
Synthesis and Implementation of RAM-Based
Finite State Machines in FPGAs

Valery Sklyarov

Department of Electronics and Telecommunications
University of Aveiro

Portugal
skl@inesca.pt

Abstract. This paper discusses the design and implementation of finite state
machines (FSM) with combinational circuits that are built primarily from RAM
blocks. It suggests a novel state assignment technique, based on fuzzy codes,
that is combined with the replacement (encoding) of the FSM input vectors. It
also shows how FSMs with dynamically modifiable functionality can be
constructed and then implemented in commercially available FPGAs. The
results of experiments have shown that FSMs with the proposed architecture can
be implemented using less hardware resources, such as the number of FPGA
configurable logic blocks (CLB), while at the same time extending their
functional capabilities.

1 Introduction

The primary architectures (models) of FSMs usually have simple and regular
structures at the top level [1]. They are considered to be a composite of a
combinational scheme and memory. The former calculates new states in state
transitions and forms outputs, and the latter is used to store states.

The top-level architecture can generally be reused for different applications.
However, the combinational scheme is typically very irregular, and its
implementation depends on the particular unique behavioral specification for a given
FSM. Since such specifications vary from one implementation to another, we cannot
construct a reusable FSM circuit. Note that there are some techniques (for example,
microprogramming) and technology dependent design methodologies (for instance,
those aimed at dynamically modifiable field programmable devices such as the Xilinx
XC6200 family) that do allow reusable parameterizable templates to be built for
FSM-based applications. However these approaches have many limitations, such as
restricting the number of inputs that can affect state transitions in the FSM, requiring
a considerable amount of RAM (ROM) for the combinational circuit, and
necessitating rather complex circuits and time-consuming procedures for dynamic
modifications to the logic and interconnections.

This paper presents an approach to the design of FSMs that is based on the use of
RAM blocks, but of a modest size. It eliminates many of the restrictions that apply to
traditional FSM architectures and current methods for FSM synthesis. Since very fast
RAM-based CLBs are available within widely used and relatively cheap FPGAs such
as the XC4000XL of Xilinx, we can apply the proposed technique directly to the
design of FPGA-based circuits. Such an implementation is very efficient. Since each
CLB can be configured to be 16x2 or 32x1 RAM (ROM), and its speed is comparable
with ordinary logic, with the aid of the proposed technique we can implement very

regular and very fast dynamically modifiable circuits, something which is generally
impossible using traditional approaches.

2 The Architecture of RAM-Based FSMs

The set of state transitions for any FSM can be presented in the form: ato =
afromX(afrom,ato), where afrom and ato are the initial and next state in the state transition,
X(afrom,ato) is a product of the input variables from the set X={x1,...,xL} that cause the
transition from afrom to ato, L is the number of FSM inputs, afrom,ato∈A={a0,...,aM-1}, A
is the set of FSM states, and M is the number of states. The FSM generates outputs
from the set Y={y1,...,yN} where N is the number of FSM outputs.

The structural model of a FSM assumes that all states are coded, and the size R of
the code varies from the value intlog2M (for binary state encoding) to M (for one-hot
state encoding). Thus a RAM-based combinational circuit has R+L inputs and R+N
outputs, and the size of RAM is equal to 2R+L(R+N) bits. Even for binary state
encoding and modest values of L and N, except for some trivial cases this size
becomes very large.

Let's consider an example. Fig. 1,a shows a state transition graph for a FSM where
M=5, Rmin=3, and L=2. Fig. 1,b depicts a trivial RAM-based implementation of this
FSM, and the RAM size is equal to 25(3+N). One way to decrease the memory
required is to split the conditional state transitions using two additional intermediate
states. However, any conditional state transition will then require twice the time, and
the RAM required is still 24(3+N). We will also need additional hardware to multiplex
the input variables x1 and x2 to the same RAM input.

The proposed approach is based on the so-called fuzzy state encoding technique,
and it enables us to improve the implementation of FSMs, even for the trivial case we
have just considered.

a0

a1
a4

a3 a2

x
1 x

2x 1
x 2

x 1
x 2

x 1
x 21

1
1

1

a) b)

FSM
memory

RAM-based
combinational

circuit

R R

R = 3

x1

x2

L=2

y1
yN

K(a0)=0ii

K(a1)=100

K(a2)=101K(a3)=110

K
(a

4)
=

11
1

T1

TR

D1

DR

y1

y2

y1,y3 ,y4y2,y4

y3

N=4

Fig. 1. State transition graph (a) and a feasible top-level structure of a RAM-based FSM (b)

Let us define K(am) as the code for the state am. A code is fuzzy if its size is not
fixed for all m. For example, the code of the state am might be 0ii, where the character
"i" indicates that the bit must be ignored and is considered in a specific way. Note that
"i" does not denote “don’t care”, which is designated as "-".

In order to distinguish the codes for different states, these codes must be
orthogonal. This means that for any two codes, there is at least one bit position that is
equal to 1 (0) in one code and 0 (1) in the other. For example, all the codes
K(a0),...,K(a4), shown in fig. 1,a are orthogonal. The size of the code K(a0) is equal to
1 and the size of all the other codes is equal to 3. Since bits 2 and 3 in the code K(a0)
are not used for representing the code, we can employ them to identify transitions
from the state a0 in such a way that they are (see fig. 1): a0(T1x1x2)⇒a1,
a0(T1x1x2)⇒a2, a0(T1x1x2)⇒a3, a0(T1x1x2)⇒a4. Now if the FSM is set in one of the
states {a1,a2,a3,a4}, we can use the bits T2 and T3 from the FSM memory (see fig. 1,b)
to identify the corresponding code. If the FSM is in the state a0, the code K(a0) can be
identified by just one bit T1, and since the remaining bits are not needed in a0 we can
use the corresponding RAM inputs to distinguish conditional state transitions. Fig. 2
presents the complete implementation of the FSM scheme with the behavior given in
fig. 1,a. Two extra blocks, C(T2,x1) and C(T3,x2), provide predefined selections of the
signals between the parentheses, and send them to the RAM inputs T2

* and T3
*.

The idea that we considered above can be used to design RAM-based FSMs, and
the synthesis of such FSMs involves the following two steps: 1) the replacement of
input variables (encoding of input vectors) such that the number of inputs, L, for the
RAM-based circuit is reduced; 2) state encoding that defines fuzzy codes for the FSM
states that satisfy our requirements.

FSM
memory

C(T2,x1)

C(T3,x2)

x1

x2

T1

T2

T3

RAM-based
combinational

circuit

Address Contents
T1 T2

* T3
* D1 D2 D3

 0 0 0 1 0 0
 0 0 1 1 0 1
 0 1 0 1 1 0
 0 1 1 1 1 1
 1 0 0 1 0 1
 1 0 1 1 1 0
 1 1 0 1 1 1
 1 1 1 0 0 0

D1

D2

D3

D1 D2 D3

x1

C(T2,x1)

T2
*

T3
*

T1

EOR

Fig. 2. Implementation of the FSM with fuzzy state codes

3 Replacement of Input Variables

The primary method for input variable replacement was considered in [2]. In this
case, the combinational scheme of a FSM is composed of two sub-schemes. The first
sub-scheme makes it possible to replace external input variables from the set X with
new variables from the set P = {P1,...,PG}, and for many applications G << L. It
performs the following function:

P(afrom, ato) = ρ(afrom,X(afrom,ato)),

where P(afrom,ato) is the vector which can be used in the state afrom instead of the input
vector X(afrom,ato), and ρ is a conversion function [2]. Since this is presented in detail
in [2,3], we will just consider an example here that will be used later to illustrate our
approach (see table 1, where for the sake of clarity we have omitted the output
variables and they can be generated just as for the Moore FSM). The column
PB(afrom,ato) contains the variables P1, P2, P3 that can be used instead of the variables
x1,...,x8 after applying the method [2]. The conversions required are represented by
the following Boolean functions: P1=a1x1∨a2x6∨a5x6, P2=a1x2∨a2x7∨a5x4,
P3=a1x3∨a2x8∨a5x5. Such a replacement enables very efficient implementations of
functions such as P1, P2, and P3, to be provided on multiplexers [3]. Another kind of
replacement (which differs from [2,3]) is based on an encoding technique (see the
column P(afrom,ato)). However in this case the circuit that implements the Boolean
functions P1,...,PG would be less regular.

Table 1. Structural table of FSM

afrom K(afrom) ato⇐AC K(ato) K(cfrom
to) X(afrom,ato) PB(afrom,ato) P(afrom,ato)

a0 0000 a1 0100 0000 1 not valid not valid
a1 01ii a3 ⇐c1

3

a3 ⇐c1
3

a2 ⇐c1
2

a4 ⇐c1
4

0001
0001
1000
0011

0100
0100
0101
0110

x1

x1x2x3

x1x2

x1x2x3

P1

P1P2P3

P1P2

P1P2P3

P3P4

P3P4

P3P4

P3P4

a2 10ii a1 ⇐c2
1

a5 ⇐c2
5

a6 ⇐c2
6

a9 ⇐c2
9

0100
1001
0010
1110

1010
1001
1000
1011

x7

x6x7x8

x7x8

x6x7x8

P2

P1P2P3

P2P3

P1P2P3

P3P4

P3P4

P3P4

P3P4

a3 0001 a7 0111 0001 1 not valid not valid
a4 0011 a5 1001 0011 1 not valid not valid
a5 1ii1 a5 ⇐c5

5

a7 ⇐c5
7

a8 ⇐c5
8

a9 ⇐c5
9

1001
0111
1100
1110

1001
1101
1111
1011

x4x5x6

x4

x4x5

x4x5x6

P1P2P3

P2

P2P3

P1P2P3

P2P3

P2P3

P2P3

P2P3

a6 0010 a0 0000 0010 1 not valid not valid
a7 0111 a8 1100 0111 1 not valid not valid
a8 1100 a0 0000 1100 1 not valid not valid
a9 1110 a0 0000 1110 1 not valid not valid

4 State Encoding

Consider the main idea of state encoding. Suppose that the code K(a1) of the state
a1 is 01ii. Since in table 1 there are three transitions from a1, to different states a3, a2

and a4, we can code these transitions as [01(i=0)(i=0)]⇒a3, [01(i=0)(i=1)]⇒a2, and
[01(i=1)(i=0)]⇒a4. If the results of replacement are presented in the column
P(afrom,ato) of table 1, then the 3rd and the 4th outputs of the FSM memory will be
mixed with the variables P3P4 by means of OR gates (see elements EOR in fig. 2). In
this case if the FSM is in the state a1, the outputs T3 and T4 must be set to zero.

However, if we replace EOR with EXOR, which performs an XOR function, the outputs
T3 and T4 could also be set to non zero values and we would obtain the same results
by a trivial reprogramming of the RAM.

Let us designate A(afrom) as the subset of states that follow the state afrom and
suppose that kfrom = |A(afrom)|. For our example in table 1 we have A(a0) = {a1}, k0=1,
A(a1) = {a3,a2,a4}, k1=3, A(a2) = {a1,a5,a6,a9}, k2=4, etc. If kmax=max(k0,k1,k2,...), then
Gmin = intlog2kmax, where Gmin is the minimum number of variables from the set P that
affect individual transitions. For our example in table 1 Gmin = 2 (see column
P(afrom,ato)).

Consider any subset A(am) = {am1,am2,...}, m=0,...,M-1, such that km>1. If km=1
then the code, K(am), of am can be considered to be the RAM address and it can be
directly used for the unconditional transition from am to A(am). We want to generate
codes for the states am1,am2,... on the outputs of the FSM RAM so we can set the
following correspondence: cm

m1⇒am1, cm
m2⇒am2,..., where cm

m1, cm
m2,... are the

symbols that correspond to the respective RAM address codes (AC) that will be
designated as K(cm

m1),K(cm
m2),... . Let us also agree to call cm

m1, cm
m2,... ACs when

there is no possible ambiguity. Finally we can build new subsets, which are C(am) =
{cm

m1,cm
m2,...}, m=0,...,M-1. It is obvious that the following correspondence exists:

[A(am)={am1,am2,...}]⇔[C(am)={ cm
m1,cm

m2,...}], i.e. for each element ami there exists
an address code cm

mi and RAM provides the conversion cm
mi⇒ami. In fact ami is the

code written at address cm
mi in RAM. Now we can formulate the target requirements

for the encoding:
1. All ACs cm

m1,cm
m2,... (m=0,...,M-1) with different superscripts must be unique

(because they cause transitions to different states). As a result we can formulate
the following requirement: ∀A(am)∩A(as)=∅ ∃ {K(cm

m1),K(cm
m2),...} ort

{K(cs
s1),K(cs

s2),...}, where ort is the relationship of orthogonality considered
above and any element of the first set must be orthogonal to any element of the
second set. Here K(cfrom

to) is the binary code of cfrom
to (see table 1). ;

2. ACs with the same superscript could be the same (because they cause transitions
to the same states). Hence, if A(am)∩A(as)≠∅, {K(cm

m1),K(cm
m2),...} ins

{K(cs
s1),K(cs

s2),...} is allowed, where ins is the relationship of intersection (or non-
orthogonality): {cm

m1,cm
m2,...} ins {cs

s1,cs
s2,...} ⇔ {cm

m1,cm
m2,...} ort {cs

s1,cs
s2,...};

3. The predefined size, S, of the resulting codes is equal to R (S=R). In some cases S
may be greater then R but we want to find the minimum value of S (S≥R).

4. Variables cm
m1,cm

m2,... in each individual subset C(am), km>1, m=0,...,M-1, must be
encoded in such a way that a maximum number of their bits with coincident
indexes have constant values that are the same for all variables cm

m1,cm
m2,... from

C(am).
The ACs that satisfy the requirements considered above can be obtained with the

aid of a slightly modified encoding algorithm [3], which allows for a combinational
circuit of a FSM to reduce the functional dependency of outputs on inputs. This is
based on the iterative placement of the symbols that must be coded in special tables
that look like Karnaugh maps. This method permits the encoding procedure to be
carried out for quite complicated FSMs. The results of this step for our example (see
table 1) are shown in fig. 3,a. Next we find the codes for the states am, such that km>1.
They are: K(a1)=01ii (see the squares c1

3,c1
2,c1

4), K(a2)=10ii (see the squares
c2

6,c2
5,c2

9,c2
1), K(a5)=1ii1 (see the squares c5

7,c5
5,c5

9,c5
8). Here A(a1)∩A(a2)=∅ and

A(a1)∩A(a5)=∅. That is why {K(c1
3),K(c1

2),K(c1
4)} ort {K(c2

6),K(c2
5),K(c2

9),K(c2
1)}

and {K(c1
3),K(c1

2),K(c1
4)} ort {K(c5

7),K(c5
5),K(c5

9),K(c5
8)} (see fig. 3,a). Since

A(a2)∩A(a5)={a5,a9}≠∅, it is allowed {K(c2
6),K(c2

5),K(c2
9),K(c2

1)} ins
{K(c5

7),K(c5
5),K(c5

9),K(c5
8)}. That is why the segments c2

6,c2
5,c2

9,c2
1 and

c5
7,c5

5,c5
9,c5

8 of the map in fig. 3,a have two shared squares marked with c2
5/c5

5 and
c2

9/c5
9 and {K(c2

6),K(c2
5),K(c2

9),K(c2
1)} ins {K(c5

7),K(c5
5),K(c5

9),K(c5
8)} = {1101,

1111} (note that each shared square contains symbols cm
s with equal superscripts s).

All non-encoded states just cause unconditional transitions (km=1), and they can
be assigned any unused codes that are available in the second step. This is feasible
because an address code for any unfilled square in fig. 3,a does not exist. It follows
from the predefined requirements to be established for the encoding of input variables
(see column P(afrom,ato) of table 1). Let us consider, for example, the unused square
0111 of the map in fig. 3,a. It is easy to verify that this code cannot be generated on
any transition from the state a1 (see table 1) as well as on any other transition except
the specified unconditional transition from the state a7 (see fig. 3,b). If the map does
not have sufficient room, the size, S, of the codes must be incremented and the map
must be enlarged [3]. Thus the resulting value of S could be greater then R (which is,
of course, undesirable). The final results of state encoding are shown in fig. 3, b.

Now the RAM has 4 inputs and 4+N outputs, and it must be programmed as
follows (see columns K(cfrom

to)⇒K(ato)): 0000⇒0100; 0100⇒0001; 0101⇒1000;
0110⇒0011; 1010⇒0100; 1001⇒1001; 1000⇒0010; 1011⇒1110; 0001⇒0111;
0011⇒1001; 1101⇒0111; 1111⇒1100; 0010⇒0000; 0111⇒1100; 1100⇒0000;
1110⇒0000. The Boolean functions C(T2,P2), C(T3,P3), C(T4,P4) for additional
blocks such as those shown in fig. 2, can be obtained directly from the columns afrom,
X(afrom,ato), P(afrom,ato) of table 1. After trivial minimization they will be the
following: P2=T1T2(x4∨x5), P3=T1T2x4(x5∨x6)∨ T1T2(x7∨x6x8)∨T1T2x1x2x3,
P4=T1T2x1x2∨T1T2x7x8. Note that these functions are very simple and they are well
suited to being implemented in widely used FPGAs, such as the Xilinx XC4000XL.

Τ3Τ4

00

01

11

10

00 01 11 10

c1
3

c2
6 c2

1

c1
2 c1

4

c5
7 c5

8

Τ1Τ2

00

01

11

10

00 01 11 10

a0 a3 a4 a6

a7

a8 a9

Τ3Τ4

Τ1Τ2

c2
5

c5
5

c2
9

c5
9

a) b)

Figure 3. Maps that present the results of state encoding

The technique considered above includes many heuristic operations. Let us
consider a method that enables us to solve this problem more formally. Consider the
graph Λ, which reflects two following relationships α and β:

(cm
s α ce

f) ⇔ (m = e); (1)
(cm

s β ce
f) ⇔ (s = f). (2)

Vertices of Λ correspond to symbols from the set C(a0),..., C(aM-1) Two vertices
cm

s and ce
f are connected with an edge if and only if (cm

s α ce
f) or (cm

s β ce
f). We will

call the relationship (1) a hard relationship (because it strongly affects the results of
state encoding) and the relationship (2) – a soft relationship (because it affects the
quality of encoding but does not influence much to target requirements). That is why
β edges will be shown in Λ with less thickness than α edges. Graph Λ for our
example is shown in fig. 4,a. Let us designate cm=C(am)={cm

m1, cm
m2,...}. All the

vertices in each group cm must be coded in such a way that permits our target
requirements to be satisfied (see points 1-4 above). If km = |{cm

m1,cm
m2,...}| = |A(am)| is

the number of elements in cm, then we have to use hm=intlog2km bits of code in order
to distinguish all superscripts m1, m2,..., which cause transitions to different states.
As a result we can consider hm-cubes, which enables us to find out the address codes
indicated by fuzzy positions of state codes that are designated by symbols i. For
example, c1 = {c1

2, c1
3, c1

4}, km = |{ c1
2, c1

3, c1
4}| = 3, hm=intlog2km= intlog23 = 2 and

we have to consider 2-cubes, such as that can be represented by 4 squares of a
Karnaugh map (or by 4 nodes of a 2-cube). If for a group cm, km<2hm, we will insert
2hm-km dummy vertices and will connect them with the other vertices of cm by dashed
lines. For example, for the group c1 in fig, 4,a (km=3)<(2hm=22=4). That is why we
need to add 2hm-km=4-3=1 vertex, as shown in fig.4,b.

Now let us group all the vertices of Λ that correspond to symbols cm
m1, cm

m2,...
with the same subscript m, i.e. to the set cm (see fig. 4,b, where the groups are
encircled by dotted closed curves). Some groups may be connected (by edges) and
other groups may be isolated. Fig. 4,c shows the new graph Γ that depicts the number
of connections between the groups of Λ (see the number enclosed to the edge) and the
number of vertices in each group of Λ (see the numbers enclosed to vertices).

a)

b)

c1
3 c1

2

c1
4

c2
6

c2
9

c2
1

c2
5 c5

5

c5
9

c5
8

c5
7

c1
3

c1
2

c1
4

c2
6 c2

9

c2
1

c2
5 c5

5

c5
9 c5

8

c5
7

c1 c2 c5

4 4 4
2

c) d)

00

01

11

10

 00 01 11 10

c1

c5c2

Figure 4. Graph Λ (a), extended graph Λ (b) , graph Γ (c) and encoding map (d)

Let us analyze the graphs Λ and Γ in more detail. Each vertex of Γ represents the
respective group cm of Λ, i.e. the group that has to be coded by the corresponding hm-

cube. If two groups cm and cs (two vertices cm and cs of Γ) have been connected by an
edge then they represent transitions to the same states and ACs for such transitions
may be the same. The number N(cm,cs) near the respective edge specifies the number
of such transitions. So, if vertices cm and cs of Γ have been connected by an edge with
N(cm,cs) we need to accommodate cm and cs in such a way that: cm is coded by hm-
cube; cs is coded by hs-cube; hm-cube and hs-cube have N(cm,cs) intersecting (shared)
squares. This is shown in fig.4,d, where c1 is an isolated h1-cube (i.e. 2-cube), c2 and
c5 cubes that are intersecting by 2 squares, because N(cm,cs)=2 (see fig. 4,c). Finally
we have to accommodate symbols ci

j in the map (see fig. 4,d) in such a way that
symbols with the same superscript will occupy the same square. This is trivial and we
will obtain finally our previous table shown in fig. 3,a.

The method considered above is based on formal steps. A problem arises when we
want to construct very complicated FSMs. In such cases the size of RAM becomes
very large, and the circuit has a lot of redundancy. This problem can be overcome
through a modular hierarchical specification of the FSM behavior such as that
considered in [4]. This enables the description of the FSM to be decomposed into
relatively autonomous fragments (sub-descriptions). Each fragment (module) can then
be implemented in hardware using the approach we have discussed. The interaction
mechanisms between the autonomous fragments were also considered in [4], and are
based on the model of communicating FSMs with common stack memory.

4 Reusable Templates for RAM-Based FSM

Two blocks in fig. 2, the FSM memory and the RAM-based combinational circuit,
are parameterizable and reusable. Since RAM is a dynamically modifiable unit, we
can realize many run-time changes in the FSM behavior, even for our simple example
in table 1 (for example, for given set Y={y1,...,yN} we can arbitrary redefine output
values in different states for Moore FSM). In order to provide reusability for the entire
FSM circuit, we must be able to program the functions of the additional blocks such
as C(T2,x1), C(T3,x2) in fig. 2. However, for the functions P1,...,PG (such as those
shown in column PB(afrom,ato) of table 1), the corresponding conversions can be
provided by means of multiplexers controlled by the same RAM-based combinational
circuit. This allows links between input variables from the set X and output variables
from the set P to be programmed by dynamically modifying the RAM contents. This
technique cannot be used directly for generating variables such as those shown in the
column P(afrom,ato) of table 1. We can suggest two possible ways to solve this
problem. First, it is possible to connect a RAM-based code converter (that transforms
PB(afrom,ato) to P(afrom,ato)) to the multiplexer outputs. The second way assumes
insignificant modifications to the method considered above. Suppose that all the states
have been coded as shown in table 1, and Kf is the set of fuzzy codes. For our
example we have Kf={K(a1), K(a2), K(a5)}={01ii,10ii,1ii1}. Let us replace symbols i
with symbols Pt having such t that shows the position of i in the code from left to right
(starting from 1). For our example we can write the following sets of characters
01P3P4, 10P3P4 and 1P2P31. Now we can change the indexes in the column
PB(afrom,ato) of table 1 in such a way that they will fit the respective bit positions in the
subsets considered. For example, the symbols P1,P2,P3 for the set PB(a1,ato)={
PB(a1,a2), PB(a1,a3), PB(a1,a4) } could be re-indexed as follows P1⇒P3, P2⇒P4, P3⇒P5.
Thus new symbols P3 and P4 fit the third and fourth positions in the set 01P3P4. The

new symbol P5 can be used as a new bit for ACs. Unfortunately, in this case the size
of the ACs has to be increased. This is the price of flexibility. Finally we will get:
PB(a1,a2)=P3P4, PB(a1,a3)=P3∨P3P4P5, PB(a1,a4)=P3P4P5, PB(a2,a1)=P4, PB(a2,a5)=
P3P4P5, PB(a2,a6)=P4P5, PB(a2,a9)=P3P4P5, PB(a5,a5)=P2P3P5, PB(a5,a7)=P3, PB(a5,a8)=
P3P5, PB(a5,a9)= P2P3P5. Now we can implement our FSM based on RAM with the
size of ACs equal to 5. The RAM becomes larger but we have been able to construct a
dynamically modifiable circuit for the replacement of input variables. This circuit can
be realized on programmable multiplexers [3] controlled by FSM RAM. Note that we
still have two problems. Firstly, we might lose the flexibility of replacing non-
encoded states, such as appeared in fig. 3,b. Since the size of the encoding map will
be increased we could conceivably cope with this problem. Secondly, the outputs of a
multiplexer-based circuit can be connected to the inputs of primary RAM in a
different manner. This problem can be also solved in several ways. On the one hand
we can build a RAM-based demultiplexer. On the other hand we can use pre-fixed
connections by providing full set of multiplexers for the circuit that replaces variables.
It is also possible to avoid flexible connections by setting up trivial constraints [3] for
state encoding (for example, we can fix the number of bits with symbols i and their
positions in all codes).

Thus the scheme of the FSM becomes fully dynamically reconfigurable, i.e. the
functionality of the FSM can be changed after it has been implemented in hardware,
even during run-time, by reloading the RAM blocks. Of course, each particular
template has some constraints. However there are parameters for the template that can
be altered. Thus the constraints can be changed by parameterization for the desired
range of applications, much the same as changes of input/output numbers for RAM
and ROM. Finally a library of templates can be created for FSMs having different
characteristics, such as the values of L, N, M, max(km| m=0,...,M-1), etc.

5 Experimental Results
The proposed technique has been analyzed in several contexts. Firstly, we

examined FSMs that are used in a variety of practical systems. This enabled us to
estimate some parameters, such as the expectable range of G, the potential for
behavioral specifications to be decomposed into smaller parts, and so on. Secondly,
we compared the results of synthesis of the RAM-based FSM proposed in this paper,
with the results obtained using known methods based on both binary and one-hot state
encoding techniques.

All the experiments were performed with XS40 boards (XStend V1.2) of XESS
that contain the Xilinx XC4010XL FPGA and the Xilinx Development System (series
1.5). Combinational circuits for FSMs were constructed from FPGA CLBs configured
as RAM and ROM. For dynamic modifications we used dual port RAM library
components, such as RAM 16X4D. Thus the first port took part in the FSM state
transitions whilst the second port was used to reprogram RAM from the PC via the
parallel port. Run-time modifiability is supported by software developed in Visual
C++. Finally, FSMs with dynamically alterable behavior were implemented on
statically configured FPGAs, such as the XC4010XL.

The reports of the experiments are summarized in table 2. The columns “Binary”
and “One-hot” show the results obtained using the Xilinx Foundation Software. The
average value of G from more than 50 practical FSMs is 2.7. Most of the FSMs were

decomposed into relatively autonomous modules to which we applied the proposed
technique. In fact this granulation is quite natural, and arises from the modular nature
of the specifications of the various operations controlled by the FSM [4]. We found
that even in the case of partially hardwired circuits the majority of modifications that
were needed in practice could be provided without redesigning the circuits. Note that
in spite of the extended facilities, for all the examples the number of CLBs needed for
the FSM circuits (see table 2) was less than that for the other methods of synthesis.

 Table 2. The results of experiments
Number of CLBs for FPGA XC4010XLName of

example
Parameters of

FSM
(L/N/M/R/G)

RAM-based
FSM

Binary One-hot

Proc. 15/10/47/6/3 60 96 166
Plot. 11/25/24/5/2 41 42 53

Teleav. 14/17/33/6/4 68 86 137
TechC 22/18/55/6/3 82 114 172
Conv 6/5/23/5/2 24 33 32
Vend. 7/4/18/5/2 22 30 28
TrafL. 3/7/11/4/2 9 15 12
LProc. 19/8/36/6/4 33 50 38
Abstr1. 8/0/10/4/2 8 14 10
Abstr2. 8/9/10/4/2 11 22 15

For each column “binary” and “one-hot” we synthesized the respective circuits
using both available criteria (such as “optimized for area” and “optimized for speed”)
and chose the best result. For some examples we could not obtain the final scheme
using Xilinx synthesizers because the results of placement were negative. On the
other hand in case of the proposed technique we were able to construct final circuits
for all the examples.

6 Conclusion

We have described an approach to the design of RAM-based FSMs. It combines
the state assignment technique proposed in the paper that allows the code for the
states to be fuzzy, with the replacement (encoding) of input vectors. As a result, the
structure of the FSM becomes well suited to implementation in commercially
available FPGAs and the FSM acquires capabilities for dynamic modification. The
latter can be achieved even when statically configured FPGAs such as the Xilinx
XC4000XL are used.

References
1. Giovanni De Micheli: Synthesis and Optimization of Digital Circuits: McGraw-Hill, Inc.,

(1994)
2. Baranov, S.: Logic Synthesis for Control Automata. Kluwer Academic Publishers, (1994)
3. Sklyarov, V.: Synthesis of FSMs based on matrix LSI. Science and Technique, Minsk

(1984)
4. Sklyarov, V.: Hierarchical Finite State Machines and Their Use for Digital Control. IEEE

Transactions on VLSI Systems. Vol. 7, No 2 (1999) 222-228

