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Abstract—This paper presents a framework for pixel-level
multisensor image fusion algorithm using graphics hardware.
When it comes to the fusion technology of recent times, not
only its visibility through information maximization which is
brought about by the progress in sensor technology but also the
importance of fusion processing speed has increased. The GPU
provides high-performance compared to its price and executes
rapid computation by supporting internal parallel processing can
be used to improve the image fusion processing speed. Through
an implementation of pixel-level image fusion methods using GPU
and CPU, this paper shows an increase in the execution time of
the GPU compared to the execution time of the CPU as the
multi-scale level and resolution increase.

Keywords: Multisensor fusion, GPU, pixel-level image
fusion, parallelism.

I. INTRODUCTION

With the rapid development in GPU performance and grad-
ual extension in programmable characteristics in recent times,
the possibility of utilizing a GPU for general purposes other
than 3D graphics has increased [5]. The processing speed of
a recently developed GPU surpasses the performance of a
recently developed CPU by a significant margin. Also, another
trend in the development of GPUs is that the internal pipeline
functions of the GPU can be programmed by the user. This
makes it possible for the GPU to be used for general purposes,
and although currently restricted, the GPU can eventually be
used for purposes similar to those of the CPU.

For improving computer or human interpretation, image
fusion has advanced rapidly in the past few years. As a result,
many image fusion techniques have been developed in a wide
variety of applications such as concealed weapon detection,
remote sensing, intelligent robots, digital camera applications,
medical diagnosis and surveillance systems.

When it comes to the fusion technology of recent times,
not only its visibility through information maximization which
is brought about by the progress in sensor technology but
also the importance of fusion processing speed has increased.
For example, the EO (Electro Optical)/IR (Infrared) aviation
images received from an unmanned aircraft have an extremely
high resolution. Substantial memory and computing power are
required for a high-speed fusion of high resolution images
acquired multiple sensors [6]. Image fusion-exclusive pro-
cessors are developed and used for the fusion processing of
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real-time images and videos [6] [7]. But when such fusion-
exclusive hardware is used, restrictions such as a lack of
system extendibility are caused due to memory deficiency,
price increase, and modification or addition to algorithm.

According to the stage at which the fusion takes place,
image fusion algorithms can be considered to be at one of
four levels of abstraction [3] [12]: signal-level; pixel-level;
feature-level; and symbolic-level. Currently, it seems that most
image fusion applications employ pixel-level methods. At
pixel-level fusion, input images are combined by considering
individual pixel values or small window centered at the current
pixel position or specific regions in order to determine the
fusion method. The advantage of pixel-level fusion is implying
of original information for source images. Furthermore, the
algorithms are easy to implement.

Most of image fusion algorithms require a simultaneous
processing into high resolution image or multiple images
under a same instruction, namely, they require a SIMD-type
approach. This paper presents a GPU-based framework for
a high-speed fusion processing of a multisensor image, and
shows an improvement in the fusion processing speed in
comparison to the CPU. Pixel-level image fusion algorithms
such as weighted average, PCA, laplacian pyramid, discrete
wavelet transformation are implemented and their execution
times are evaluated in our experiment. These algorithms are
applied with implementation techniques such as the usage
of a structure which utilizes Render-To-Texture (RTT) and
Multi-Pass Rendering (MPR) for a high-speed execution in
the fragment processor of GPU [4] [13] [17].

This paper is organized as follows. First GPU architecture
and the GPU programming model are presented in Section
2, and pixel-level image fusion algorithms are described in
Section 3. In Section 4, the structure of the framework for the
high-speed image fusion and the implementation process in
the GPU are discussed. Section 5 shows a performance com-
parison through a speed measurement of the fusion methods
implemented in the CPU and GPU, Section 6 conclude our
work.

II. GRAPHICS PROCESSING UNIT

GPU is a dedicated graphics rendering device that acceler-
ates speed of generating 3D scene. With simple and parallel



architecture, the latest GPU’s computational speed is at least
3-4 times faster than CPU’s and the gap between GPU and
CPU is increased. Particularly, the benefits of harnessing the
massive computing power and speed of the SIMD architecture
of GPUs are numerous while at the same time the CPU can
be used on other tasks [4]. In this section, we briefly introduce
the GPU architecture and the GPU programming model.

A. Graphics Pipeline

The design of graphics processors has traditionally followed
a common structure known as the graphics pipeline [4] [5] [13]
[14] [15]. This graphics pipeline is designed to allow hardware
implementations to maintain high computation rates through
parallel execution. The pipeline is divided into primarily three
stages:geometry stage, rasterization stage, fragment stage. The
input to the pipeline is a list of geometry, expressed as vertices
in object coordinates; the output is an image in a framebuffer.
In hardware, each stage is implemented as a separate piece of
hardware on the GPU. A simplified current graphics pipeline
is shown in Fig. 1.
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Fig. 1. Graphics Pipeline
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Graphics pipeline allows for many levels of parallelism
resulting in high computational rates and throughput [15] [16].
Each of the stages is typically implemented as individual
hardware components that allow for the overlapping execution
of each task (i.e. task-level parallelism). In addition, the
pipeline is composed of multiple vertex and fragment(pixel)
processors, allowing for many data-parallel operations over
the supplied set of input vertices and resulting pixels (i.e. data-
level parallelism). For example, common hardware designs use
6-8 vertex processors and 32-48 fragment processors. What is
more, within the processing of a single element, we can exploit
instruction-level parallelism. While early implementations of
the graphic pipeline were based entirely on a fixed-function
design, the last several hardware generations have introduced
user-level programmability. As shown in Fig. 1, programmers
can supply code for both the vertex and fragment processors.
Each program is typically limited to a fixed number of avail-
able input and output parameters, registers, constant values,
and overall number of instructions. The input parameters to
programs can be scalar values, two-, three-, or four-component
vectors, or arrays of values (scalar or vector) that are stored
in the texture memory of the graphics card.
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B. GPU Programming Model

GPGPU computing presents challenges even for problems
that map well to the GPU, because despite advances in
programmability and high-level languages, graphics hardware
remains difficult to apply to non-graphics tasks.

We describe the stream programming model which is the ba-
sis for programming GPUs today. In the stream programming
model, all data is represented as a stream which define as an
ordered set of data of the same data type and kernels are small
programs operating on streams. Kernels take a stream as input
and produce a stream as output. Like above Fig. 1, the graphics
pipeline is structured as stages of computation connected by
data flow between the stages. This structure is analogous to
the stream and kernel abstractions of the stream programming
model. Stream programming model on GPU offers SIMD-
based parallel processing power.

A typical GPGPU program uses the fragment processor
because the programmable stage with the highest arithmetic
rates is the fragment processor. Fragment processors have the
ability to fetch data from textures, so they are capable of
memory gather. However, the output address of a fragment is
always determined before the fragment is processed-the pro-
cessor cannot change the output location of a pixel-so fragment
processors are incapable of memory scatter. Programmers must
resort to various tricks to achieve a scatter. GPU programming
model has the many merits for improvement of system per-
formance, but there are many limitations of programming for
general application.

Specially, the GPU programming has the advantage and
disadvantage in memory access sides. For example, a frame
buffer memory can be display or can be written to texture
memory, this work called render to texture. It is implemented
direct feedback of GPU output to input without going back
to CPU, so more efficient results is made. On the other hand,
fragment processor can’t use indirect memory addressing in
writing operation and same memory as input and output. Shad-
ing languages are directly targeted at the programmable stages
of the graphics pipeline. The most common shading languages
are Cg, the OpenGL Shading Language, and Microsoft’s High-
Level Shading Language. Cg (“C for graphics”) [21] is a high-
level shading language developed by NVIDIA, its syntax and
semantics are very similar to the C programming language.
Most of our fusion processes are implemented on GPU and
we have Cg and OpenGL with graphics user interface.

III. PIXEL-LEVEL IMAGE FUSION METHOD

Pixel-level fusion methods can be roughly divided into
two groups, grayscale fusion methods and color fusion meth-
ods [1] [3] [12]. Grayscale fusion methods are divided into
multi-scale-decomposition-based (MDB) fusion methods and
non-multi-scale-decomposition.based (NMDB) fusion meth-
ods. Color fusion methods are divided into true-color methods
and false-color methods. Some representative algorithms such
as weighted averaging, laplacian pyramid, DWT, TNO are
reviewed in this section.



A. Weighted Averaging

The probably most straightforward way to build a fused
image of different sensor images is performing the fusion as a
weighted superposition of input images. It takes the weighted
average of the source images pixel by pixel.

F(Zaj):w111<la.7)+w212(7’7j)a (1)

where wi and wo are the weighting coefficients, I1(i, j) and
I>(i, j) are the values of pixel (i, j) in the source image. The
simple approach to determine of weighting coefficients is to
build the fused image by the application of a simple nonlinear
operator such as max or min. The other optimal weighting co-
efficients can be determined by a principal component analysis
(PCA) of all input intensities [3] [12]. PCA is fundamentally
limited by it use of global variance as a saliency measure and
will always assign a stronger weight to the source image with
the greater variance.

B. Laplacian Pyramid

Image pyramids have been initially described for multireso-
lution image analysis and as a model for the binocular fusion
in human vision [18]. Multi-resolution image pyramids are
constructed by successive filtering and down sampling of
source image. Due to sampling, the image size is halved
in both spatial directions at each level of the decomposition
process, thus leading to a multiresolution signal representation.
Several pyramid-based fusion schemes have been proposed in
recent years. Only the Laplacian pyramid is considered here
as it has been shown to perform best among all pyramids
[18] [19]. Each level of the Laplacian pyramid is recursively
constructed from its lower level by applying the following four
basic steps: blurring (low-pass filtering); subsampling (reduce
size); interpolation (expand); and differencing (to subtract two
images pixel by pixel) [20]. The detailed images, resulting
from the difference operation, are fused using a maximum
selection rule at each point and then combined with the same
image from the lower pyramid level.

C. Discrete Wavelet Transform

A common wavelet transform technique used for fusion is
the DWT (Discrete Wavelet Transform) [9] [14]. The one-
dimensional (1-D) DWT involves successive filtering and
down sampling of the signal. For images the 1-D DWT is used
in two dimensions by separately filtering and down sampling
in the horizontal and vertical directions. This gives four sub-
bands at each scale of the transformation with sensitivity to
vertical, horizontal and diagonal frequencies. DWT coeffi-
cients from two input images are fused (pixel-by-pixel) by
choosing the average of the approximation coefficients at the
highest transform scale, and the larger absolute value of the
detail coefficients at each transform scale. Then an inverse
DWT is performed to obtain the fused image. It has been
found to have some advantages over pyramid schemes such as:
increased directional information [1]; no blocking artifacts that
often occur in pyramid-fused images [1]; better signal to noise
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ratios than pyramid-based fusion; improved perception over
pyramid-based fused images, compared using human analysis.

D. TNO

Color fusion can consist of assigning the two source image
to the three planes of an RGB color image. Toet has proposed
a straightforward improvement to the basic RGB color fusion
scheme which has become known as the TNO method [11]. In
this method, the common component, defined as the lowest-
valued pixel of each pair of pixels, between two images
is calculated. This is subtracted from the two images to
produce the unique information in each image. These unique
components from each opposing source image are removed
from each source image and then the resulting images are
assigned to the red and green channels of the fused image.

IV. THE FRAMEWORK FOR IMAGE FUSION

This section shows the proposed framework for the multi-
sensor image fusion using GPU and describes how the pixel-
level fusion algorithms were implemented on GPU.

A. The Proposed Framework
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Fig. 2. The Proposed framework for multisensor fusion
using graphics hardware

Fig. 2 shows the proposed framework for the multisensor
image fusion using GPU. This framework is roughly divided
into 4 stages: texture transformation, preprocessing, texture
synthesis, and post-processing. In the texture transformation
stage, an operation which converts the 8bit gray or 24 bit
color input images into a 2-dimensional texture form so that
the entire fusion process can be executed by the fragment
processors. After the conversion to texture, it is loaded as
texture memory according to the functions of the OpenGL.
Textures in texture memory are used to input of the fragment
program and the fragment program is executed by fragment
processors. The output of this process is another texture mem-
ory attached to the FBO. This process is called Render-To-
Texture which has a feedback structure that enables re-usage
by sending the processing results of the fragment processor
to the texture memory instead of the framebuffer which is
the standard output object. Each fragment program represents
one pass of a multi-pass computation on the GPU. So the



Multi-Pass Rendering (MPR) technique is used to execute
the multiple-fragment program of the fusion algorithms. All
processes executed in the fragment processor for image fusion
take on a RTT structure, and the fusion processing can be
executed at a high-speed through the utilization of MPR in
order to execute more than one fragment program which is
needed for the pre-processing and post-processing procedures.

B. Implementation on GPU

The implementation of entire process is summarized as
follows. First of all, write each of the functions executed in
the algorithms on the fragment program and store the input
images in the texture memory. Each of the fragment programs
is executed by the fragment processor and the resulting images
are stored again in the texture. Fig.3 illustrates the structure
of each fragment program in each stage of the framework for
the 4 types of pixel-level image fusion algorithms observed
in Section 3. The part marked with a round rectangle rep-
resents the fragment program, and the arrow represents the
input/output of the texture.

Pre.Processing

Texture
Synthesis

[ Weighted

averaging

Post.-Processing

Weighted  Laplacian
Averaging  Pyramid

DWT ™o

Fig. 3. The structure of each fragment program in stages
of the framework

When observing the algorithms individually, weight averag-
ing and TNO method are consist of a single fragment program
and the fragment program receives 2 inputs of texture, and a
synthesized texture is generated.

struct Output {
float4 color : COLOR;
I b

struct Output {
float4 color : COLOR;

Output Weighted Averaging(half2 coords : TEX0,
uniform samplerRECT texture 1,
uniform samplerRECT texture2,
uniform float fuse_param) {

{ Output OUT;

Output OUT; // Two input texture
float w =fuse_param; half4 imagel = texRECT(texturel, coords);
half4 image2 = texRECT(texture2, coords);

Output TNO(half2 coords : TEX0,
uniform samplerRECT texture 1,
uniform samplerRECT texture2)

half4 image = texRECT(texturel, coords);
half4 image2 = texRECT(texture2, coords); I ion of Common C
half4 min_image = min(image!, image2);

OUT.color=w * imagel +(1 - w) * image2;
return OUT; /I Calculation of Unique Component

OUT.color.r=imagel - (image2 - min_image);

OUT.color.g age2 - (imagel - min_image);

OUT.color.b = (image2 - min_image) - (image1 - min_image);
return OUT;

}

Fig. 4. An example of the fragment program in Cg.
Weighted Averaging(left) and TNO(right)
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Fig. 4 illustrates an example implemented by an actual
usage of Cg. In the case of the laplacian pyramid algorithm,
the reduce/expand calculation was executed through the re-
sampling and interpolation provided by the OpenGL. Also,
with an increase in the pyramid level, the structures shown in
Fig. 3 will take on a more complex form. In the case of the
DWT synthesis, the convolution-based DWT was implemented
in the GPU. At each level, the 2D DWT is achieved by
performing 1D DWT first horizontally and then vertically.
For the multiplication and addition calculations required in
each rendering process of the DWT/IDWT, an indirect address
table according to the method presented by J. Wang should be
composed and used as a texture input for the fragment program

[5].
V. EXPERIMENTS

To evaluate the performance of the pixel-level fusion algo-
rithms in the GPU, the fusion processing speed was measured
by implementing each of the aforementioned 4 types of
algorithms in the CPU and GPU, and changing the image
resolution. In the case of the weighted averaging fusion
method, weight value 0.5 was simply applied to each of the
input images and the implementation speed was measured. In
the case of the laplacian pyramid and DWT fusion method,
a classification into level 1 and level 3 was made and each
of the resulting speed was measured. This test was executed
in an environment using Intel Core2 CPU 6600 2.4GHz and
the NVIDIA Geforce 8600 GTS GPU. As a standard in the
speed measurement, the speed of image fusion was calculated
excluding initialization and configuration of OpenGL and Cg.

(unit: sec)

Laplacian | Daub. Daub.
Resolution | Processor | Average Pyramid Wavelet Wavelet TNO
(Level=3) Level=1 Level=3
CPU 0015 0.080 0046 0121 0015
256x256
GPU 0010 0.067 0042 0.107 0012
CPU 0016 0280 0.125 0364 0031
512x512
GPU 0012 0135 0089 0251 0014
CPU 0.031 1237 0515 1439 0.094
1024x1024
GPU 0.022 0.762 0327 0931 0.027
CPU 0.109 3031 3953 5840 0375
2048x2048
GPU 0.033 2.642 1.165 2528 0.045

Fig. 5. Execution time of image fusion

Fig.5 shows the time measured for each of the fusion
algorithms in each resolution in numerical values. When
comparing according to different fusion methods, the weighted
averaging method is the simplest and fastest for implementa-
tion. The weighted averaging method, which almost does not
require the optimization of the program to implementation,
clearly shows the difference in the performance of the two
processors through the difference in the execution speed of
the GPU and CPU. A speed difference of over 30% shows
the performance difference achieved when the 128 fragment



processors in the GPU are executed through a single fragment
program as opposed to a single-processor processing of the
CPU. The multi-resolution fusion method shows an increase
in the execution time of the GPU compared to the execution
time of the CPU as the level and resolution increase.

VI. CONCLUSION

Recently, the commodity GPU is being used in not only 3D
graphics rendering but also in general-purpose computation
(GPGPU) due to an increase in the goods price/performance
ratio and hardware programmability as well as the huge com-
puting power and speed of the GPU. Pixel-level image fusion
algorithms execute a high volume of image data under a same
command. Also, as the importance of a high-resolution/high-
speed image fusion increases with the development in sensor
technology, image fusion processing using the GPU will prove
to be a positive solution. This paper presented a framework
for pixel-level image fusion using the GPU, and actual basic
fusion algorithms were implemented in the CPU and GPU
for a performance comparison. As a result, an improvement
of over 30% in the execution speed compared to the speed
when using the CPU has been demonstrated through the data-
level parallelism, task-level parallelism, and instruction-level
parallelism found in the internal structure of the GPU and
programming models; and implementation techniques which
utilized Render-To-Texture and Multi-Pass Rendering.. In the
future, a framework for an effective fusion processing can be
achieved through the usage of the CUDA (compute unified de-
vice architecture), a next-generation GPU of NVIDIA, which
will enable a more independent arrangement processing and a
wide variety of memory usage to be applied to the substantial
number of image fusion algorithms that are currently in
development.
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