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The acquisition of a signal in a digital communi-
cations system requires the convergence of sev-

eral signal processing algorithms before the receiv-
er can output meaningful data. These algorithms
are adaptive in nature and need to process multiple
received symbols before convergence is achieved.
Because of the feedback nature inherent in these
algorithms, the various adaptive receiver sections
are often referred to as loops. Certain receiver loops
depend on other loops. Depending on the algorithm
implemented, it is possible that a given loop cannot
converge until one or more previous loops have suf-
ficiently converged. The major receiver loops are
listed in the order that they typically need to con-
verge, although the order may sometimes vary
depending on the implementation. 

Stage 1 – AGC
This stage scales the signal to a known power

level. Automatic gain control (AGC) is typically han-

dled in the analog domain to properly scale the signal
for analog-to-digital (A/D) conversion because A/D
converters have a limited dynamic range. If the
received signal strength is too high, the A/D conver-
sion process will introduce a type of distortion known
as clipping. If the signal strength is too low, the signal
variations will toggle only a few bits at the A/D, and
distortion will occur because of severe quantization.

The convergence of the AGC loop is also required for
several other receiver blocks. Certain parameters and
gains for various adaptive algorithms, as well as bound-
aries for symbol decision regions at the slicer, are based
on the signal being at a known power level. In addition
to the analog AGC, many receivers implement an addi-
tional AGC in the digital domain for fine signal scaling.

Stage 2 – timing recovery
The purpose of the timing recovery loop is to

obtain symbol synchronization. Two quantities
must be determined by the receiver to achieve sym-
bol synchronization. The first is the sampling fre-
quency. Locking the sampling frequency requires
estimating the symbol period so that samples can
be taken at the correct rate. Although this quantity
should be known (e.g., the system’s symbol rate is
specified to be 20 MHz), oscillator drift will intro-
duce deviations from the stated symbol rate.

The other quantity to determine is sampling
phase. Locking the sampling phase involves deter-
mining the correct time within a symbol period to
take a sample. Real-world symbol pulse shapes
have a peak in the center of the symbol period.
Sampling the symbol at this peak results in the
best signal-to-noise-ratio and will ideally eliminate
interference from other symbols. This type of inter-
ference is known as intersymbol interference.

Stage 3 – carrier recovery
An oscillator at the transmitter generates a sinu-

soidal carrier signal that ideally exists at some known
carrier frequency. Due to oscillator drift, the actual
frequency of the carrier will deviate slightly from the
ideal value. This carrier is multiplied by the data to
modulate the signal up to a passband center frequen-
cy. At the receiver, the passband signal is multiplied
by a sinusoid generated by the local oscillator.

Preferably, the frequency of the local oscillator
will exactly match the frequency of the oscillator
used at the transmitter. In practice, their frequen-
cies differ and, instead of demodulation bringing
the signal to baseband, the signal will be near base-
band with some frequency offset. The presence of
this frequency offset will cause the received signal
constellation to rotate. This “spinning” effect must
be removed before accurate symbol decisions can be
made. The purpose of the carrier recovery loop is to
remove this frequency offset so that the signal can
be processed directly at baseband.

Stage 4 – channel equalization
Transmitting a signal through a multipath

channel results in a received signal that consists
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of several delayed and scaled versions
of the transmitted signal. Multiple
versions of the signal occur because
the receiver may pick up the signal
that traveled the direct path from
transmitter to receiver, as well as mul-
tiple reflected paths. The multipath
channel can be viewed as a linear fil-
ter. The equalizer is an adaptive filter
that attempts to remove intersymbol
interference by undoing the filtering
effects of the multipath channel.

Timing recovery algorithms adap-
tively determine the correct time to
sample the symbol pulse shape. Thus,
before entering into a discussion on
timing recovery, some background
material will be provided on the topics
of matched filtering and pulse shaping.

Signal detection
A basic problem in digital communi-

cations is the detection and estimation
of a transmitted pulse in the presence
of additive white Gaussian noise
(AWGN). Imagine the simple case of a
rectangular pulse, such as that shown
in the top half of Figure 1. A data sym-
bol of +1 is indicated by transmitting a
pulse with an amplitude of +2, and sim-
ilarly, a data symbol of –1 is indicated
by transmitting a pulse with an ampli-
tude of –2. The period of these pulses,
T, is 25 ms. Note that the one pulse is
simply a negated version of the other. 

When two pulse shapes are used that
have the same energy and a cross-corre-
lation of –1, the signaling set is said to be
antipodal. The estimation of the trans-

mitted pulse shape is trivial for the case
of no noise. The receiver simply takes one
sample every T seconds and determines
whether the sample equals +2 or –2. 

Such a scheme no longer works in the
presence of AWGN. White noise has infi-
nite average power and can therefore eas-
ily drown out the received signal that is of
limited power. The lower half of Figure 1
shows the same pulse sequence for the
case of noise with a signal-to-noise ratio
(SNR) of 5 dB. Note that the noise has
severely distorted the signal, even flipping
the sign of some samples. Because all
practical communications systems have
some non-trivial noise level, a more robust
signal estimation scheme is needed.

Matched filtering
Practical receivers estimate the

transmitted signal by using a tech-
nique known as matched filtering. A
receiver employing such a technique fil-
ters the received signal with a filter
whose shape is “matched” to the trans-
mitted signal’s pulse shape. The output
of the filter is then sampled at time T.
The matched filter’s pulse shape is a
time-reversed version of the transmit
pulse shape. Thus, if the transmit pulse
shape h(t) is defined as:

h(t) for 0 ≤ t ≤ T

then the ideal matched filter’s response
hm(t) is:

hm(t) = h(T–t) for 0 ≤ t ≤ T

Such processing has two advantages.
One advantage is that typical pulse
shapes have a low-pass response. By fil-
tering the received signal with such a fil-
ter at the receiver, the frequencies con-
taining the data signal are passed while
the remaining frequencies are attenuat-
ed. This matched filtering limits the
amount of the noise spectrum that is
passed on to subsequent stages in the
receiver. A second advantage is that a
matched filter correlates the received
signal with the transmit pulse shape
over the symbol period T. 

Recall that passing a signal r(t)
through a filter hm(t) is a convolution
operation. The convolution of these two
signals can be written as:

where y(T) represents the output of the
matched filter sampled at time T.
However, the matched filter’s response

y t r t h T t dtm

T
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Figure 2. Matched filter outputs for signals in Figure 1.

Figure 3. Sinc pulse examples.
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was defined as hm(t) = h(T - t). By substi-
tuting this definition into the above equa-
tion, the following integral is obtained:

The above equation is the cross-correla-
tion (sampled at time T) of r(t) with h(t)
for a lag of 0. Thus, this simple derivation
has illustrated how matched filtering
effects the correlation of the received sig-
nal with the matched filter. Such process-
ing results in a correlation gain by inte-
grating the received signal energy while
averaging out the zero-mean AWGN.

An example of matched filtering is
shown in Figure 2. The received signals
for the top and bottom halves of the fig-
ure are the signals shown in Figure 1.
The matched filter used was:

hm(t) = 2 for 0 ≤ t ≤ T

Note that sampling the matched fil-
ter output at time T = 25 ms provides
the sample with the highest SNR. The
samples from Figure 1 had an ampli-
tude of 2, whereas the matched filter
output (when sampled properly) has a
value of 100. The value of 100 repre-
sents the integral, over the time period
T, of the received signal pulse shape
exactly lined up with the matched filter
response. The value of this peak can be
calculated as follows:

This simple example illustrates how
matched filtering provides the receiver

with a stronger signal to work with
compared to directly sampling the
received signal. The processing gain of
matched filtering is especially apparent
for the example with an SNR of 5 dB. 

Note that the received signal is
severely distorted by noise, but the
matched filter’s output is still close to
its ideal value for the case of no noise.
This result is possible because the
matched filter filters out the higher fre-
quency noise and then integrates the
remaining lower frequency noise over a
time period of T ms. Because AWGN is
zero-mean, this integration effectively
averages out the noise.

As can be seen from Figure 2, it is
important to sample the matched fil-
ter’s output exactly at time T to obtain
the sample with the highest SNR.
Sampling the matched filter’s output at
some time T + ∆, (where ∆ represents a
receiver timing offset) will significantly
reduce the effective SNR seen by subse-
quent receiver blocks. This example
shows the importance of keeping ∆ as
close to zero as possible and thus pro-
vides motivation for the inclusion of a
timing recovery loop in the receiver.

Before discussing specific timing
recovery algorithms, the next sections
will first illustrate the problems inher-
ent in using this rectangular pulse
shape. A more practical pulse shape
known as a root-raised cosine pulse will
then be introduced.

Ideal pulse shaping
Although the use of matched filter-

ing gives the optimum performance in
the presence of AWGN, there is still a
problem with using a rectangular pulse
shape. Recall from Fourier theory that
a rectangular pulse in the time domain
is equivalent to a sinc pulse in the fre-
quency domain. Because the tails of the

sinc pulse extend to infinity, such a
pulse shape would require a system
with infinite bandwidth. 

The ideal pulse shape should have
two properties. It should have a limited
bandwidth to allow transmission on
practical band-limited systems. The
pulse shape should also have zero inter-
symbol interference if sampled at the
correct time interval. That is, when a
pulse train is sampled every T seconds,
the value of the sample at time T
should only be due to the current pulse.
And there should be no interference
from the other transmitted pulses.

In other words, ideally, h(t) = 1 for t
= 0 and h(t) = 0 for t = ±kT where k is a
non-zero integer. An ideal pulse shape
that meets these requirements is a
time-domain sinc pulse. An example of
a sinc pulse for which T = 10 is shown
in Figure 3. Note that the pulse takes
on a value of 1 at its peak and its zero-
crossings occur at intervals of integer
multiples of ±10 samples away from
the peak. The lower half of the figure
shows a pulse train of four pulses. This
example illustrates how the peak of
any given pulse lines up with the zero-
crossings of the remaining pulses.
Therefore, there is no ISI.

Practical pulse shaping
Although the sinc pulse represents

the ideal pulse shape, it cannot be
implemented in practice because the
pulse extends in time for infinite dura-
tion. The infinite signal duration is due
to the discontinuities in the sinc pulse’s
rectangular-shaped spectrum. Signals
with discontinuities in their spectrum
are physically unrealizable. However,
practical pulse shapes can be formed by
smoothing the roll-off of the spectrum
and allowing it to occupy excess band-
width beyond that which is needed for
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Figure 4. Spectrum of raised cosine pulse for different values of the roll-off factor. Figure 5. Raised cosine pulse for different values of the rolloff factor.
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the spectrum of the ideal sinc pulse.
One pulse shape that has properties

similar to the sinc pulse, but without
the frequency-domain discontinuities,
is the raised cosine pulse. The raised
cosine pulse has a parameter known as
the rolloff factor. The value of the
rolloff factor determines how rapidly
the frequency-domain spectrum of the
pulse rolls off. The raised cosine pulse
is identical to the sinc pulse when the
rolloff factor is equal to zero. As the
rolloff factor is increased, the spectrum
begins to decay more gradually and
this increased rolloff causes the pulse
to occupy more bandwidth. When the
rolloff reaches its maximum value of
one, the spectrum requires twice as
much bandwidth as the pulse with a
rolloff of zero. Practical digital commu-
nications systems often use a rolloff fac-
tor of between 0.10 and 0.35. A pulse
with a rolloff factor of 0.35 occupies
35% more bandwidth than the ideal
sinc pulse. Figure 4 shows the effect of
the rolloff factor on the pulse’s spec-
trum. Figure 5 contains time-domain
raised cosine pulses for the same rolloff
factors used in Figure 4.

The pulses in Figure 5 exhibit zero-
crossings at integer multiples of the
symbol period. Thus, even with non-
zero roll-off factors, the raised cosine
pulse maintains this desirable (from
the standpoint of no ISI) property of the
sinc pulse. The choice of the roll-off fac-
tor is a trade-off between required
bandwidth and the duration of the
time-domain pulse. Note that the tails
of the time-domain pulse are reduced
for higher values of the roll-off factor.
The smaller tails are desirable from a

timing recovery standpoint because, in
the presence of a timing offset, they
will contribute less to ISI compared to
the larger tails of the sinc pulse. 

The most popular pulse shape used
in practical communications systems is
the root-raised cosine pulse. The root-
raised cosine pulse is formed by taking
the square root of a raised cosine pulse.
This pulse shape is used to split the
spectral characteristics of the raised
cosine pulse equally between the trans-
mitter and receiver. 

By matched-filtering the root-raised
cosine pulse and then sampling it at
the symbol period, the root-raised
cosine pulse is essentially squared.
Thus, the output of the matched filter
has a raised cosine pulse response. 

An example of the matched filter
output for a pulse train of root-raised
cosine pulses with a rolloff factor of
0.35 is shown in Figure 6. Note that the
matched filter output exhibits zero ISI
because of the locations of the zero
crossings for the case of perfect timing.

Timing recovery
The previous sections have shown

how intersymbol interference can be
avoided by sampling the matched filter
output at its peak, which occurs every
T seconds. The purpose of the timing
recovery loop is to alter, as necessary,
the sampling frequency and sampling
phase to sample the matched filter at
the peaks. If the timing recovery loop is
operating properly, it will provide the
downstream processing blocks with
symbols that were sampled at the high-
est SNR points available.

An example of a typical all-digital

timing recovery loop is shown in Figure
7. After A/D conversion, the signal is
passed through an interpolator. The
interpolator is able to generate samples
in between those actually sampled by
the A/D (i.e., it interpolates). By gener-
ating these intermediate samples as
needed, the interpolator can adjust the
effective sampling frequency and phase.

Interpolation is accomplished by
first inserting N–1 zeros in between
the data samples (upsampling by a
factor of N). The upsampled signal
passes through a lowpass interpola-
tion filter to remove the aliases caused
by upsampling. The resulting interpo-
lated signal is a smoothed version of
the original signal and it contains N
times as many samples. 

Following interpolation, the output
of the matched filter is sent to a timing
error estimator that can use a number
of different algorithms to generate a
timing error. The control signal for the
interpolator is formed by filtering this
error signal using a standard second-
order loop filter containing a propor-
tional and an integral section. An
example of a typical second-order loop
filter is shown in Figure 8.

The second-order loop filter consists
of two paths. The proportional path
multiplies the timing error signal by a
proportional gain Kp. From control theo-
ry, it is known that a proportional path
can be used to track out a phase error;
however, it cannot track out a frequency
error. For a timing recovery loop to
track out a sampling frequency error, a
loop filter containing an integral path is
needed. The integral path multiplies
the error signal by an integral gain Ki

Figure 8. Structure of a typical second-order loop filter.Figure 6. Zero ISI at output of matched filter using a root-raised cosine pulse.

Figure 7. Example of an all-digital timing recovery loop.
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and then integrates the scaled error
using an adder and a delay block. A sec-
ond-order filter, such as that shown in
Figure 8, can track out both a sampling
phase and a sampling frequency error. 

Early-late gate algorithm
This timing recovery algorithm gener-

ates its error by using samples that are
early and late compared to the ideal sam-
pling point. The generation of the error
requires at least three samples per sym-
bol. The method of generating the error is
illustrated in Figure 9. The left plot is for
the case where sampling is occurring
late. Note that the early and late samples
are at different amplitudes. This differ-
ence in amplitude is used to derive an
error for the timing recovery loop. Once
the timing recovery loop converges, the
early and late samples will be at equal
amplitudes. The sample to be used for
later processing is the sample that lies in

the middle of the early and late samples.
One drawback of the early-late gate algo-
rithm is that it requires at least three
samples per symbol. Thus, it is impracti-
cal for systems with high data rates.

Mueller and Muller Algorithm
The Mueller and Muller algorithm

only requires one sample per symbol.
The error term is computed using the
following equation:

where yn is the sample from the current
symbol and yn-1 is the sample from the
previous symbol. The slicer (decision
device) outputs for the current, and previ-
ous symbol are represented by ŷn and ŷn-1,
respectively. Examples of the value for
the Mueller and Muller error for the cases
of different timing offsets are shown in

Figure 10, Figure 11
and Figure 12. One
drawback of this
algorithm is that it
is sensitive to carri-
er offsets, and thus
carrier recovery
must be performed
prior to the Mueller
and Muller timing
recovery. 

Gardner algorithm
The Gardner algorithm has seen

widespread use in many practical tim-
ing recovery loop implementations. The
algorithm uses two samples per symbol
and has the advantage of being insensi-
tive to carrier offsets. The timing recov-
ery loop can lock first, therefore simpli-
fying the task of carrier recovery. The
error for the Gardner algorithm is com-
puted using the following equation:

en = (yn – yn – 2) yn – 1

where the spacing between yn and yn-2 is
T seconds, and the spacing between yn
and yn-1 is T/2 seconds.

The following figures illustrate how
the sign of the Gardner error can be
used to determine whether the sam-
pling is correct (Figure 13), late (Figure
14) or early (Figure 15). Note that the
Gardner error is most useful on symbol
transitions (when the symbol goes from
positive to negative or vice-versa). The
Gardner error is relatively small when
the current and previous symbol have
the same polarity.

A simulation was run for a timing
recovery loop that used the Gardner
algorithm and the results are shown in
Figure 16 (page 48). The top plot shows
the matched filter output samples for
the in-phase component of the signal.

e y y y yn n n n n= •( )− •( )− −1 1

Figure 14. Timing is late: en = (–0.8 –0.8) • (–0.2) = 0.32. Figure 15. Timing is early: en = (–0.8 –0.8) • (0.2) = –0.32.

Figure 11. Timing is fast: en = (–0.8 • 1) – (–1 • 0.5) = –0.3.

Figure 12. Timing is slow: en = (–0.5 • 1) – (–1 • 0.8) = 0.3.

Figure 13. Correct timing: en = (–1 –1) • 0 = 0.

Figure 9. Method of generating error for early-late gate algorithm. The left plot
shows where sampling is occurring too late. When sampling occurs at the
right time, the early and late samples will be at the same amplitude.

Figure 10. Correct timing: en = (–1 • 1) – (–1 • 1) = 0.
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Notice that the timing recovery loop
converges after about 600 symbols
have been processed. At this point, the
output of the matched filter takes on
values of +1 and –1. The values are
fairly constant because the matched
filter output is being sampled near the
ideal center point. During the first 600
symbols, when the loop is still converg-
ing, the matched filter samples take on

a wide range of amplitudes. This vari-
ance in the matched filter output is
because of ISI caused by sampling the
output at points other than the ideal
center point. The bottom plot shows
the Gardner error en vs. time.

Other methods of timing recovery
The ideal case is to have the trans-

mitter and receiver running off of the

same clock. Although this situation is
typically impossible in a wireless
communications system, it can be
implemented in some wired systems,
such as  computer networks. In such
an ideal system, a timing recovery
loop is not needed because synchro-
nization is explicit.

Another alternative is to have the
clock frequency transmitted along
with the data. The receiver can recov-
er this clock signal with a narrow-
band bandpass filter tuned to that
frequency. Although this method is
used in some practical systems, it is
generally inefficient because the
transmission of the clock signal con-
sumes both bandwidth and transmit-
ter power that could have otherwise
been used for sending user data. In
addition, other decision-directed and
non-decision-directed algorithms
exist for generating an error signal
for a timing recovery.

The Gardner’s algorithm presented
here represents a good starting point
for practical implementations because
of its robustness to carrier offsets, sim-
ple implementation and modest over-
sampling requirement of two samples
per symbol. The interested reader can
learn more about timing recovery algo-
rithms by consulting the references
listed at the end of this article.

Conclusions
This article presents the problem of

detecting pulses transmitted across an
AWGN channel. Merely sampling the
pulses at the receiver once every sym-
bol period is found to be ineffective
because of the signal distortion due to
the presence of noise with an infinite
bandwidth. The concept of the matched
filter receiver is introduced as a way to
limit the noise at the receiver, as well
as to provide a high SNR sampling
point due to the correlation gain. The
implementation of symbol timing syn-
chronization is shown to be a vital
process in obtaining the best SNR sam-
pling point while also avoiding inter-
symbol interference. 
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Figure 16. Simulation results using Gardner algorithm on QPSK data.


