. 
 
Let K be a one-to-one correspondence between the 
domain Dδ of transition function and K = {1, ... , p}, 
where p = |Dδ|. The characteristic partition Pc of an 
FSM is defined in the following way: 

(k1, k2) ∈  BPc iff δ(K-1(k1)) = δ(K-1(k2)) 
Thus, each block BPc of the characteristic partition 
includes these elements from K which correspond to 
pairs (v, s) from the domain Dδ such that the 
transition function δ(v, s) = s’ maps them onto the 
same next state s’. 
 
A partition P on K is compatible with partition π on S 
iff for any inputs va, vb the condition that si, sj belong 
to one block of partition π implies that the elements 
from K corresponding to pairs (va, si) and (vb, sj) 
belong to one block of the partition P. 
 
A partition P on K is compatible with partition θ on 
V iff for any state sa, sb the condition that vi, vj belong 
to one block of partition θ implies that the elements 
from K corresponding to pairs (vi, sa) and (vj, sb) 
belong to one block of the partition P. 
 
In particular, a partition P on K is compatible with 
the set {π, θ} if it is compatible with both π and θ, 
while it is compatible with set {π1, ..., πα} of 
partitions on S (or set {θ1, ..., θα} of partitions on V) 
iff it is compatible with π = π1 •  π2 •  π3 •  ... •  πα 
(θ = θ1 •  θ2 •  θ3 •  ... •  θα). 
 
 
3. ROM IMPLEMENTATION OF FINITE STATE 

MACHINES 
 
FSM can be implemented using ROM (Read Only 
Memory) (Luba, et al., 1992). Figure 2 shows the 
general architecture of such an implementation. State 
and input variables (q1, q2, ..., qn and x1, x2, ..., xm) 
constitute ROM address variables (a1, a2, ..., am+n). 
The ROM would consist of words, each storing the 

encoded present state (control field) and output 
values (information field). The next state would be 
determined by the input values and the present-state 
information fedback from memory.  
 
This kind of implementation requires much fewer 
logic cells than the traditional flip-flop 
implementation (or does not require them at all, if 
memory can be controlled by clock signal – no 
register required); therefore, it can be used to 
implement “non-vital” FSMs of the design, saving 
LC resources for more important sections of the 
design. However, a large FSM may require too much 
of buried memory resources.  
 
The size of the memory needed for such an 
implementation depends on the lengths of the address 
and memory word. 
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Fig. 2. Implementation of FSM using memory blocks 

 
Let m be the number of inputs, n be the number of 
state encoding bits and y be the number of output 
functions of FSM. The size of memory needed for 
implementation of such an FSM can be expressed by 
the following formula: 

M = 2(m+n) × (n + y), 
where m + n is the size of the address, and n + y is 
the size of the memory word. 
 
Since modern programmable devices contain 
embedded memory blocks, there exists a possibility 
to implement FSM using these blocks. The size of 
the memory blocks available in programmable 
devices is limited, though. For example, Altera’s 
FLEX family EAB (Embedded Array Block) has 
2048 bits of memory and the device FLEX10K10 
consists of 3 such EAB’s. Functional decomposition 
can be used to implement FSMs that exceeded that 
size. 
 
 
3.1. Address modifier 
 
Any FSM, say A, defined by a given transition table 
can be implemented as in Fig. 3 using an address 
modifier.  



If π1, ..., πn are partitions on S, θ1, ..., θm are partitions 
on V, and Pk is partition on K compatible with either 
πi or θj then P = {P1, ..., Pm+n} is the set of all 
partitions compatible with {π1, ..., πn, θ1, ..., θm }. 
Partitions π1,..., πn correspond to state variables and 
θ1, ..., θm correspond to input variables. To achieve 
unambiguous encoding of address variables, and at 
the same time maintaining the consistency relation K 
with the transition function δ, partitions P1, .., Pw 
have to be found, such that: 

P1 •  P 2 •  P 3 •  ... •  Pw ≤ Pc. 
This is the necessary and sufficient condition for 
{P1, .., Pw} to determine the address variables. This is 
because each memory cell is associated with a single 
block of Pc, i.e. with those elements from K which 
map the corresponding (v, s) pairs onto the same next 
state. 
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Fig. 3. Implementation of FSM using an address 

modifier 

 
The selection of w (w < n + m) partitions from the set 
{P1, ..., Pm+n} is made such that they produce the 
simplest addressing unit. Such a selection is possible 
thanks to the notion of r-admissibility (Luba 1994). 
 
A set {P1, ..., Pk} is r-admissible in relation to 
partition P iff there is a set {Pk+1, ..., Pr} of two block 
partitions such that the following condition holds: 

P1 •  P 2 •  P 3 •  ... •  Pk •  Pk+1 •  ... •  Pr ≤ Pc 
and no set of r – k – 1 partitions exist which meets 
this requirement. 
 
For partition ρ ≤ σ let σ|ρ denote the quotient 
partition and ε(σ|ρ) the number of elements in the 
largest block of σ|ρ. Let e(σ|ρ) be the smallest 
integer equal to or larger than log2ε(σ|ρ) (i.e. 
e(σ|ρ) = log2ε(σ|ρ)). Then the r-admissibility of 
{P1, ..., Pk} is r = k + e(π|πf), 
where π is the product of P1, ..., Pk and πf is the 
product of π and P.  
 
If P = {P1, ..., Pk} is r-admissible in relation to P then 
each subset of P is r’-admissible, where r’ ≤ r. 
 

The smallest partition i.e. one where each element is 
a separate block, will be denoted as P(0), π(0), θ(0), 
etc. 
 
 
3.2. Input/state encoding 
 
The source of the complexity of the address modifier 
is in the address variables which depend on more 
than one input/state variables. Therefore it is 
important to choose such an encoding of input and 
internal state symbols that we could obtain maximal 
set of partitions P (compatible with π or θ) whose r-
admissibility in relation to Pc is w, where w is the 
number of address bits of the given ROM block. 
 
Appropriate encoding will be determined by 
generating partitions with the knowledge that r-
admissibility of a partition P compatible with 
partition π = (B1; ...; Bi; ...; Bα) or compatible with 
partition θ = (B1; ...; Bi; ...; Bα) is: 

r = log2α + log2 max |δ(Bi), 
where Bi is a block of partition π or θ, δ is the 
transition function, max |δ(Bi) denotes the number of 
elements in the most populous set δ(Bi), i ∈  {1... α}. 
Because of the one-to-one correspondence between 
partitions P and π or θ, r-admissibility of π, θ or 
{π, θ} in relation to Pc can be considered. 
 
For a given w, the necessary encoding that allows the 
implementation of the FSM with the use of address 
modifier can be found in the following way: 
1. find r1 = r-admissibility of θ(0); find r2 = r-

admissibility of π(0), 
2. if r1 = w (or r2 = w) then a1 = x1, ..., ax = xx (or 

a1 = q1, ..., ax = qq) and further encoding 
partition are searched among π(0) (or θ(0)), 

3. if both r1 > w and r2 > w then for subsequent 
steps θ if |V| < |S| or π if |V| > |S| is taken, 

4. assume that θ was chosen in the previous step; 
for i = 1, 2, ... and α = 2m-i  find θ = (B1; ...; Bα) 
so that |B1| + |B2| +...+ | Bα| = |V| and whose r-
admissibility equals w. 

 
In a similar way π = (D1; ...; Bβ), β = 2n-j

, j = 1, 2, ... 
are found. The set {π, θ} must have r-admissibility of 
w. Partitions π and θ can be represented as follows: 

π = π1 •  π2 • ...•  πk, 
θ = θ1 •  θ2 • ...•  θl, 

where  
k = log2β, 
l = log2α. 
 

The encoding of the remaining input and state 
variables can be obtained from the following rules: 

π1 •  π2 • ...•  πk •  π’ = π(0), 
θ1 •  θ2 • ...•  θl •  θ’ = θ(0), 

where π’ and θ’ represent partitions induced by those 
variables. 



 
After all the variables are encoded the process 

may be considered as a decomposition of the 
memory block into two blocks: a combinational 
address modifier and a smaller memory block. 
Decomposition is computed for partitions: 

P(A) = π •  θ = π1 •  π2 • ...•  πk •  θ1 •  θ2 • ...•  θl, 
P(B) = π’•  θ’. 

 
Appropriately chosen strategy of decomposition may 
allow reducing required memory size at the cost of 
additional logic cells for address modifier 
implementation. This makes possible implementation 
of large FSMs that need more than available memory 
by making use of the embedded memory blocks and 
additional programmable logic. 
 
 

4. EXPERIMENTAL RESULTS 
 
The proposed method was applied to implement 
several examples from standard benchmark set in 
FLEX10K10 devices using ALTERA MAX+PlusII 
system. In Table 1 a comparison of different FSM 

implementation techniques are presented. In the 
column named ROM Implementation, the number of 
bits required to implement a given FSM using ROM 
is presented. FLEX10K10 device is equipped only 
with 3 EAB memory blocks each consisting of 2048 
bits. Most of the presented FSM examples cannot be 
implemented in this device, because their 
implementations require much more memory 
resources than available. In the column called FF 
Implementation, the number of logic cells required to 
implement the given FSM in the “traditional” way 
using flip-flops is given. To describe the FSM for 
this kind of implementation, a special  AHDL (Altera 
Hardware Description Language) construction was 
used. In the column under AM implementation, the 
results of implementation of the given FSM using the 
concept of address modifier are presented. In this 
approach, the address modifier was implemented 
using logic cell resources and ROM was 
implemented in EAB blocks (Fig. 3). The number of 
logic cells and the number of memory bits are given 
in the table as results. It can be easily noticed that the 
application of decomposition improves the quality of 
ROM as well as flip-flop implementation.  

 
Table 1. Comparison of FSM implementation results of standard benchmarks in FPGA architecture 

(EPF10K10LC84-3 device ). 1) Implementation not possible – not enough memory resources, 
2) implementation not possible – not enough CLB resources  

 

AM implementation
Benchmark ROM Implementation 

#bits 
FF implementation 

#LCs  
#LCs #bits 

bbtas 160  10   7  80 
beecount 448  32   14  112 
d14 512  60   21  256 
mc 224  14   2  56 
lion9 320  24   1  80 
train11 320  25   15  8 
bbsse 22528 1) 52   3  5632 
cse 22528 1) 92   2  5632 
ex4 13312 1) 28   2  3328 
mark1 10240 1) 40   2  5120 
s1 24576 1) 137   96  5632 
sse 22528 1) 52   3  5632 
tbk 16384 1) 759 2)  333  4093 
s389 22528 1) 64   9  5632 
∑ 156608  1389   510  41293 
% 100 % 100 %  36.7%      26.4% 



 

Table 2. Comparison of FSM implementation results in FPGA architecture (EPF10K10LC84-3 device). 
1)  FSM described with special AHDL construction; 2)  decomposition not possible; 3) not enough 

memory bits to implement the project 
 

FF_MAX+PlusII ROM AM_ROM 
Example  LCs / Bits Speed 

[MHz] LCs / Bits Speed 
[MHz] LCs / Bits Speed 

[MHz] 
DESaut 46/0 41,1 8/1792 47,8 7/896 47,1 
5B6B 93/0 48,7 6/448 48,0 – 2) – 2) 

count4 72/0 
18/0 1)

 

44,2 
86,2 1) 16/16384 – 3) 12/1024 39,5 

 
 
The application of address modifier concept allows 
implementing FSM in such a way that only about 
37 % of logic cell resources required in flip-flop 
implementation and about 27% of memory resources 
required in ROM implementation is used. 
Application of address modifier concept allows 
implementing all the presented FSMs using available 
memory and additional parts (address modifier) 
implemented in CLBs.  
 
In Table 2 results of implementation of several “real 
life” FSMs are presented. Following examples were 
used in the experiments: 

•  DESaut – the state machine used in DES 
algorithm implementation, 

•  5B6B – the 5B-6B coder, 
•  count4 – 4 bit counter with COUNT UP, 

COUNT DOWN, HOLD, CLEAR and 
LOAD. 

Each sequential machine was described by a 
transition table. The results for each method of 
implementation are presented using the number of 
logic cells and memory bits required (i.e. area of the 
circuit) and the maximal frequency of clock signal 
(i.e. speed of the circuit). The columns under the 
FF_MAX+PlusII heading present results obtained by 
the Altera MAX+PlusII system for the classical flip-
flop implementation of FSM. The ROM columns 
provide the results of ROM implementation; the 
columns under AM_ROM present the results of ROM 
implementation with the use of address modifier. 
Especially interesting is the implementation of the 4-
bit counter. Its description with a transition table 
leads to a strongly non-optimal implementation. On 
the other hand, its description using a special AHDL 
construct produces very good results. The ROM 
implementation of this example requires too many 
memory bits (the size of required memory block 
exceeds the available memory), thus it cannot be 
implemented in the given structure. Application of 
the address modifier concept allows reducing the 
necessary size of memory, and that makes the 
implementation possible. The performance of the 
FSMs implemented with the use of address modifier 
concept is not significantly degraded.  

 
 

5. CONCLUSIONS 
 

Balanced decomposition produces very good results 
for combinational functions implemented using 
FPGA-based architectures. However, results 
presented in this paper show that functional 
decomposition can be efficiently and effectively 
applied beyond the implementation of combinational 
circuits. Decomposition can be applied to implement 
large FSM in an alternate way – using ROM. This 
kind of implementation requires much fewer logic 
cells than the traditional flip-flop implementation; 
therefore, it can be used to implement “non-vital” 
FSMs of the design, saving LC resources for more 
important sections of the design. However, large 
FSMs may require too much buried memory 
resources. With the concept of address modifier, 
memory usage can be significantly reduced. The 
experimental results shown in this paper demonstrate 
that the synthesis method based on functional 
decomposition can help in implementing sequential 
machines using ROM memory. 
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