
FSM IMPLEMENTATION IN EMBEDDED MEMORY BLOCKS OF PROGRAMMABLE LOGIC
DEVICES USING FUNCTIONAL DECOMPOSITION

Henry Selvaraj*, Mariusz Rawski, Tadeusz Łuba

*University of Nevada, Las Vegas

4505 Maryland Parkway, Las Vegas, NV 89154-4026, USA
email: selvaraj@unlv.edu

Warsaw University of Technology, Institute of Telecommunications

Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract: Since modern programmable devices contain embedded memory blocks, there
exists a possibility to implement Finite State Machines (FSM) using such blocks. The size
of the memory available in programmable devices is limited, though. The paper presents a
general method for the synthesis of sequential circuits using embedded memory blocks. The
method is based on the serial decomposition concept and relies on decomposing the
memory block into two blocks: a combinational address modifier and a smaller memory
block. An appropriately chosen decomposition strategy may allow reducing the required
memory size at the cost of additional logic cells for address modifier implementation. This
makes possible implementation of FSMs that exceed available memory by using embedded
memory blocks and additional programmable logic.

Keywords: digital circuits, logic minimization, implementation, sequential machines,
programmable read only memory, Boolean functions

1. INTRODUCTION

Decomposition has become an important tool in the
analysis and design of digital systems. It is
fundamental to many fields in modern engineering
and science (Brzozowski and Luba 1997; Hartmanis
and Stearns 1966; Luba 1994; Zupan and Bohenec
1966a, b; Ross, et al., 1991). Functional
decomposition relies on breaking down a complex
system into a network of smaller and relatively
independent co-operating sub-systems, in such a way
that the original system’s behavior is preserved. A
system is decomposed into a set of smaller
subsystems, such that each of them is easier to
analyze, understand and synthesize.

By taking advantage of the opportunities the modern
microelectronic technology provides us with, we are
in a position to build very complex digital circuits
and systems at relatively low cost. There is a large
variety of logic building blocks that can be exploited.
The library of elements contains various types of
gates; a lot of complex gates can be generated in
(semi-)custom CMOS design; and the field
programmable logic families include different types
of (C)PLDs and FPGAs. However, the opportunities
created by modern microelectronic technology are
not fully exploited because of weaknesses in
traditional logic design methods.

Recently, new methods of logic synthesis based on
functional decomposition have been developed
(Luba, et al., 1995; Chang, et al., 1996; Burns, et al.,
1998; Jozwiak and Chojnacki 1999; Qiao, et al.,
2000). Unfortunately decomposition-based methods
are considered as methods suitable mainly for
implementation of combinational functions.

Modern FPGA architectures contain embedded
memory blocks. In many cases, designers do not
need to use these resources. However, such memory
blocks allow implementation of sequential machines
in a way that requires less logic cells than the
traditional flip-flop based implementation. This may
be used to implement “non-vital” sequential parts of
the design, saving logic cell resources for more
important sections. However such an implementation
may require more memory than available in a device.
To reduce memory usage in ROM-based sequential
machine implementations, decomposition-based
methods can be successfully used (Luba, et al.,
1992).

In this paper, basic information is introduced first.
Secondly, application of decomposition in the
implementation of sequential machines is presented.
Subsequently, some experimental results, obtained
with a prototype tool that implements functional
decomposition, are discussed.

The experimental results demonstrate that
decomposition is capable of constructing solutions
(utilizing embedded memory blocks) of comparable
or even better quality than the methods implemented
in commercial systems.

2. BASIC NOTIONS

2.1 Functional decomposition

Let A and B be two subsets of X such that A ∪ B = X.
Assume that the variables x1,...,xn have been relabeled
in such way that:

A = {x1,...,xr} and
B = {xn–s+1,...,xn}.

Consequently, for an n-tuple x, the first r components
are denoted by xA and the last s components by xB.

Let F be a Boolean function, with n > 0 inputs and
m > 0 outputs. Let (A, B) be as defined above.
Assume that F is specified by a set F of the
function’s cubes. Let G be a function with s inputs
and p outputs; let H be a function with r + p inputs
and m outputs. The pair (G, H) represents a serial
decomposition of F with respect to (A, B), if for
every minterm b relevant to F, G(bB) is defined,
G(bB) ∈ {0, 1}p., and F(b) = H(bA, G(bB)). G and H
are called blocks of the decomposition.

Partition-based representation of Boolean functions
can be used to describe functional decomposition
algorithms (Brzozowski and Luba 1997; Luba and
Selvaraj 1995; Luba 1994; Luba, et al., 1996;
Rawski, et al., 1997).

If there exists a r-partition ΠG on F such that
P(B) ≤ ΠG, and P(A) • ΠG ≤ PF, then F has a serial
decomposition with respect to (A, B).

H

G

A B

Π G

F

X

Fig. 1. Schematic representation of the serial
decomposition

The serial decomposition process consists of the
following steps: an input support selection (the most
time-consuming part of the process), calculation of
partitions P(A), P(B) and PF, construction of partition
ΠG, and creation of functions H and G (Luba and
Selvaraj 1995).

2.2. Finite state machine

Let A = 〈V, S, δ〉 be an FSM (completely or
incompletely specified) with no outputs (outputs are
omitted as they have insignificant impact on the
method), where:

V – set of input symbols,
S – set of internal states,
δ – state transition function,

and m = log2 |V|, n = log2 |S| denote the number of
input and state variables respectively.

To describe logic dependencies in such an FSM
special partition description (Brzozowski and Luba
1997) and special partition algebra (Hartmanis and
Stearns 1966) are employed.

Let K be a one-to-one correspondence between the
domain Dδ of transition function and K = {1, ... , p},
where p = |Dδ|. The characteristic partition Pc of an
FSM is defined in the following way:

(k1, k2) ∈ BPc iff δ(K-1(k1)) = δ(K-1(k2))
Thus, each block BPc of the characteristic partition
includes these elements from K which correspond to
pairs (v, s) from the domain Dδ such that the
transition function δ(v, s) = s’ maps them onto the
same next state s’.

A partition P on K is compatible with partition π on S
iff for any inputs va, vb the condition that si, sj belong
to one block of partition π implies that the elements
from K corresponding to pairs (va, si) and (vb, sj)
belong to one block of the partition P.

A partition P on K is compatible with partition θ on
V iff for any state sa, sb the condition that vi, vj belong
to one block of partition θ implies that the elements
from K corresponding to pairs (vi, sa) and (vj, sb)
belong to one block of the partition P.

In particular, a partition P on K is compatible with
the set {π, θ} if it is compatible with both π and θ,
while it is compatible with set {π1, ..., πα} of
partitions on S (or set {θ1, ..., θα} of partitions on V)
iff it is compatible with π = π1 • π2 • π3 • ... • πα
(θ = θ1 • θ2 • θ3 • ... • θα).

3. ROM IMPLEMENTATION OF FINITE STATE

MACHINES

FSM can be implemented using ROM (Read Only
Memory) (Luba, et al., 1992). Figure 2 shows the
general architecture of such an implementation. State
and input variables (q1, q2, ..., qn and x1, x2, ..., xm)
constitute ROM address variables (a1, a2, ..., am+n).
The ROM would consist of words, each storing the

encoded present state (control field) and output
values (information field). The next state would be
determined by the input values and the present-state
information fedback from memory.

This kind of implementation requires much fewer
logic cells than the traditional flip-flop
implementation (or does not require them at all, if
memory can be controlled by clock signal – no
register required); therefore, it can be used to
implement “non-vital” FSMs of the design, saving
LC resources for more important sections of the
design. However, a large FSM may require too much
of buried memory resources.

The size of the memory needed for such an
implementation depends on the lengths of the address
and memory word.

X

F Q

ROM

Register

nm

(m + n)

y

Fig. 2. Implementation of FSM using memory blocks

Let m be the number of inputs, n be the number of
state encoding bits and y be the number of output
functions of FSM. The size of memory needed for
implementation of such an FSM can be expressed by
the following formula:

M = 2(m+n) × (n + y),
where m + n is the size of the address, and n + y is
the size of the memory word.

Since modern programmable devices contain
embedded memory blocks, there exists a possibility
to implement FSM using these blocks. The size of
the memory blocks available in programmable
devices is limited, though. For example, Altera’s
FLEX family EAB (Embedded Array Block) has
2048 bits of memory and the device FLEX10K10
consists of 3 such EAB’s. Functional decomposition
can be used to implement FSMs that exceeded that
size.

3.1. Address modifier

Any FSM, say A, defined by a given transition table
can be implemented as in Fig. 3 using an address
modifier.

If π1, ..., πn are partitions on S, θ1, ..., θm are partitions
on V, and Pk is partition on K compatible with either
πi or θj then P = {P1, ..., Pm+n} is the set of all
partitions compatible with {π1, ..., πn, θ1, ..., θm }.
Partitions π1,..., πn correspond to state variables and
θ1, ..., θm correspond to input variables. To achieve
unambiguous encoding of address variables, and at
the same time maintaining the consistency relation K
with the transition function δ, partitions P1, .., Pw
have to be found, such that:

P1 • P 2 • P 3 • ... • Pw ≤ Pc.
This is the necessary and sufficient condition for
{P1, .., Pw} to determine the address variables. This is
because each memory cell is associated with a single
block of Pc, i.e. with those elements from K which
map the corresponding (v, s) pairs onto the same next
state.

F Q

ROM

Register

Address
modifier

nm

a

b

c < b

w = (a + c)
w < (m + n)

y

Fig. 3. Implementation of FSM using an address

modifier

The selection of w (w < n + m) partitions from the set
{P1, ..., Pm+n} is made such that they produce the
simplest addressing unit. Such a selection is possible
thanks to the notion of r-admissibility (Luba 1994).

A set {P1, ..., Pk} is r-admissible in relation to
partition P iff there is a set {Pk+1, ..., Pr} of two block
partitions such that the following condition holds:

P1 • P 2 • P 3 • ... • Pk • Pk+1 • ... • Pr ≤ Pc
and no set of r – k – 1 partitions exist which meets
this requirement.

For partition ρ ≤ σ let σ|ρ denote the quotient
partition and ε(σ|ρ) the number of elements in the
largest block of σ|ρ. Let e(σ|ρ) be the smallest
integer equal to or larger than log2ε(σ|ρ) (i.e.
e(σ|ρ) = log2ε(σ|ρ)). Then the r-admissibility of
{P1, ..., Pk} is r = k + e(π|πf),
where π is the product of P1, ..., Pk and πf is the
product of π and P.

If P = {P1, ..., Pk} is r-admissible in relation to P then
each subset of P is r’-admissible, where r’ ≤ r.

The smallest partition i.e. one where each element is
a separate block, will be denoted as P(0), π(0), θ(0),
etc.

3.2. Input/state encoding

The source of the complexity of the address modifier
is in the address variables which depend on more
than one input/state variables. Therefore it is
important to choose such an encoding of input and
internal state symbols that we could obtain maximal
set of partitions P (compatible with π or θ) whose r-
admissibility in relation to Pc is w, where w is the
number of address bits of the given ROM block.

Appropriate encoding will be determined by
generating partitions with the knowledge that r-
admissibility of a partition P compatible with
partition π = (B1; ...; Bi; ...; Bα) or compatible with
partition θ = (B1; ...; Bi; ...; Bα) is:

r = log2α + log2 max |δ(Bi),
where Bi is a block of partition π or θ, δ is the
transition function, max |δ(Bi) denotes the number of
elements in the most populous set δ(Bi), i ∈ {1... α}.
Because of the one-to-one correspondence between
partitions P and π or θ, r-admissibility of π, θ or
{π, θ} in relation to Pc can be considered.

For a given w, the necessary encoding that allows the
implementation of the FSM with the use of address
modifier can be found in the following way:
1. find r1 = r-admissibility of θ(0); find r2 = r-

admissibility of π(0),
2. if r1 = w (or r2 = w) then a1 = x1, ..., ax = xx (or

a1 = q1, ..., ax = qq) and further encoding
partition are searched among π(0) (or θ(0)),

3. if both r1 > w and r2 > w then for subsequent
steps θ if |V| < |S| or π if |V| > |S| is taken,

4. assume that θ was chosen in the previous step;
for i = 1, 2, ... and α = 2m-i find θ = (B1; ...; Bα)
so that |B1| + |B2| +...+ | Bα| = |V| and whose r-
admissibility equals w.

In a similar way π = (D1; ...; Bβ), β = 2n-j

, j = 1, 2, ...
are found. The set {π, θ} must have r-admissibility of
w. Partitions π and θ can be represented as follows:

π = π1 • π2 • ...• πk,
θ = θ1 • θ2 • ...• θl,

where
k = log2β,
l = log2α.

The encoding of the remaining input and state
variables can be obtained from the following rules:

π1 • π2 • ...• πk • π’ = π(0),
θ1 • θ2 • ...• θl • θ’ = θ(0),

where π’ and θ’ represent partitions induced by those
variables.

After all the variables are encoded the process

may be considered as a decomposition of the
memory block into two blocks: a combinational
address modifier and a smaller memory block.
Decomposition is computed for partitions:

P(A) = π • θ = π1 • π2 • ...• πk • θ1 • θ2 • ...• θl,
P(B) = π’• θ’.

Appropriately chosen strategy of decomposition may
allow reducing required memory size at the cost of
additional logic cells for address modifier
implementation. This makes possible implementation
of large FSMs that need more than available memory
by making use of the embedded memory blocks and
additional programmable logic.

4. EXPERIMENTAL RESULTS

The proposed method was applied to implement
several examples from standard benchmark set in
FLEX10K10 devices using ALTERA MAX+PlusII
system. In Table 1 a comparison of different FSM

implementation techniques are presented. In the
column named ROM Implementation, the number of
bits required to implement a given FSM using ROM
is presented. FLEX10K10 device is equipped only
with 3 EAB memory blocks each consisting of 2048
bits. Most of the presented FSM examples cannot be
implemented in this device, because their
implementations require much more memory
resources than available. In the column called FF
Implementation, the number of logic cells required to
implement the given FSM in the “traditional” way
using flip-flops is given. To describe the FSM for
this kind of implementation, a special AHDL (Altera
Hardware Description Language) construction was
used. In the column under AM implementation, the
results of implementation of the given FSM using the
concept of address modifier are presented. In this
approach, the address modifier was implemented
using logic cell resources and ROM was
implemented in EAB blocks (Fig. 3). The number of
logic cells and the number of memory bits are given
in the table as results. It can be easily noticed that the
application of decomposition improves the quality of
ROM as well as flip-flop implementation.

Table 1. Comparison of FSM implementation results of standard benchmarks in FPGA architecture

(EPF10K10LC84-3 device). 1) Implementation not possible – not enough memory resources,
2) implementation not possible – not enough CLB resources

AM implementation
Benchmark ROM Implementation

#bits
FF implementation

#LCs
#LCs #bits

bbtas 160 10 7 80
beecount 448 32 14 112
d14 512 60 21 256
mc 224 14 2 56
lion9 320 24 1 80
train11 320 25 15 8
bbsse 22528 1) 52 3 5632
cse 22528 1) 92 2 5632
ex4 13312 1) 28 2 3328
mark1 10240 1) 40 2 5120
s1 24576 1) 137 96 5632
sse 22528 1) 52 3 5632
tbk 16384 1) 759 2) 333 4093
s389 22528 1) 64 9 5632
∑ 156608 1389 510 41293
% 100 % 100 % 36.7% 26.4%

Table 2. Comparison of FSM implementation results in FPGA architecture (EPF10K10LC84-3 device).
1) FSM described with special AHDL construction; 2) decomposition not possible; 3) not enough

memory bits to implement the project

FF_MAX+PlusII ROM AM_ROM
Example LCs / Bits Speed

[MHz] LCs / Bits Speed
[MHz] LCs / Bits Speed

[MHz]
DESaut 46/0 41,1 8/1792 47,8 7/896 47,1
5B6B 93/0 48,7 6/448 48,0 – 2) – 2)

count4 72/0
18/0 1)

44,2
86,2 1) 16/16384 – 3) 12/1024 39,5

The application of address modifier concept allows
implementing FSM in such a way that only about
37 % of logic cell resources required in flip-flop
implementation and about 27% of memory resources
required in ROM implementation is used.
Application of address modifier concept allows
implementing all the presented FSMs using available
memory and additional parts (address modifier)
implemented in CLBs.

In Table 2 results of implementation of several “real
life” FSMs are presented. Following examples were
used in the experiments:

• DESaut – the state machine used in DES
algorithm implementation,

• 5B6B – the 5B-6B coder,
• count4 – 4 bit counter with COUNT UP,

COUNT DOWN, HOLD, CLEAR and
LOAD.

Each sequential machine was described by a
transition table. The results for each method of
implementation are presented using the number of
logic cells and memory bits required (i.e. area of the
circuit) and the maximal frequency of clock signal
(i.e. speed of the circuit). The columns under the
FF_MAX+PlusII heading present results obtained by
the Altera MAX+PlusII system for the classical flip-
flop implementation of FSM. The ROM columns
provide the results of ROM implementation; the
columns under AM_ROM present the results of ROM
implementation with the use of address modifier.
Especially interesting is the implementation of the 4-
bit counter. Its description with a transition table
leads to a strongly non-optimal implementation. On
the other hand, its description using a special AHDL
construct produces very good results. The ROM
implementation of this example requires too many
memory bits (the size of required memory block
exceeds the available memory), thus it cannot be
implemented in the given structure. Application of
the address modifier concept allows reducing the
necessary size of memory, and that makes the
implementation possible. The performance of the
FSMs implemented with the use of address modifier
concept is not significantly degraded.

5. CONCLUSIONS

Balanced decomposition produces very good results
for combinational functions implemented using
FPGA-based architectures. However, results
presented in this paper show that functional
decomposition can be efficiently and effectively
applied beyond the implementation of combinational
circuits. Decomposition can be applied to implement
large FSM in an alternate way – using ROM. This
kind of implementation requires much fewer logic
cells than the traditional flip-flop implementation;
therefore, it can be used to implement “non-vital”
FSMs of the design, saving LC resources for more
important sections of the design. However, large
FSMs may require too much buried memory
resources. With the concept of address modifier,
memory usage can be significantly reduced. The
experimental results shown in this paper demonstrate
that the synthesis method based on functional
decomposition can help in implementing sequential
machines using ROM memory.

REFERENCES

Burns M., Perkowski M., Jóźwiak L. (1998). An

Efficient Approach to Decomposition of Multi-
Output Boolean Functions with Large Set of
Bound Variables. Proc. of the Euromicro
Conference, Vasteras.

Brzozowski I., Kos A. (1999). Minimisation of
Power Consumption in Digital Integrated
Circuits by Reduction of Switching Activity.
Proc. of the Euromicro Conference, pp.376-
380. Vol. 1, Milan.

Brzozowski J. A., Luba T. (1997). Decomposition of
Boolean Functions Specified by Cubes. Research
Report CS-97-01, University of Waterloo,
Waterloo; REVISED October 1998.

Chang S.C., Marek-Sadowska M., Hwang T.T. (1996).
Technology Mapping for TLU FPGAs Based on
Decomposition of Binary Decision Diagrams.
IEEE Trans. on CAD, Vol. 15, No. 10, pp. 1226-
1236.

De Micheli G. (1994): Synthesis and Optimization of
Digital Circuits. McGraw-Hill, New York.

Hartmanis J., Stearns R.E. (1966). Algebraic Structure
Theory of Sequential Machines. Prentice-Hall.

Jozwiak L., Chojnacki A. (1999). Functional
Decomposition Based on Information
Relationship Measures Extremely Effective and
Efficient for Symmetric Functions. Proc of the
Euromicro Conference, pp.150-159. Vol. 1,
Milan.

Kravets V. N., Sakallah K. A. (2000). Constructive
library-aware synthesis using symmetries. Proc.
Of Design, Automation and Test in Europe
Conference.

Luba T. (1994). Multi-level logic synthesis based on
decomposition. Microprocessors and
Microsystems, 18, No. 8, pp. 429-437.

Luba T., Gorski K., Wronski L.B. (1992). ROM-
based Finite State Machines with PLA address
modifiers. Proc. of EURO-DAC, Hamburg.

Luba T., Selvaraj H., Nowicka M., Kraśniewski, A.
(1995). Balanced multilevel decomposition and
its applications in FPGA-based synthesis. In:
Logic and Architecture Synthesis (G.Saucier,
A.Mignotte ed.), Chapman&Hall.

Luba T., Selvaraj H. (1995). A General Approach to
Boolean Function Decomposition and its
Applications in FPGA-based Synthesis. VLSI
Design, Special Issue on Decompositions in VLSI
Design, vol. 3, Nos. 3-4, pp. 289-300.

Luba T., Nowicka M., Rawski M. (1996).
Performance-oriented Synthesis for LUT-based
FPGAs, Proc. Mixed Design of Integrated
Circuits and Systems, pp. 96-101, Lodz.

Luba T., Moraga C., Yanushkevich S., Opoka M.,
Shmerko V. (2000). Evolutionary Multilevel
Network Synthesis in Given Design Style. Proc.
IEEE 30th Int. symposium on Multiple-Valued
Logic, pp.253-258.

Qiao J., Ikeda M., Asada K. (2000). Optimum
Functional Decomposition for LUT-Based
FPGA Synthesis. Proc. of the FPL’2000
Conference, pp. 555-564, Villach.

Rawski M., Jozwiak L., Nowicka M., Łuba T.
(1997). Non-Disjoint Decomposition of
Boolean Functions and Its Application in
FPGA-oriented Technology Mapping. Proc. of
the EUROMICRO’97 Conference, pp.24-30,
IEEE Computer Society Press.

Ross T., Noviskey M., Taylor T., Gadd D. (1991).
Pattern Theory: An Engineering Paradigm for
Algorithm Design. Final Technical Report,
Wright Laboratories, WL/AART/WPAFB.

Zupan B, Bohanec M. (1966). Experimental
Evaluation of Three Partition Selection Criteria
for Decision Table Decomposition. Research
Report, Department of Inteligent Systems, Josef
Stefan Institute, Ljubljana.

Zupan B, Bohanec M. (1966). Learning Concept
Hierarchies from Examples by Functional
Decomposition. Research Report, Department
of Inteligent Systems, Josef Stefan Institute,
Ljubljana.

